
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 5386–5407.
DOI:10.3934/math.2022299
Received: 26 October 2021
Revised: 13 December 2021
Accepted: 21 December 2021
Published: 06 January 2022

Research article

Conjugate gradient algorithm for consistent generalized Sylvester-transpose
matrix equations

Kanjanaporn Tansri, Sarawanee Choomklang and Pattrawut Chansangiam∗

Department of Mathematics, School of Science, King Mongkut’s Institute of Technology Ladkrabang,
Bangkok 10520, Thailand

* Correspondence: Email: pattrawut.ch@kmitl.ac.th; Tel: +66935266600;
Fax: +6602329840011 ext. 284.

Abstract: We develop an effective algorithm to find a well-approximate solution of a generalized
Sylvester-transpose matrix equation where all coefficient matrices and an unknown matrix are
rectangular. The algorithm aims to construct a finite sequence of approximated solutions from any
given initial matrix. It turns out that the associated residual matrices are orthogonal, and thus, the
desire solution comes out in the final step with a satisfactory error. We provide numerical experiments
to show the capability and performance of the algorithm.

Keywords: conjugate gradient agorithm; generalized Sylvester-transpose matrix equation;
Kronecker product; matrix norm; orthogonality
Mathematics Subject Classification: 15A60, 15A69, 65F45

1. Introduction

Sylvester-type matrix equations show up naturally in several branches of mathematics and
engineering. Indeed, many problems in vibration and structural analysis, robotics control and
spacecraft control can be represented by the following general dynamical linear model:

s1∑
i=0

Aix(i) +

s2∑
j=0

B ju(j) = 0 (1.1)

where x ∈ Rm×1 and u ∈ Rn×1 are the state vector and the input vector respectively, and Ai ∈ R
m×m

and B j ∈ R
n×n are the system coefficient matrices; see e.g., [1, 2]. The dynamical linear system (1.1)

includes

A1 ẋ + A0x + B0u = 0, the descriptor linear system, (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022299

5387

A2 ẍ + A1 ẋ + A0x + B0u = 0, the second-order linear system, (1.3)
Akxk + Ak−1xk−1 + · · · + A0x = Bu, the high-order dynamical linear system, (1.4)

as special cases. Certain problems in control engineering, such as pole/eigenstructure assignment
and observer design of the system (1.1) are closely related to the Lyapunov matrix equation AX +

XAT = B, the Sylvester matrix equation AX + XB = C, and other realted equations; see e.g., [2–7]. In
particular, the Sylvester matrix equation also plays a fundamental role in signal processing and model
reduction; see e.g., [8–10]. These equations are special cases of a generalized Sylvester-transpose
matrix equation:

s∑
i=1

AiXBi +

t∑
j=1

C jXT D j = E. (1.5)

A traditional way to solve Eq (1.5) for an exact solution is to transform it to an equivalent linear
system via the Kronecker linearization; see Section 3 for details. However, this approach is only
suitable when the dimensions of coefficient matrices are small. In practice, for a large-dimension case,
it is enough to find a well-approximate solution via an iterative procedure, so that it is not necessary
required memories as massive as traditional methods. There are several articles that consider problems
that approximate the generalized Sylvester resistive matrix equations and constructs a finite sequence
of approximated solutions from any given initial matrix. In the last five years, many researchers
developed iterative methods for solving Sylvester-type matrix equations related to Eq (1.5). A group
of Hermitian and skew-Hermitian splitting (HSS) methods aims to decompose a square matrix as the
sum of its Hermitian part and skew-Hermitian part. There are several variantions of HSS, namely,
GMHSS [11], preconditioned HSS [12], FPPSS [13], and ADSS [14]. A group of gradient-based
iterative (GI) algorithms aims to construct a sequence of approximated solutions converging to the
exact solution, based on the gradients of quadratic norm-error functions. The original GI method
fora generalized Sylvester matrix equation was developed by Ding et al. [15]. Then Niu et al. [16]
adjusted the GI method by introducing a weighted factor. After that a haif-step-update of GI method,
called MGI method, introducing by Wang et al. [17]. The idea of GI algorithm can be used in
conjuction with matrix diagonal-extraction to get AJGI [18] and MJGI [19] algorithms. See more
GI algorithms for a generalized Sylvester matrix equations in [20–22]. For a generalized Sylvester-
transpose matrix equation AXB + CXT D = E, there are GI algorithm [23] and an accelerated gradient-
based iterative (AGBI) algorithm [24] to construct approximate solutions. There are also GI techniques
based on optimization, e.g., [25–27]. See more computational methods for linear matrix equations
in a survey [28]. The iterative procedures can be used to find solutions of certain nonlinear matrix
equations; see e.g., [29–31]. There are also applications of such techniques to parameter estimation in
dynamical systems; see e.g., [32–34].

An idea of conjugate gradient (CG) is a remarkable technique constructing an orthogonal basis
from the gradient of the associated quadratic function. There are several variations of CG to solve
such matrix equations, e.g., BiCG [35], Bi-conjugate residual method [35], CGS [36], preconditioned
nested splitting CG [37], generalized conjugate direction (GCD) method [38], conjugate gradient least-
squares (CGLS) method [39], and GPBiCG [40].

In this paper, we propose a conjugate gradient algorithm to solve the generalized Sylvester-transpose
matrix Eq (1.5) in the consistent case, where all given coefficient matrices and the unknown matrix are
rectangular (see Section 4). The algorithm aims to construct a sequence of approximate solutions

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5388

of (1.5) from any given initial value. It turns out that a desire solution comes out in the final step
of iterations with a satisfactory error (see Section 4). To validate the theory, we provide numerical
experiments to show the applicability and the performance of the algorithm (see Section 5). In
particular, the performance of the algorithm is significantly better than that of the direct Kronecker
linearization and recent gradient-based iterative algorithms.

2. Preliminaries

In this section, we recall useful tools and facts from matrix analysis that are used in later discussions.
Throughout, we denote the set of all m-by-n real matrices by Rm×n.

Recall that the Kronecker product of A = [ai j] ∈ Rm×n and B ∈ Rp×q is defined by

A ⊗ B = [ai jB] ∈ Rmq×np.

Lemma 1 (see, e.g., [41]). The following properties hold for any compatible matrices A, B,C:

1) (A ⊗ B)T = AT ⊗ BT ,
2) (A + B) ⊗C = A ⊗C + B ⊗C,
3) A ⊗ (B + C) = A ⊗ B + A ⊗C.

The vector operator Vec(·) assigns to each matrix A = [ai j] ∈ Rm×n the column vector

Vec A = [a11 · · · am1 · · · a12 · · · am2 · · · a1n · · · amn]T ∈ Rmn.

This operator is bijective, linear, and compatible with the usual matrix multiplication in the following
sense.

