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1. Introduction

Fractional calculus is an extension of the integer order calculus by considering derivatives of
arbitrary order. Fractional calculus is as old as the conventional analytic proposed by Newton and
Leibniz in 1695. These equations are used for modelling of various phenomena in the field of science,
engineering, physical chemistry, electric circuits and mechanical systems. In the literature, various
variable order (VO) fractional operators can be found. Some of them are definitions of Riemann
Liouville, Grunwald, Marchaud Coimbra, and Caputo. Many physical phenomena show characteristics
of fractional-order that varies with time, or space, or with space and time. Several numerical methods
have been published in literature for the solution of VO fractional integro-differential equations
(FIDEs). Some methods are: Finite difference technique [1], Legendre wavelet [2], Chebyshev
polynomials [3], Bernstein polynomials [4], spectral method [5, 6]. A cubic Spline interpolation
method for solution of VO FIDE with weakly singular kernels was used by Moghaddam and
Machado [7]. Tavares et al. [8] used Caputo derivatives for solution of VO FIDE.

Samko and Ross [9] used the Riemann-Liouville definition and Fourier transforms to investigate
integration and differentiation of functions of a VO. Samko [10] provides an overview of a number
of studies on fractional operations of integration and differentiation of variable order where the order
varies from point to point. Patnaik et al. [11] gives a concise and extensive overview of the progress
made in the development of VO fractional calculus analytical and computational approaches for
simulation of physical systems. Variable and distributed order fractional operators were studied by
Lorenzo and Hartley [12]. To synchronies VO fractional chaotic systems, Escamilla et al. [ 13] proposes
a state observer based technique. Aziz et al. [14] developed a predator prey model with a constant VO
and a time fractional VO. Patnaik and Jokar [15] studied that how the VO continuum mechanics theory
was developed and how it was applied to the study of nonlocal heterogeneous solids. With power-
law, exponential-law, and Mittag-Leftler kernels. Pérez et al. [16] studied a novel extended numerical
scheme for modelling VO fractional differential operators.

The Haar wavelets are the mathematically simplest of all wavelet families since they are made up
of piecewise constant functions. These wavelets have the characteristic to be integrated analytically
arbitrary times. The advantage of Haar technique is its simplicity and less computation costs, the
proposed technique take less CPU time and provides better solution in terms of accuracy.

The Chen and Hsiao approach is commonly used in the literature for numerical solution of many
differential equations [17]. Haar wavelet collocation technique (HWCT) was used for the numerical
solution of differential equations [18], integral equations [19]. Pioneering work of Lepik in the
development of HWCT can be seen in [20-23]. The convergence of HWCT is proved by Majak
et al. [24,25]. Higher order HWCT as an improvement of HWCT was recently introduced by Majak
et al. in [26-29]. The free vibrations analysis of the Euler-Bernoulli nanobeam was studied in [30].

HWCT is more suitable for solution of initial as well as boundary value problems. This technique
gives good accuracy for less collocation points. The HWCT is very feasible for detecting singularities
of irregular structures. The HWCT is developed for solution of the following linear Volterra Fredholm
FIDEs

¢ 1
Dg’(;)w(t) = a(O)w(r) + b(t)f M (t, s)w(s)ds + c(t)f M,(t, s)w(s)ds + f(1), te0, 1], (1.1)
0 0

with initial condition w(0) = A, D*? is VO Caputo derivative, M,(t, s), M»(t, s) are smooth functions
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known as kernel of integration which are closed and bounded functions over the square [0, 1] X [0, 1]
and a, b, c, and f : [0, 1] — R are continuous functions.

The following is how the paper is structured: Section 2 contains the preliminaries. In Section 3
HWCT scheme for solution of VO linear FIDE:s is discussed. Some examples are given in Section 4.
In the last part 6, the conclusion is given.

2. Preliminaries

Definition 2.1. Scaling function on [ay, ) is [31]
1 for t € a1, ay),
hi(r) = 2.1
1) {O elsewhere. 1
Mother wavelet on [a,, @) is

1 for 1e€[a,52),

ho(t)=3-1 for 1e[9E%2, a,), 22)

0 elsewhere.

