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1. Introduction

Ostrowski formulate a formula in 1938 to calculate the deviation of differentiable functions from its
integral mean which is discussed in [1] and known as Ostrowski inequality given by∣∣∣∣∣∣ξ(v) −

1
l2 − l1

∫ l2

l1
ξ(u)du

∣∣∣∣∣∣ ≤ sup
l1≤v≤l2

|ξ′(v)|(l2 − l1)

 (v − (l1+l2)
2 )2

(l2 − l1)2 +
1
4

 (1.1)

can be proved by Montgomery identity as shown in [2] but this identity on time scale was discussed by
M. Bohner and T. Matthews in [3] which is given as

Lemma 1.1. Let l1, l2, u, v ∈ T, l1 < l2 and ξ : [l1, l2]→ R be differentiable. Then

ξ(v) =
1

l2 − l1

∫ l2

l1
ξσ(u)∆u +

1
l2 − l1

∫ l2

l1
χ(v, u)ξ∆(u)∆u (1.2)

Where

χ(v, u) =

{
u − l1, l1 ≤ u < v
u − l2, v ≤ u ≤ l2

(1.3)
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Definition 1.1. ([4]) Let s ∈ (0, 1]. A function ξ : I ⊆ R0 → R0, where R0 = [0,∞), is said to be
s-convex function in second sense if

ξ(kl1 + (1 − k)l2) ≤ ksξ(l1) + (1 − k)sξ(l2)

for all l1, l2 ∈ I.

Definition 1.2. ([5]) Let s ∈ (0, 1]. A function ξ : I ⊆ R→ R is said to be exponentially convex if

ξ(kl1 + (1 − k)l2) ≤ ks ξ(l1)
eαl1

+ (1 − k)s ξ(l2)
eαl2

for l1, l2 ∈ I with l1 < l2, k ∈ [0, 1] and α ∈ R.

Our aim of this paper is to discuss Hermite Hadamard inequality and Ostrowski type inequalities
on time scale for exponentially s-convex, s-convex functions.

2. Preliminaries

Definition 2.1. Time scale is defined as a non-empty close subset of real numbers.

The most important examples are R (set of real numbers) and Z (set of integers). For u, v ∈ T
where T is a time scale, forward and backward jumped operators σ and ρ respectively are defined as
σ(v) = in f {k ∈ T : k > v} ∈ T , ρ(v) = sup{k ∈ T : k < v} ∈ T . Supplemented by in fφ = supT and
supφ = in f T .

A point v is said to be right scattered and left scattered if σ(v) > v and ρ(v) < v respectively. If a
point v is both right and left scattered then it is isolated. If σ(v) = v then v is called right dense and it
is said to be left dense if ρ(v) = v. If the point v is left and right dense both then it is called dense.

Suppose ζ1 ∈ T is right scattered minimum, then Tk = T − {ζ1} otherwise Tk = T . Suppose ζ2 ∈ T
is left scattered maximum, then T k = T − {ζ2}, otherwise T k = T . Moreover T k

k = Tk ∩ T k.

Definition 2.2. Delta derivative of function ξ : T → R at v ∈ T k is defined to be the number ξ∆(v) (if it
exists) satisfying the property that, for any ε > 0 there is a neighbourhood U of v such that

|[ξ(σ(v)) − ξ(u)] − ξ∆(v)[σ(v) − u]| < ε|σ(v) − u| (2.1)

for all u ∈ U.

Definition 2.3. A function ξ : T → R is continuous at right dense points of T and its left-sided limit
exist at left dense points of T , then ξ is known to be rd-continuous. Denoted by ξ ∈ Crd.

Theorem 2.1. Let ξ : T → R be an rd-continuous function. Then f has an anti-derivative Ξ satisfying
Ξ∆ = ξ.

Proof. See [6, Theorem 1.74]. �

Definition 2.4. If ξ : T → R is an rd-continuous function and l1 ∈ T, then we define the integral
Ξ(v) =

∫ v

l1
ξ(k)∆k for v ∈ T.

Therefore for ξ ∈ Crd we have Ξ(l2) − Ξ(l1) =
∫ l2

l1
ξ(k)∆k. Where Ξ∆ = ξ.
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Theorem 2.2. If l1, l2, l3 ∈ T, β ∈ R and ξ1, ξ2 ∈ Crd, then

(i)
∫ l2

l1
(ξ1(v) + ξ2(v))∆v =

∫ l2
l1
ξ1(v)∆v +

∫ l2
l1
ξ2(v)∆v,

(ii)
∫ l2

l1
βξ1(v)∆v = β

∫ l2
l1
ξ1(v)∆v,

(iii)
∫ l2

l1
ξ1(v)∆v = −

∫ l1
l2
ξ1(v)∆v,

(iv)
∫ l2

l1
ξ1(v)∆v =

∫ l3
l1
ξ1(v)∆v +

∫ l2
l3
ξ1(v)∆v,

(v)
∫ l1

l1
ξ1(v)∆v = 0,

(vi)
∫ l2

l1
ξ1(v)ξ∆

2 (v)∆v = (ξ1ξ2)(l2) − (ξ1ξ2)(l1) −
∫ l2

l1
ξ∆

1 (v)ξ2(σ(v))∆v,

(vii)
∫ l2

l1
ξ1(v)ξ∆

2 (v) = (ξ1ξ2)(l2) − (ξ1ξ2)(l1) −
∫ l2

l1
ξ∆

1 (v)ξ2(σ(v))∆v.