Lemma 2 (see, e.g., [41]). For any A ∈ Rm×n, B ∈ Rp×q and X ∈ Rn×p, we have

Vec AXB = (BT ⊗ A) Vec X.

Recall that the commutation matrix P(m, n) is a permutation matrix defined by

P(m, n) =

m∑
i=1

n∑
j=1

Ei j ⊗ ET
i j ∈ R

mn×mn (2.1)

where each Ei j ∈ R
m×n has entry 1 in (i, j)-th position and all other entries are 0.

Lemma 3 (see, e.g., [41]). For any A ∈ Rm×n and B ∈ Rp×q, we have

B ⊗ A = P(n, p)T (A ⊗ B) P(n, q). (2.2)

Lemma 4 (see, e.g., [41]). For any matrix X ∈ Rm×n, we have

Vec(XT) = P(m, n) Vec(X). (2.3)

Lemma 5 (see, e.g., [41]). For any matrices A, B, X,Y of compatible dimensions, we have

(Vec (Y))T (A ⊗ B) Vec (X) = tr
(
AT YT BX

)
. (2.4)

Recall that the Frobenius norm of A ∈ Rm×n is defined by

‖A‖ =

 m∑
i=1

n∑
j=1

a2
i j


1
2

=
(
tr

(
AT A

)) 1
2
.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5389

3. The direct Kronecker linearization for a generalized Sylvester-transpose matrix equation

From now on, let m, n, p, q, r, s, k, ∈ N be such that mq = np. Consider the generalized Sylvester-
transpose matrix Eq (1.5) where Ai ∈ R

m×n, Bi ∈ R
p×q, C j ∈ R

m×p, D j ∈ R
n×q, D ∈ Rm×q, E ∈ Rm×q are

given matrices, and X ∈ Rn×p is unknown. The Eq (1.5) includes the Lyapunov equation, the Sylvester
equation, the equation AXB + CXD = E, and the equation AXB + CXT D = E as special cases.

A direct method to solve Eq (1.5) is to transform it to an equivalent linear system. For convenience,
denote P = P(n, p). By taking the vector operator to (1.5) and utilizing Lemma 4, we get

Vec E = Vec

 s∑
i=1

AiXBi +

t∑
j=1

C jXT D j


=

s∑
i=1

(BT
i ⊗ Ai) Vec X +

t∑
j=1

(DT
j ⊗C j) Vec XT

=

s∑
i=1

(BT
i ⊗ Ai) Vec X +

t∑
j=1

(DT
j ⊗C j)P Vec X

=

 s∑
i=1

(BT
i ⊗ Ai) +

t∑
j=1

(DT
j ⊗C j)P

 Vec X. (3.1)

Let us denote x = Vec X, b = Vec E, and

K =

s∑
i=1

(BT
i ⊗ Ai) +

t∑
j=1

(DT
j ⊗C j)P ∈ Rmq×np. (3.2)

Thus, Eq (3.1) is equivalent to a linear algebraic system Kx = b. Hence, Eq (3.1) is consistent if and
only if the associated linear system is consistent (i.e., rank [K b] = rank K). When we solve for x,
we can get the unknown matrix X using the injectivity of the vector operator. However, if the matrix
coefficients Ai, Bi,C j,D j are of large sizes, then the size of K can be very large due to the Kronecker
multiplication. Thus, traditional methods such as Gaussian elimination and LU factorization require a
large memory to solve the linear system for an exact solution. Thus, the direct method is suitable for
matrices of small sizes. For matrices of moderate/large sizes, it is enough to find a well-approximate
solution for Eq (3.1) via an iterative procedure.

4. A conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix
equations

The main task is to find a well-approximate solution of the matrix Eq (1.5):

Problem 4.1. Let m, n, p, q, r, s, k, ∈ N be such that mq = np. Consider the generalized Sylvester-
transpose matrix Eq (1.5) where Ai ∈ R

m×n, Bi ∈ R
p×q, C j ∈ R

m×p, D j ∈ R
n×q, D ∈ Rm×q, E ∈ Rm×q are

given matrices, and X ∈ Rn×p is unknown. Suppose that Eq (1.5) has a solution. Given an error ε > 0,
find X̃ ∈ Rn×p such that ∥∥∥∥E −

s∑
i=1

AiX̃Bi −

t∑
j=1

C jX̃T D j

∥∥∥∥ < ε.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5390

We will solve Problem 4.1 under an additional assumption that K in (3.2) is symmetric. We propose
the following algorithm:

Algorithm 1: A CG algorithm for a generalized Sylvester-transpose matrix equation
Ai ∈ R

m×n, Bi ∈ R
p×q, C j ∈ R

m×p, D j ∈ R
n×q for any i = 1, 2, . . . , s, j = 1, 2, . . . , t and E ∈ Rm×q ;

Given ε > 0, set k = 0, U0 = 0. Choose X0 ∈ R
n×p

R0 = E −
∑s

i=1 AiX0Bi −
∑t

j=1 C jX0D j

for k = 0 to np do
if ‖Rk‖ 6 ε then

Xk is the disire solution; break
else

if k = 0 then
set Uk+1 = Rk

else
set Uk+1 = Rk + ‖Rk‖

2

‖Rk−1‖2
Uk

end
end

Vk+1 =

s∑
i=1

AiUk+1Bi +

t∑
j=1

C jUT
k+1D j

αk+1 = tr
(
UT

k+1Vk+1

)
Xk+1 = Xk + ‖Rk‖

2

αk+1
Uk+1

Rk+1 = E −
s∑

i=1

AiXk+1Bi −

t∑
j=1

C jXT
k+1D j

update k
end

end

We call Xk the approximate solution at the k-th step. The main computation

Xk+1 = Xk +
‖Rk‖

2

αk+1
Uk+1,

means that the next approximation Xk+1 is the sum between the current one Xk and the search direction
Uk+1 with the step size ‖Rk‖

2/αk+1.

Remark 4.2. The stopping rule of Algorithm 1 is based on the size of the residual matrix Rk. One can
impose another stopping criterion besides ‖Rk‖ 6 ε, e.g., the norm of the difference Xk+1 − Xk between
sucessive iterates is small enough.

Remark 4.3. Let us discuss the complexity analysis for Algorithm 1. For convenience, suppose that
all matrices in Eq (1.5) are of sizes n × n. Each step of the algorithm requires the matrix addition
(O(n2)), the matrix multiplication (O(n3)), the matrix transposition (O(n2)), the matrix norm (O(n)),
and the matrix trace (O(n)). In summary, the complexity analysis for each step is O(n3), and thus the
algorithm runtime complexity is cubic time.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5391

Next, we will show that, for any given initial matrix X0, Algorithm 1 produces approximate solutions
so that the set of residual matrices is an orthogonal set and, thus, we get the disire solution in a finite
step. We divides the proof into several lemmas.