The rest of the terms can be written as

I if t€[n,m),
hl(t) =4-1 if re [UZa 773)’ (23)
0 elsewhere,

where 1 = a; + (a; — a/l)g,nz = a; + (ap — al)%,m = a + (ap — a/l)%, where d = 2, and
(=0,1,...,d — 1. If we take interval [0, 1], then values of n, n, and n; are : n; = 5, m = #ﬁ,

n = %. Any function belonging to square integrable function space L*[0,1), is u(t) = Y52, Lhy(1),
Jjust for approximation, we truncate this series at N terms, u(t) = ZkN=1 Ahy ().
Using the notation

!
pii(t) = f hi(s)ds, (2.4)
0
and
t—m if  t€[n,m),
pii(®) =qm—t if t€[n,mn), (2.5)
0 otherwhere.
Generally,
!
Pin(t) = f pi,n—l(x)dx- (2.6)
0
Thus [31],
0 if tel0,m),
(t=n1)" .
— if t€[n,n),
pi,n(t) = V21— . 2.7)
Lo 2 ] if 1€ [m.n3),

% [(F=n)" =20 —m)" + (t—m)"], if t€[ns,1).
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Some of the work using HWC scheme can be found in [32-35].
Definition 2.2. The interval [By,,] for HWCT is discretized as [36]

i—1/2
2M
In the above Eq (2.8), collocation points (CPs) are defined.

ti =B+ (B2 — 1)

i=1,2,3,4,...,2M. (2.8)

Remark 2.3. The integral in Eq (1.1) is calculated by the following formula [37]

52 N N
BB BB k=05
fﬁ utwar 220 ;um) i ;u(ﬁl O ) 2.9)

3. Numerical method

Here, we developed the numerical scheme HWCT for solution of Eq (1.1). We follow Haar
technique adopted by Lepik in [23]. By applying Caputo definition, Eq (1.1) becomes

1 t (n) d t 1
X f WI@AT ot +e() f M (t, syw(s)ds+b(r) f Mo(t, s)w(s)ds+f(©). (3.1)
n—a(t) Jo 0 0

_ T)a(t)+1—n
If we take a(r) between 0 and 1, then n = 1, so Eq (3.1) becomes

1 "W (t)dt
rad-a@®)Jo (t—1)00

Let w'(¥) € L,[0, 1), then w'(¢) is written as

! 1
= a(tyw(t) + b(1r) f M (t, s)w(s)ds + b(t) f My (t, syw(s)ds + f(t). (3.2)
0 0

N
W) = ) ahi(@), (3.3)

i=1

where the unknown coeflicients of the Haar wavelet are a; and by the process of Gauss elemination,
we need to find these coeflicients. Integrating Eq (3.3), we obtain the following expression

t t N
w(s)ds = f a;hi(s)ds.
After integration and using initial condition, we have
N
W) = A+ ) aipia(t), (34)
i=1

where .
pia(t) = f hi(s)dss.
0
By applying Haar approximations to Eq (1.1), we get

1 ‘YN ahi(ndT
I = a() fo (—opo 0 (ﬂ i
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t N 1 N
+b(f) fo M (1, 5) [a + ; a,-p,-,l(s)) ds + c(?) fo My(t, 5) (a ¥ Z‘ a,-pi,](s)) ds + f(1).

We get the following expression after simplification

sz KLGCLp S o [ 9y apu(ods
¢ - iril - 1\ iril
R=aw o o 2 o 5

1 ¢ 1
—c(t) f M>(t, s) Z a;pi(s)ds = a(t)A + Ab(t) f M(t,s) + c(t)) f My(t, s)A + f(1),
0 = 0 0

substituting the CPs in above equation, we have

ft’Z L ahi(t)dr (")ZN] | ~(t~)—b(t~)ftjM(t~ )i 5
F(l—a(t ) (t;— e O LGP 7 Jo TS LGP

—c(t; )f My(t;, s) Z a;pi1(s)ds = a(t;))A + Ab(t; )f M(t;, s) + c(t; )f My (t;, s)A + f(1)).

It is possible to write above expression in matrix form as
MA = B, (3.5)

where

- 1 Y (@) "
M(j, 1) :F(l “at)) \fo‘ - 0 —a(t)pia(t;) — baj);fo M (tj, $)pii(s)ds

|
—C(fj)f My(tj, s)pii(s)ds,
0

A =a;,
£ 1
and B =a(t))A + Ab(1;) f M), s) + c(t)) f My(t;, )4 + f(1)).
0 0

We use the Lepik [23] method to calculate value of matrix M.
For this, we have cases.