Lemma 6. Consider Problem 4.1. Suppose that the sequence {Ri} is generated by Algorithm 1. We
have

Rk+1 = Rk −
‖Rk‖

2

αk+1
Vk+1 for k = 1, 2, ... (4.1)

Proof. From Algorithm 1, we have that for any k,

Rk+1 = E −
s∑

i=1

AiXk+1Bi −

t∑
j=1

C jXT
k+1D j

= E −
s∑

i=1

Ai

(
Xk +

‖Rk‖
2

αk+1
Uk+1

)
Bi −

t∑
j=1

C j

(
XT

k +
‖Rk‖

2

αk+1
UT

k+1

)
D j

= E −
s∑

i=1

AiXkBi −

t∑
j=1

C jXT
k D j −

‖Rk‖
2

αk+1

 s∑
i=1

AiUkBi +

t∑
j=1

C jUT
k D j


= Rk −

‖Rk‖
2

αk+1
Vk+1.

�

Lemma 7. Assume that the matrix K in (3.2) is symmetric. The sequences {Ui} and {Vi} generated by
Algorithm 1 satisfy

tr
(
UT

mVn

)
= tr

(
VT

mUn

)
for any m, n. (4.2)

Proof. Applying Lemmas 1–5 and the symmetry of K, we have

tr
(
VT

mUn

)
= (Vec Vm)T Vec Un

=

 s∑
i=1

(BT
i ⊗ Ai) Vec Um +

t∑
j=1

(DT
j ⊗C j) Vec UT

m


T

Vec Un

= [K Vec Um]T Vec Un

= (Vec Um)T K Vec Un

= (Vec Um)T

Vec

 s∑
i=1

AiUnBi +

t∑
j=1

C jUT
n D j




= (Vec Um)T Vec Vn

= tr
(
UT

mVn

)
for any m, n. �

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5392

Lemma 8. Assume that the matrix K is symmetric. The sequences {Ri}, {Ui} and {Vi} are generated by
Algorithm 1 satisfy

tr
(
RT

mRm−1

)
= 0 and tr

(
UT

m+1Vm

)
= 0 for any m. (4.3)

Proof. To prove this conclusion, we use induction principle. In order to compute related terms, we use
Lemmas 6 and 7. For m = 1, we get

tr
(
RT

1 R0

)
= tr

(R0 −
‖R0‖

2

α1
V1

)T

R0


= tr

(
RT

0 R0

)
−
‖R0‖

2

α1
tr

(
VT

1 R0

)
= ‖R0‖

2 − ‖R0‖
2 = 0,

and

tr
(
UT

2 V1

)
= tr

(R1 +
‖R1‖

2

‖R0‖
2 U1

)T

V1


= tr

(
RT

1 V1

)
+
‖R1‖

2

‖R0‖
2 tr

(
UT

1 V1

)
= −

α1

‖R0‖
2 tr

(
RT

1 R1

)
+ α1
‖R1‖

2

‖R0‖
2 = 0.

These imply that (4.3) hold for m = 1.
In the inductive step, for m = k we assume that tr(RT

k Rk−1) = 0 and tr(UT
k+1Vk) = 0. Then

tr
(
RT

k+1Rk

)
= tr

(Rk −
‖Rk‖

2

αk+1
Vk+1

)T

Rk


= tr

(
RT

k Rk

)
−
‖Rk‖

2

αk+1
tr

(
VT

k+1Rk

)
= tr

(
RT

k Rk

)
−
‖Rk‖

2

αk+1
tr

(
VT

k+1

(
Uk+1 −

‖Rk‖
2

‖Rk−1‖
2 Uk

))
= ‖Rk‖

2 −
‖Rk‖

2

αk+1
tr

(
VT

k+1Uk+1

)
= 0,

and

tr
(
UT

k+2Vk+1

)
= tr

(Rk+1 +
‖Rk+1‖

2

‖Rk‖
2 Uk+1

)T

Vk+1


= tr

(
RT

k+1Vk+1

)
+
‖Rk+1‖

2

‖Rk‖
2 tr

(
UT

k+1Vk+1

)
= tr

(
RT

k+1

(
−αk+1

‖Rk‖
2 (Rk+1 − Rk)

))
+
‖Rk+1‖

2

‖Rk‖
2 αk+1

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5393

=
αk+1

‖Rk‖
2 tr

[(
RT

k+1Rk

)
−

(
RT

k+1Rk+1

)]
+
‖Rk+1‖

2

‖Rk‖
2 αk+1

= 0.

Hence, Eq (4.3) holds for any m. �

Lemma 9. Assume that the matrix K is symmetric. Suppose the sequences {Ri}, {Ui} and {Vi} are
generated by Algorithm 1.Then

tr
(
RT

mR0

)
= 0, tr

(
UT

m+1V1

)
= 0 for any m. (4.4)

Proof. From Lemma 8 for m = 1, we get tr(RT
1 R0) = 0 and tr(PT

2 Q1) = 0. Now, suppose that Eq (4.4)
is true for all m = 1, . . . , k. From Lemmas 6 and 7, for m = k + 1 we write

tr
(
RT

k+1R0

)
= tr

(Rk −
‖Rk‖

2

αk+1
Vk+1

)T

R0


= tr

(
RT

k R0

)
−
‖Rk‖

2

αk+1
tr(VT

k+1R0)

= −
‖Rk‖

2

αk+1
tr(VT

k+1U1)

= −
‖Rk‖

2

αk+1
tr(UT

k+1V1) = 0,

and

tr
(
UT

k+2V1

)
= tr

(
VT

k+2U1

)
= tr

(−αk+2

‖Rk+1‖
2

(Rk+2 − Rk+1)
)T

U1


=
−αk+2

‖Rk+1‖
2

[
tr

(
RT

k+2U1

)
− tr

(
RT

k+1U1

)]
=
−αk+2

‖Rk+1‖
2

[
tr

(
RT

k+2R0

)
− tr

(
RT

k+1R0

)]
= 0.

Hence, Eq (4.4) holds for any m. �

Theorem 4.4. Assume that K is symmetric. Suppose the sequences {Ri}, {Ui} and {Vi} are generated
by Algorithm 1. Then for any m, n such that m , n, we have

tr
(
RT

m−1Rn−1

)
= 0 and tr

(
UT

mVn

)
= 0. (4.5)

Proof. By Lemma 7 and the fact that tr(RT
m−1Rn−1) = tr(RT

n−1Rm−1) for any m, n, it suffices to prove (4.5)
for any m, n such that m > n. By Lemma 8, Eq (4.5) holds for m = n + 1. For m = n + 2, we have

tr
(
RT

n+2Rn

)
= tr

(Rn+1 −
‖Rn+1‖

2

αn+2
Vn+2

)T

Rn


AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5394

= −
‖Rn+1‖

2

αn+2
tr

[
VT

n+2

(
Un+1 −

‖Rn‖
2

‖Rn−1‖
2 Un

)]
=
‖Rn+1‖

2

αn+2

‖Rn‖
2

‖Rn−1‖
2

tr (Rn+1 +
‖Rn+1‖

2

‖Rn‖
2 Un+1

)T

Vn


=
‖Rn+1‖

2

αn+2

‖Rn‖
2

‖Rn−1‖
2

[
tr

(
αn

‖Rn−1‖
2 RT

n+1 (Rn − Rn−1)
)]

=
‖Rn+1‖

2

αn+2

‖Rn‖
2

‖Rn−1‖
2

αn

‖Rn−1‖
2 tr(RT

n+1Rn−1),

tr
(
RT

n+1Rn−1

)
= tr

(Rn −
‖Rn‖

2

αn+1
Vn+1

)T

Rn−1


= −
‖Rn‖

2

αn+1
tr

[
VT

n+1

(
Un −

‖Rn−1‖
2

‖Rn−2‖
2 Un−1

)]
=
‖Rn‖

2

αn+1

‖Rn−1‖
2

‖Rn−2‖
2

tr (Rn +
‖Rn‖

2

‖Rn−1‖
2 Un

)T

Vn−1


=
‖Rn‖

2

αn+1

‖Rn−1‖
2

‖Rn−2‖
2

[
tr

(
αn−1

‖Rn−2‖
2 RT

n (Rn−1 − Rn−2)
)]

=
‖Rn‖

2

αn+1

‖Rn−1‖
2

‖Rn−2‖
2

αn−1

‖Rn−2‖
2 tr(RT

n Rn−2),

tr
(
UT

n+2Vn

)
= tr

(Rn+1 −
‖Rn+1‖

2

‖Rn‖
2 Un+1

)T

Vn


= tr

[
RT

n+1

(
−αn

‖Rn−1‖
2

(Rn − Rn−1)
)]

=
αn

‖Rn−1‖
2 tr

(Rn −
‖Rn‖

2

αn+1
Vn+1

)T

Rn−1


= −

αn

‖Rn−1‖
2

‖Rn‖
2

αn+1

[
tr

(
VT

n+1Un

)
−
‖Rn−1‖

2

‖Rn−2‖
2 tr

(
VT

n+1Un−1

)]
=

αn

‖Rn−1‖
2

‖Rn‖
2

αn+1

‖Rn−1‖
2

‖Rn−2‖
2 tr

(
UT

n+1Vn−1

)
,

and

tr
(
UT

n+1Vn−1

)
= tr

(Rn −
‖Rn‖

2

‖Rn−1‖
2 Un

)T

Vn−1


= tr

[
RT

n

(
−αn−1

‖Rn−2‖
2

(Rn−1 − Rn−2)
)]

=
αn−1

‖Rn−2‖
2 tr

(Rn−1 −
‖Rn−1‖

2

αn
Vn

)T

Rn−2


AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5395

= −
αn−1

‖Rn−2‖
2

‖Rn−1‖
2

αn

[
tr

(
VT

n Un−1

)
−
‖Rn−2‖

2

‖Rn−3‖
2 tr

(
VT

n Un−2

)]
=

αn−1

‖Rn−2‖
2

‖Rn−1‖
2

αn

‖Rn−2‖
2

‖Rn−3‖
2 tr

(
UT

n Vn−2

)
,

Similarly, we can write tr(RT
n+2Rn) and tr(UT

n+2Vn) in terms of tr(RT
n+1Rn−1) and tr(UT

n+1Vn−1), respectively.
Repeating this process until the terms tr(RT

2 R0) and tr(UT
3 V1) show up. By Lemma 9, we get

tr(RT
n+2Rn) = 0 and tr(UT

n+2Vn) = 0.
Next, for m = n + 3, we have

tr
(
RT

n+3Rn

)
= tr

(Rn+2 −
‖Rn+2‖

2

αn+3
Vn+3

)T

Rn


= −
‖Rn+2‖

2

αn+3
tr

[
VT

n+3

(
Un+1 −

‖Rn‖
2

‖Rn−1‖
2 Un

)]
=
‖Rn+2‖

2

αn+3

‖Rn‖
2

‖Rn−1‖
2

tr (Rn+2 +
‖Rn+2‖

2

‖Rn+1‖
2 Un+2

)T

Vn


=
‖Rn+2‖

2

αn+3

‖Rn‖
2

‖Rn−1‖
2

[
tr

(
αn

‖Rn−1‖
2 RT

n+2 (Rn − Rn−1)
)]

=
‖Rn+2‖

2

αn+3

‖Rn‖
2

‖Rn−1‖
2

αn

‖Rn−1‖
2 tr(RT

n+2Rn−1),

tr
(
RT

n+2Rn−1

)
= tr

(Rn+1 −
‖Rn+1‖

2

αn+2
Vn+2

)T

Rn−1


= −
‖Rn+1‖

2

αn+2
tr

[
VT

n+2

(
Un −

‖Rn−1‖
2

‖Rn−2‖
2 Un−1

)]
=
‖Rn+1‖

2

αn+2

‖Rn−1‖
2

‖Rn−2‖
2

tr (Rn+1 +
‖Rn+1‖

2

‖Rn‖
2 Un+1

)T

Vn−1


=
‖Rn+1‖

2

αn+2

‖Rn−1‖
2

‖Rn−2‖
2

[
tr

(
αn−1

‖Rn−2‖
2 RT

n+1 (Rn−1 − Rn−2)
)]

=
‖Rn+1‖

2

αn+2

‖Rn−1‖
2

‖Rn−2‖
2

αn−1

‖Rn−2‖
2 tr(RT

n+1Rn−2),

tr
(
UT

n+3Vn

)
= tr

(Rn+2 −
‖Rn+2‖

2

‖Rn+1‖
2 Un+2

)T

Vn


= tr

[
RT

n+2

(
−αn

‖Rn−1‖
2

(Rn − Rn−1)
)]

=
αn

‖Rn−1‖
2 tr

(Rn+1 −
‖Rn+1‖

2

αn+2
Vn+2

)T

Rn−1


= −

αn

‖Rn−1‖
2

‖Rn+1‖
2

αn+2

[
tr

(
VT

n+2Un

)
−
‖Rn−1‖

2

‖Rn−2‖
2 tr

(
VT

n+2Un−1

)]
AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5396

=
αn

‖Rn−1‖
2

‖Rn+1‖
2

αn+2

‖Rn−1‖
2

‖Rn−2‖
2 tr

(
UT

n+2Vn−1

)
,

and

tr
(
UT

n+2Vn−1

)
= tr

(Rn+1 −
‖Rn+1‖

2

‖Rn‖
2 Un+1

)T

Vn−1


= tr

[
RT

n+1

(
−αn−1

‖Rn−2‖
2

(Rn−1 − Rn−2)
)]

=
αn−1

‖Rn−2‖
2 tr

(Rn −
‖Rn‖

2

αn+1
Vn+1

)T

Rn−2


= −

αn−1

‖Rn−2‖
2

‖Rn‖
2

αn+1

[
tr

(
VT

n+1Un−1

)
−
‖Rn−2‖

2

‖Rn−3‖
2 tr

(
VT

n+1Un−2

)]
=

αn−1

‖Rn−2‖
2

‖Rn‖
2

αn+1

‖Rn−2‖
2

‖Rn−3‖
2 tr

(
UT

n+1Vn−2

)
.