Casei. Ift; <0, so hi(t;) = 0. Thus M(j,i) =0

Caseii. If7; € [a,p), then

L 1 * hi(t)dr hi(t)dr
MG = F(l——cw,»( ;- @ f ;- )‘““) P ®)

- b(fj)f M(t;, s)pii(s)ds — C(fj)f M (2, $)pii(s)ds,
0 0

dr L
T = a()) L @ =0 —a(t)pi(t)) — b(tj)ﬁ M (tj, s)pi(s)ds

1
—C(fj)f My (2}, s)pii(s)ds,
0
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(t; — a)' 1 bl
1—a(t)L( —a(t)) a(t)pii(t)) —

@)

ZMz(f s (se).

Caseiii. If 7; € [B,y). Then

o @ Y e
M= T e il Gttt | ot | (tj—ﬂ““f')dT)

iy 1
—a(t)pi(t)) — b(tj)j(: M (2;, $)pii(s)ds — C(l‘j)\f(; My(t;, s)pii(s)ds,

1 (fﬁ dr _ f’j L) ) o
I -a)\J, ;-1  Jg (t;— 1)@ pia(tja(t;)

tj 1

— b(tj)f M] (lj, S)pi,l(s)ds - C(lj)f Mz(tj, S)pi,l(S)dS,
0 0

1 (2([1. _ﬁ)l—a(tj) _ (fj _ a)l—a/(tj)

I'(l - af(t)) a(tj) -1
) b(t])

) —a(tj)pii(t))

) N
Z M}, si)pii(sp) — 557]) Z M;(t;, si)pi (Si)-
=1

Caseiv. If ¢; € [y, 1), so

o e (@) Y@
MG = F(l—a(tj))( (t; TR f ( j—T)“(’f> b -’

¢ hi d 1
Lf))— par(tpat;) = b(t)) f Mi(t), )pia(s)ds — (1)) f Mi(t;. $)pia(s)ds,
y (& —1)" 0 0

_ 1 (fﬁ dr _fV dt i hi(t)dT )_ ()
- I'ad-a)\J, @ —1) A (t; — 7)) ) (t; — 7)) Pia\l;)atl;

1 1
- b(fj)f M (t;, s)pii(s)ds — C(fj)f My (2, s)pi(s)ds,
0 0
1 Z(ﬁ _ tj)l—(y(tj) _ (tj _ a,)l—a(tj) _ (tj _ ,y)a(tj)—l
I'(1 - a(t)) ( a(ty) — 1 )
L b(t

— a(t)pi(t))

c(t)) al
: Z My (t), si)pia(si)-
k=1

= (
M}, sp)pii(si) — ——
kZ 1\t Ok 1k N
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Thus the matrix M is given by

0, if t]' <0,
(=)'~ 1 bt) N
l—afél‘j)l"(l—a/(tj)) - a(tj)pi,l(tj) - N - Zkzl Ml(lj, s)Pi1(Se)
(t)) N .
— SF 2 Ma(t), s0pia (i), if ¢; € [a, B),

2t;-B) "D ~(1-a)

M(j, i) = r(l—ll’(tj)) ( alt)-1 ) —a(t)pia(t))
b i c(t: .
— LN M, s0pi (s — S YN Mo, spia(se), if 1 € B, ),

1 z(ﬁ_tj)l—a(tj)_(tj_a)l—a(tj)_(tj_,y)(y(tj)—l
IF(1-a())) ( a(t)-1 = pia(tpa(t))

i b(t; c(t; .
— LN M (), 50 (s0) = SL YN M1, s0pii (s, if 1 € [y, 1),

Hence a;’s can be obtained as A = M~'B. Finally, by putting a; = 1,2, 3, ..., N in the above Eq (3.4),
the approximate solution at CPs is determined.

4. Numerical examples

To show the convergence of the HWCT scheme, some examples are given in this section. If
we, denotes the exact and w,, denotes approximate solution at CPs, so E., maximum absolute
error is E., = max|Wey — Wapel, and the M., mean square root error in CPs is defined as M., =

1 N 2 . . . .
\/ 5 (Zizl Wexe = Wapel ) R., 1s used for convergence rate and is given by:

1
Rep = 10g{Wape(N/2) wape () . @.1)

Problem 4.1. Consider the following VO FIDEs [6]

DY Ow(t) + IDOw(r) = f(r), t€]0, 1],
w(r) w(t) = f(1) [0, 1] 42)
u(0) =0,
where a(t) = % sin(10xt) + % (1) = €' — t? and f is so that exact solution is w(t) = sin .
Problem 4.2. Consider the following VO FIDEs [6]
D Ow(t) + IDw(t) = f(r), te]0, 1],
w(t) w(t) = f(1) [0, 1] 43)
w(0) =1,
where a((t) = 1> —t + 0.8, ax(t) = e and f is so that exact solution is w(t) = cos(t?).
Problem 4.3. Consider following VO FIDEs [6]
@) () — (" _w@®
D" Ow(t) = | (t_x)sinztds + f(r), tel0, 1], 4.4)
w(0) = 0,

where a1(f) = 1 —0.01t and f is so that exact solution is w(t) = sint and fot (t_vsv;:i)nz,ds = [(a)I*w(r)

with ay(t) = 1 — sin®(?).
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5. Results and discussion