Hence, we can write tr(RT
n+3Rn) and tr(UT

n+3Vn) in terms of tr(RT
n+2Rn−1) and tr(UT

n+2Vn−1), respectively.
Repeating this process until the terms tr(RT

3 R0) and tr(U4V1) by Lemma 9, we get tr(RT
n+3Rn) = 0 and

tr(UT
n+3Vn) = 0.

Suppose that tr(RT
m−1RT

n−1) = tr(UT
mVT

n) = 0 for m = n + 1, . . . , k. Then for m = k + 1, we have

tr
(
RT

k Rn−1

)
= tr

(Rk−1 −
‖Rk−1‖

2

αk
Vk

)T

Rn−1


= tr(RT

k−1Rn−1) −
‖Rk−1‖

2

αk
tr(VT

k Rn−1)

= −
‖Rk−1‖

2

αk
tr

[
VT

k

(
Un −

‖Rn−1‖
2

‖Rn−2‖
2 Un−1

)]
= −
‖Rk−1‖

2

αk

[
tr

(
VT

k Un

)
−
‖Rn−1‖

2

‖Rn−2‖
2 tr

(
VT

k Un−1

)]
= 0.

and

tr
(
UT

k+1Vn−1

)
= tr

(Rk +
‖Rk‖

2

‖Rk−1‖
2 Uk

)T

Vn−1


= tr(RT

k Vn−1) +
‖Rk‖

2

‖Rk−1‖
2 tr(UT

k Vn−1)

= tr
[
RT

k

(
−αn−1

‖Rn−2‖
2

(Rn−1 − Rn−2)
)]

=
−αn−1

‖Rn−2‖
2 tr

(
RT

k Rn−1 − RT
k Rn−2

)
= 0.

Hence, tr(RT
m−1Rn−1) = 0 and tr(UT

mVn) = 0 for any m, n such that m , n. �

Theorem 4.5. Consider Problem 4.1 under the assumption that the matrix K is symmetric. Suppose
that the sequence {Xi} is generated by Algorithm 1. Then for given initial matrix X0 ∈ R

n×p, an exact
solution X can be obtained in at most np iteration steps.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5397

Proof. Suppose that Ri , 0 for i = 0, 1, . . . , np − 1. Then we compute Xnp according to Algorithm 1.
Assume that Rnp , 0. By Theorem 4.4, the set {R0,R1, ...,Rnp} is orthogonal inRn×p. So, {R0,R1, ...,Rnp}

is linearly independent. Since the dimension of Rn×p is np, any linearly independent subset of Rn×p

must have at most np elements. So this is false because the set {R0,R1, ...,Rnp} has np + 1 elements.
Thus, Rnp = 0, hence Xnp is a solution of the equation. �

5. Numerical experiments with discussions

In this section, we report numerical results to illustrate the applicability and the effectiveness of
Algorithm 1. All iterations have been carried out by MATLAB R2021a, on a macos (M1 chip 8C
CPU/8C GPU/8GB/512GB). We perform the experiments for several generalized Sylvester-transpose
matrix equations, and an interesting special case, namely, the Sylvester equation. We vary given
coefficient matrices so that they are square/non-square sparse/dense matrices of moderate/large sizes.
The dense matrices considered here are involved a matrix whose all entries are 1, which is denoted by
ones. The identity matrix of size n × n is denoted by In. For each experiment, we set the stopping rule
to be ‖Rk‖ 6 ε where ε = 10−3. We discuss the performance of the algorithm through the norm of
residual matrices, iteration number, and computational time (CT). The CT (in seconds) is measured by
tic-toc function in MATLAB.

In the following three examples, we concern the applicability of Algorithm 1 as well as its
performance comparing to the direct Kronecker linearization mentioned in Section 3.

Example 1. Consider a moderate-scaled generalized Sylvester-transpose equation

A1XB1 + A2XB2 + C1XT D1 + C2XT D2 = E

where all matrices are 50 × 50 tridiagonal matrices given by

A1 = tridiag(−1, 2,−1), A2 = tridiag(1,−1, 1), B1 = tridiag(−2, 0,−2), B2 = tridiag(−2,−1,−2),
C1 = tridiag(0, 2, 0), C2 = tridiag(1, 2, 1), D1 = tridiag(0,−4, 0), D2 = tridiag(−2,−4,−2),
E = tridiag(−1, 1, 9).

We run Algorithm 1 using an initial matrix X0 = 0.25 × ones ∈ R50×50. According to Theorem 4.5,
Algorithm 1 will produce a solution of the equation within 104 iterations. The resulting simulation
illustrated in Figure 1 shows the norms of residual matrices Rk at each iteration.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5398

Figure 1. Relative error for Example 1.

Althouh the errors ‖Rk‖ grow up and down during iterations, they generally climb down to zero.
The algorithm takes 138 iterations to get a desire solution (so that ‖Rk‖ 6 10−3), which is significantly
less than the theoretical one (104 iterations). For the computational time, Algorithm 1 spends
totally 0.131079 seconds to get a desire solution, while the direct Kronecker linearization consuming
1.581769 seconds to obtain the exact soluton. Thus, the performace of Algorithm 1 is significantly
better than the direct method. Moreover, for sparse coefficient matrices, Agorithm 1 can produce
a desire solution in a fewer iterations (that is, 138 iterations) than the theoretical one (that is, 104

iterations in this case).

Example 2. Consider a generalized Sylvester-transpose matrix equation

A1XB1 + A2XB2 + A3XB3 + C1XT D1 = E

with rectangular coefficient matrices of moderate-scaled as follows:

A1 = tridiag(1, 3, 1), A2 = tridiag(−1, 2,−1), A3 = tridiag(−1, 1,−1) ∈ R40×40,

B1 = tridiag(−2, 1,−2), B2 = tridiag(1,−3, 1), B3 = tridiag(2,−3, 2) ∈ R50×50,

C1 = 3 × ones ∈ R40×50, D1 = −3 × ones ∈ R40×50, E = −0.9 × ones ∈ R40×50.