The first Caputo definition is applied with a combination of Haar functions. The errors are
calculated for various number of CPs. Tables 1-3 show errors E.,, R.,, and M., for Examples 4.1-4.3
respectively. From the tables, we see that both errors are reduced by increasing the number of CPs.
The rate of convergence which is equivalent to 2, is also calculated supporting the analytical results
proved by Majak et al. [24]. The solution comparisons between the exact and the approximation for 32
different number of CPs is shown in Figure 1, represent the comparison of numerical and exact solution
of Example 4.1 for 32 CPs, Figure 2, represent comparison of Example 4.2 for 32 CPs, and Figure 3,
represent comparison of Example 4.3 for 32 CPs. One can see from the figures that the exact and
approximate solutions close to each other.

Table 1. E.,, R.,, and M., for Example 4.1.

J N=2/* E., R, M.,
0 2 0.011653 — 0.008859
1 4 0.003186 1.8709 0.002249
2 8 8.218890e-004 1.9547 5.644172e-004
3 16 2.081486e-004 1.9813 1.412291e-004
4 32 5.234196e-005 1.9916 3.531506e-005
5 64 1.312177e-005 1.9960 8.8292496¢e-006
6 128 3.284864e-006 1.9981 2.2073427e-006
7 256 8.217619e-007 1.9990 5.5183757e-007
8 512 2.055083e-007 1.9995 1.3795951e-007
9 1024 5.138551e-008 1.9998 3.4489885e-008
Table 2. E., R.,, and M., for Example 4.2.
J N=21 E., Rp M.,
1 4 0.020685 — 0.012206
2 8 0.005495 1.9124 0.003054
3 16 0.001400 1.9725 7.636399e-004
4 32 3.523508e-004 1.9905 1.909094e-004
5 64 8.830975e-005 1.9964 4.772727e-005
6 128 2.210089e-005 1.9985 1.193181e-005
7 256 5.527884e-006 1.9993 2.982953e-006
8 512 1.382286e-006 1.9997 7.457382e-007
9 1024 3.456099e-007 1.9998 1.864345e-007
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Table 3. E.,, R.,, and M., for Example 4.3.

J N=21 E., R., M.,

0 2 0.014838 — 0.011141
1 4 0.004179  1.8278  0.002810
2 8 0.001099  1.9262 7.040264e-004
3 16 2.815491e-004 1.9658 1.760981e-004
4 32 7.119401e-005 1.9836 4.403022e-005
5 64 1.789826e-005 1.9919 1.100791e-005
6 128  4.486966e-006 1.9960 2.751999¢-006
7 256 1.123287e-006 1.9980 6.880013e-007
8 512 2.810148¢-007 1.9990 1.720004e-007
9 1024  7.027781e-008 1.9995 4.300011e-008

0.9

o8l Exact
O  Approximate
0.7+

0.6

05 o

0.4t o
0.3 o
0.2} o

0.1} ]

0.95-

0.9r

0.85-

0.7+

0.65-

0.6

0.55
0

. . . . .
01 02 03 04 05
t

1 1
0.6 0.7

1
0.8

1
0.9 1

Figure 2. Solution comparison for 32 CPs of Example 4.2 for 32 CPs.
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0.9
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0.8l Exact ) o - ad
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| | | | | | | |
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Figure 3. Solution comparison for 32 CPs of Example 4.3 for 32 CPs.

6. Conclusions

In this work, the collocation method is developed based on Haar wavelet for the solution of linear
VO FIDEs. The HWCT is very convenient for solving VO FIDEs with initial conditions because during
the process of determining the expression of the approximate solution, the initial conditions are taken
into account automatically. The Haar functions are used for approximation of ordinary derivatives and
Caputo derivative is used for VO fractional derivative. A system of linear equations is obtained by
replacing CPs using the HWCT. Gauss elimination is used for the solution of this system. Finally, the
solution at CPs is found by using these coefficients. To show the applicability and consistency of the
HWCT method, some examples are given. For all computational work, MATLAB software is used.
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