Taking an initial matrix X0 ∈ R
40×50, we get an approximate solution Xk ∈ R

40×50 with a satisfactory
error ‖Rk‖ 6 10−3 in 164 steps, using 0.196250 seconds. We see in Figure 2 that during iterations,
althouh the errors ‖Rk‖ grow up and down, they generally climb down to zero. On the other hand, the
direct Kronecker linearization consumes 0.811170 seconds to get an exact solution. Thus, Agorithm 1
is applicable and effective.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5399

Figure 2. Relative error for Example 2.

Example 3. Consider a large-scaled generalized Sylvester-transpose equation

A1XB1 + C1XT D1 + C2XT D2 = E

where all matrices are 100 × 100 tridiagonal matrices given by

A1 = tridiag(−2,−6,−2), B1 = tridiag(2,−1, 2), C1 = tridiag(0,−1, 0), C2 = tridiag(−1, 2,−1),
D1 = tridiag(0, 2, 0), D2 = tridiag(2,−4, 2), E = tridiag(1,−8, 1).

The resulting simulation of Agorithm 1 using an initial matrix X0 = 0.5 × ones ∈ R100×100 is shown in
the next figure.

Figure 3 shows the error gradually decreasing into ε = 10−3 in 774 steps, consuming around 2
seconds.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5400

Figure 3. Relative error for Example 3.

Next, we investigate the effect of changing initial points. So we make experiments for the initial
matrices X0 = 5 × ones, X0 = 0, and X0 = −5 × ones. Table 1 shows that, no matter the initial point,
we get a desire solution in around 2 seconds. On the other hand the direct method consumes around
70 seconds to get an exacy solution. Thus, Agorithm 1 significantly outperforms the direct mathod.

Table 1. Relative error and CTs for Example 3.

Initial matrix Iterations CT Relative error
Direct - 69.500953 0
X0 = 5 × ones 830 2.247507 8.9145 ×10−4

X0 = 0.5 × ones 774 1.986782 7.5755 ×10−4

X0 = 0 16 0.106482 5.3862 ×10−4

X0 = −5 × ones 830 2.190269 9.1232 ×10−4

In the rest of numerical examples, we compare the performance of Algorithm 1 to the direct method
as well as recent gradient-based iterative algorithms mentioned in Introduction.

Example 4. Consider a large-scaled generalized Sylvester-transpose matrix equation

AXB + CXT D = E,

where A, B,C,D, E are 100 × 100 matrices as follows:

A = tridiag(−1, 3,−1), B = tridiag(1, 7, 1), C = 6 × ones, D = −3 × ones, E = 0.7 × I100.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5401

In fact, this equation has a unique solution. Despite the direct method, we compare the performance
of Algorithm 1 to GI [23] and AGBI [24] algorithms. All iterative algorithms are implemented using
the initial X0 = −0.001 × I100 ∈ R

100×100.

Figure 4. Relative error for Example 4.

According to [23], the GI algorithm is applicable as long as a convergent factor µ satisfies

0 < µ <
2

λmax(AAT)λmax(BT B) + λmax(CCT)λmax(DT D)
,

where λmax(AAT) is the largest eigenvalue of AAT . We run GI algorithm under 3 different convergent
factors, namely, m1 = 6.1728 × 10−12, m2 = 8.8183 × 10−12 and m3 = 3.0864 × 10−11. We implement
AGBI algorithm with a convergent factor 0.000988 and a weighted factor 10−8. Figure 4 shows that
the CG algorithm (Algorithm 1) converges faster than GI with m1, GI with m2, GI with m3, and AGBI
algorithms. Table 2 shows that, in 30 iterations, GI, AGBI and the direct method consume a big
amount of time to get the exact solution, while Algorithm 1 produces a small-error solution in a small
time (0.073613 seconds).

Table 2. Relative error and CTs for Example 4.

Method Iterations CT Relative error
CG 30 0.073613 0.000001
GI with m1 30 0.109370 18.788266
GI with m2 30 0.115890 16.853503
GI with m3 30 0.109668 16.724640
AGBI 30 0.118294 16.724926
Direct - 66.928143 0

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5402

Example 5. Consider a consistent generalized Sylvester-transpose matrix equation

AXB + CXT D = E,

with 100 × 100 coefficient matrices:

A = tridiag(−1, 2,−1), B =
1
3
× ones, C = −3 × ones, D = tridiag(3,−6, 3), E = −1.2 × ones .

In fact, this matrix equation has a solution, which is not unique. We will seek for a solution of the
equation using Algorithm 1, GI and AGBI algorithms with the same initial matrix X0 = −0.4 × ones ∈
R100×100.

Figure 5. Relative error for Example 5.

Table 3. Relative error and CTs for Example 5.

Method Iterations CT Relative error
CG 200 0.395984 0.361597
GI with m1 200 0.654457 1473.481117
GI with m2 200 0.591405 1186.764341
GI with m3 200 0.595052 645.799529
AGBI 200 0.599059 1718.220885

We carry out GI algorithm with three different convergent factors, namely, m1 = 1.7132 × 10−8,
m2 = 3.0837×10−8 and m3 = 1.5418×10−7. We implement AGBI algorithm with the convergent factor
0.000112 and the weighted factor 0.00005. Table 3 and Figure 5 express the computational time and
the errors for 200 iterations of the simulations. We see that the computational time of CG algorithm

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5403

is slightly less than those of GI (with parameters m1, m2, m3) and AGBI algorithms. However, the
outcoming error produced by CG algorithm is significantly less than those of other algorithms.

Example 6. Consider the following Sylvester matrix equation

AX + XB = C,

where all coefficient matrices are 100 × 100 tridiagonal matrices given by

A = tridiag(1,−6, 1), B = tridiag(3, 0, 3), C = tridiag(1, 1, 9).

Figure 6. Relative error for Example 6.

Table 4. Relative error and CTs for Example 6.

Method Parameters Iterations CT Relative error
Convergent factor weighted factor

CG - - 10 0.018412 0.000000
GI µ = 0.034482 - 10 0.019581 7.365534
RGI µ = 0.266489 ω = 0.05 10 0.015338 8.786233
MGI µ = 0.025316 - 10 0.019361 2.544848
AGBI µ = 0.233918 ω = 0.05 10 0.022275 8.791699

We compare the performance of CG algorithm (Algorithm 1) to GI [23], RGI [16], MGI [17]
and AGBI [24] algorithms with parameters as shown in Table 4. We implement the algorithms with
the same initial matrix X0 = −5 × ones ∈ R100×100. Table 4 shows that the computational times for

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

5404

implementing 30 iterations of CG and other algorithms are close together. However, the relative errors
in Figure 6 and Table 4 express that CG algorithm produces a sequence of well-approximate solutions
in a few iterations with the lowest error comparing to other GI algorithms.

6. Conclusions

We propose an iterative procedure (Algorithm 1) to construct a sequence of approximate solutions
for the generalized Sylvester-transpose matrix Eq (1.5) with rectangular coefficient matrices. The
algorithm is applicable whenever the matrix K, defined by Eq (3.2), is symmetric. In fact, the residual
matrices Rk, produced by the algorithm, form an orthogonal set with respect to the usual inner product
for matrices. Thus, we obtain the desire solution within a finite step, says, np steps. Numerical
simulations have verified the applicability of the algorithm for square/non-square sparse/dense matrices
of moderate/large sizes. The algorithm is always applicable no matter how we choose an initial matrix.
Moreover, for sparse coefficient matrices of large size, the iteration number to get a desire solution
can be dramatically less than np iterations. The performance of the algorithm is significantly better
than the direct Kronecker linearization and recent gradient-based iterative algorithms when the matrix
coefficients are of moderate/large sizes.

Acknowledgments

This research project is supported by National Research Council of Thailand (NRCT):
(N41A640234).

Conflict of interest

All authors declare that they have no conflict of interest.

References

1. Y. Kim, H. S. Kim, J. Junkins, Eigenstructure assignment algorithm for second order systems, J.
Guid. Control Dyn., 22 (1999), 729–731. http://dx.doi.org/10.2514/2.4444

2. B. Zhou, G. R. Duan, On the generalized Sylvester mapping and matrix equations, Syst. Control
Lett., 57 (2008), 200–208. http://dx.doi.org/10.1016/j.sysconle.2007.08.010

3. L. Dai, Singular control systems, Berlin: Springer, 1989.

4. G. R. Duan, Eigenstructure assignment in descriptor systems via output feedback:
A new complete parametric approach, Int. J. Control., 72 (1999), 345–364.
http://dx.doi.org/10.1080/002071799221154

5. F. Lewis, A survey of linear singular systems, Circ. Syst. Signal Process., 5 (1986), 3–36.
http://dx.doi.org/10.1007/BF01600184

6. G. R. Duan, Parametric approaches for eigenstructure assignment in high-order linear systems, Int.
J. Control Autom. Syst., 3 (2005), 419–429.

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

http://dx.doi.org/http://dx.doi.org/10.2514/2.4444
http://dx.doi.org/http://dx.doi.org/10.1016/j.sysconle.2007.08.010
http://dx.doi.org/http://dx.doi.org/10.1080/002071799221154
http://dx.doi.org/http://dx.doi.org/10.1007/BF01600184

5405

7. K. Nouri, S. Beik, L. Torkzadeh, D Baleanu, An iterative algorithm for robust simulation
of the Sylvester matrix differential equations, Adv. Differ. Equ., 2020 (2020),
http://dx.doi.org/10.1186/s13662-020-02757-z

8. M. Epton, Methods for the solution of AXD - BXC = E and its applications in the
numerical solution of implicit ordinary differential equations, BIT., 20 (1980), 341–345.
http://dx.doi.org/10.1007/BF01932775

9. D. Hyland, D. Bernstein, The optimal projection equations for fixed order dynamic compensation,
IEEE Trans. Control., 29 (1984), 1034–1037. http://dx.doi.org/10.1109/TAC.1984.1103418

10. D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images,
SIAM J. Matrix Anal. Appl., 17 (1996), 165–186. http://dx.doi.org/10.1137/S0895479894273687

11. M. Dehghan, A. Shirilord, A generalized modified Hermitian and skew-Hermitian splitting
(GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Comput., 348
(2019), 632–651. http://dx.doi.org/10.1016/j.amc.2018.11.064

12. S. Y. Li, H. L. Shen, X. H. Shao, PHSS Iterative method for solving generalized Lyapunov
equations, Mathematics, 7 (2019), 38. http://dx.doi.org/10.3390/math7010038

13. H. L. Shen, Y. R. Li, X. H. Shao, The four-parameter PSS method for solving the Sylvester
equation, Mathematics, 7 (2019), 105. http://dx.doi.org/10.3390/math7010105

14. M. Dehghan, A. Shirilord, Solving complex Sylvester matrix equation by accelerated double-
step scale splitting (ADSS) method, Engineering with Computers, 37 (2021), 489–508.
http://dx.doi.org/10.1007/s00366-019-00838-6

15. F. Ding, T. Chen, Gradient based iterative algorithms for solving a class of matrix equations, IEEE
Trans. Automat. Comtr., 50 (2005), 1216–1221. http://dx.doi.org/10.1109/TAC.2005.852558

16. Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equation,
Asian J. Control, 13 (2011), 461–464. http://dx.doi.org/10.1002/asjc.328

17. X. Wang, L. Dai, D. Liao, A modified gradient based algorithm for solving Sylvester equation,
Appl. Math. Comput., 218 (2012), 5620–5628. http://dx.doi.org/10.1016/j.amc.2011.11.055

18. Z. Tian, M. Tian, C. Gu, X. Hao, An accelerated Jacobi-gradient based iterative
algorithm for solving Sylvester matrix equations, Filomat, 31 (2017), 2381–2390.
http://dx.doi.org/10.2298/FIL1708381T

19. N. Sasaki, P. Chansangiam, Modified Jacobi-gradient iterative method for generalized Sylvester
matrix equation, Symmetry, 12 (2020), 1831. http://dx.doi.org/10.3390/sym12111831

20. X. Zhang, X. Sheng, The relaxed gradient based iterative algorithm for the symmetric (skew
symmetric) solution of the Sylvester equation AX + XB = C, Math. Probl. Eng., 2017 (2017),
1624969. http://dx.doi.org/10.1155/2017/1624969

21. A. Kittisopaporn, P. Chansangiam, W. Lewkeeratiyukul, Convergence analysis of gradient-
based iterative algorithms for a class of rectangular Sylvester matrix equation based on Banach
contraction principle, Adv. Differ. Equ., 2021 (2021), 17. http://dx.doi.org/10.1186/s13662-020-
03185-9

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

http://dx.doi.org/http://dx.doi.org/10.1186/s13662-020-02757-z
http://dx.doi.org/http://dx.doi.org/10.1007/BF01932775
http://dx.doi.org/http://dx.doi.org/10.1109/TAC.1984.1103418
http://dx.doi.org/http://dx.doi.org/10.1137/S0895479894273687
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2018.11.064
http://dx.doi.org/http://dx.doi.org/10.3390/math7010038
http://dx.doi.org/http://dx.doi.org/10.3390/math7010105
http://dx.doi.org/http://dx.doi.org/10.1007/s00366-019-00838-6
http://dx.doi.org/http://dx.doi.org/10.1109/TAC.2005.852558
http://dx.doi.org/http://dx.doi.org/10.1002/asjc.328
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2011.11.055
http://dx.doi.org/http://dx.doi.org/10.2298/FIL1708381T
http://dx.doi.org/http://dx.doi.org/10.3390/sym12111831
http://dx.doi.org/http://dx.doi.org/10.1155/2017/1624969
http://dx.doi.org/http://dx.doi.org/10.1186/s13662-020-03185-9
http://dx.doi.org/http://dx.doi.org/10.1186/s13662-020-03185-9

5406

22. N. Boonruangkan, P. Chansangiam, Convergence analysis of a gradient iterative algorithm
with optimal convergence factor for a generalized Sylvester-transpose matrix equation, AIMS
Mathematics, 6 (2021), 8477–8496. http://dx.doi.org/10.3934/math.2021492

23. L. Xie, J. Ding, F. Ding, Gradient based iterative solutions for general linear matrix equations,
Comput. Math. Appl., 58 (2009), 1441–1448. http://dx.doi.org/10.1016/j.camwa.2009.06.047

24. Y. J. Xie, C. F. Ma, The accelerated gradient based iterative algorithm for solving a class of
generalized Sylvester transpose matrix equation, Appl. Math. Comp., 273 (2016), 1257–1269.
http://dx.doi.org/10.1016/j.amc.2015.07.022

25. A. Kittisopaporn, P. Chansangiam, Gradient-descent iterative algorithm for solving a class of linear
matrix equations with applications to heat and Poisson equations, Adv. Differ. Equ., 2020 (2020),
324. http://dx.doi.org/10.1186/s13662-020-02785-9

26. A. Kittisopaporn, P. Chansangiam, The steepest descent of gradient-based iterative method for
solving rectangular linear system with an application to Poisson’s equation, Adv. Differ. Equ.,
2020 (2020), 259. http://dx.doi.org/10.1186/s13662-020-02715-9

27. Y. Qi, L. Jin, H. Li, Y. Li, M. Liu, Discrete computational neural dynamics models for solving
time-dependent Sylvester equation with applications to robotics and MIMO systems, IEEE Trans.
Ind. Inform., 16 (2020), 6231–6241. http://dx.doi.org/10.1109/TII.2020.2966544

28. V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), 377–441.
http://dx.doi.org/10.1137/130912839

29. H. Zhang, H. Yin, Refinements of the Hadamard and Cauchy Schwarz inequalities with
two inequalities of the principal angles, J. Math. Inequal., 13 (2019), 423–435.
http://dx.doi.org/10.7153/jmi-2019-13-28

30. H. Zhang, Quasi gradient-based inversion-free iterative algorithm for solving a class
of the nonlinear matrix equations, Comput. Math. Appl., 77 (2019), 1233–1244.
http://dx.doi.org/10.1016/j.camwa.2018.11.006

31. H. Zhang, L. Wan, Zeroing neural network methods for solving the Yang-Baxter-like matrix
equation, Neurocomputing, 383 (2020), 409–418. http://dx.doi.org/10.1016/j.neucom.2019.11.101

32. F. Ding, G. Liu, X. Liu, Parameter estimation with scarce measurements, Automatica, 47 (2011),
1646–1655. http://dx.doi.org/10.1016/j.automatica.2011.05.007

33. F. Ding, Y. Liu, B. Bao, Gradient based and least squares based iterative estimation algorithms
for multi-input multi-output systems, P. I. Mech. Eng. I-J. Sys., 226 (2012), 43–55.
http://dx.doi.org/10.1177/0959651811409491

34. F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems,
Appl. Math. Model., 38 (2014), 403–412. http://dx.doi.org/10.1016/j.apm.2013.06.007

35. M. Hajarian, Developing BiCG and BiCR methods to solve generalized Sylvester-transpose matrix
equations, Int. J. Autom. Comput., 11 (2014), 25–29. http://dx.doi.org/10.1007/s11633-014-0762-
0

36. M. Hajarian, Matrix form of the CGS method for solving general coupled matrix equations, Appl.
Math. Lett., 34 (2014), 37–42. http://dx.doi.org/10.1016/j.aml.2014.03.013

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

http://dx.doi.org/http://dx.doi.org/10.3934/math.2021492
http://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2009.06.047
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2015.07.022
http://dx.doi.org/http://dx.doi.org/10.1186/s13662-020-02785-9
http://dx.doi.org/http://dx.doi.org/10.1186/s13662-020-02715-9
http://dx.doi.org/http://dx.doi.org/10.1109/TII.2020.2966544
http://dx.doi.org/http://dx.doi.org/10.1137/130912839
http://dx.doi.org/http://dx.doi.org/10.7153/jmi-2019-13-28
http://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2018.11.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2019.11.101
http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2011.05.007
http://dx.doi.org/http://dx.doi.org/10.1177/0959651811409491
http://dx.doi.org/http://dx.doi.org/10.1016/j.apm.2013.06.007
http://dx.doi.org/http://dx.doi.org/10.1007/s11633-014-0762-0
http://dx.doi.org/http://dx.doi.org/10.1007/s11633-014-0762-0
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2014.03.013

5407

37. Y. F. Ke, C. F. Ma, A preconditioned nested splitting conjugate gradient iterative method for
the large sparse generalized Sylvester equation, Appl. Math. Comput., 68 (2014), 1409–1420.
http://dx.doi.org/10.1016/j.camwa.2014.09.009

38. M. Hajarian, Generalized conjugate direction algorithm for solving the general coupled
matrix equations over symmetric matrices, Numer. Algor., 73 (2016), 591–609.
http://dx.doi.org/10.1007/s11075-016-0109-8

39. M. Hajarian, Extending the CGLS algorithm for least squares solutions of the generalized
Sylvester-transpose matrix equations, J. Franklin Inst., 353 (2016), 1168–1185.
http://dx.doi.org/10.1016/j.jfranklin.2015.05.024

40. M. Dehghan, R. Mohammadi-Arani, Generalized product-type methods based on Bi-conjugate
gradient (GPBiCG) for solving shifted linear systems, Comput. Appl. Math., 36 (2017), 1591–
1606. http://dx.doi.org/10.1007/s40314-016-0315-y

41. R. Horn, C. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991.
http://dx.doi.org/10.1017/CBO9780511840371

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 5386–5407.

http://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2014.09.009
http://dx.doi.org/http://dx.doi.org/10.1007/s11075-016-0109-8
http://dx.doi.org/http://dx.doi.org/10.1016/j.jfranklin.2015.05.024
http://dx.doi.org/http://dx.doi.org/10.1007/s40314-016-0315-y
http://dx.doi.org/http://dx.doi.org/10.1017/CBO9780511840371
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	The direct Kronecker linearization for a generalized Sylvester-transpose matrix equation
	A conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations
	 Numerical experiments with discussions
	Conclusions