Proof. See [6, Theorem 1.77]. �

Theorem 2.3. Let l1, l2 ∈ T and ξ1, ξ2 : T → R be rd-continuous. Then

∫ l2

l1
|ξ1(v)ξ2(v)|∆v ≤

(∫ l2

l1
|ξ1(v)|p∆v

) 1
p
(∫ l2

l1
|ξ2(v)|q∆v

) 1
q

. (2.2)

where p, q > 1 and 1
p + 1

q = 1.

Proof. See [6. Theorem 6.13]. �

3. Main results

Keeping in mind the integral inequalities and inequalities on time scale [7–15] first we prove the
Hermite Hadamard inequality for exponentially s-convex functions on time scale. Throughout this
section K = [l1, l2] ⊆ T .

Theorem 3.1. Let T be a time scale and K = [l1, l2]. Let ξ : K → R is exponentially s-convex function
in the second sense on K0 and ∆-integrable as well. Then for l1, l2 ∈ K with l1 < l2 and α ∈ R, we have

2s−1ξ

(
l1 + l2

2

)
≤

1
l2 − l1

∫ l2

l1

ξ(w)
eαw ∆w

≤
ξ(l1)
eαl2

∫ 1

0

ks

eα(kl1+(1−k)l2) ∆k +
ξ(l2)
eαl2

∫ 1

0

(1 − k)s

eα(kl1+(1−k)l2) ∆k. (3.1)

Proof. Using the definition of exponential s-convexity of ξ we have

2sξ
( x + y

2

)
≤
ξ(x)
eαx +

ξ(y)
eαy .
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Making use of change of variable x = kl1 + (1 − k)l2 and y = (1 − k)l1 + kl2 and taking ∆-integral with
respect to k ∈ [0, 1] we get

2sξ

(
l1 + l2

2

)
≤

2
l2 − l1

∫ l2

l1

ξ(w)
eαw ∆w

and

2s−1ξ(
l1 + l2

2
) ≤

1
l2 − l1

∫ l2

l1

ξ(w)
eαw ∆w. (3.2)

Now, we prove second inequality

ξ(kl1 + (1 − k)l2)
eα(kl1 + (1 − k)l2)

≤
ks ξ(l1)

eαl1
+ (1 − k)s ξ(l2)

eαl2

eα(kl1+(1−k)l2) .

Taking ∆-integral w.r.t k ∈ [0, 1] we get

1
l2 − l1

∫ 1

0

ξ(w)
eαw ∆w ≤

ξ(l1)
eαl1

∫ 1

0

rs

eα(kl1+(1−k)l2) ∆k +
ξ(l2)
eαl2

∫ 1

0

(1 − k)s

eα(kl1+(1−k)l2) ∆k. (3.3)

Combining (7) and (8) we get (6). �

Corollary 3.1.1. For T = R we get the Hermite Hadamard inequality for exponentially s-convex
functions [5, Theorem 3.2].

Now, we will discuss Ostrowski inequality for exponentially s-convex function on time scale.

Theorem 3.2. Let T be a time scale and K ⊆ T. Let ξ : K → R be a differentiable function on K0 such
that ξ∆ ∈ K for l1, l2 ∈ K where l1 < l2. If ξ∆ is exponentially s-convex in second sense on [l1, l2] for
s ∈ (0, 1] and supl1≤v≤l2 |ξ

∆(v)| = M, v ∈ [l1, l2]. Then following inequality holds:∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤ M(v − l1)2

l2 − l1

∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl1

)
∆k

+
M(v − l2)2

l2 − l1

∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl2

)
∆k. (3.4)

Proof. Using Montgomery identity∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
l2 − l1

∫ l2

l1
χ(v, u)ξ∆(u)∆u

∣∣∣∣∣∣
≤

1
l2 − l1

(∫ t

l1
(u − l1)|ξ∆(u)|∆u +

∫ l2

v
(u − l2)|ξ∆(u)|∆u

)
.

Making use of change of variables we get∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤ 1
l2 − l1

∫ 1

0
(v − l1)2k|ξ∆(kv + (1 − k)l1)|∆k

+
1

l2 − l1

∫ 1

0
(v − l2)2k|ξ∆(kv + (1 − k)l2)|∆k.
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Using exponential s-convexity of ξ∆ we get∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

(v − l1)2

l2 − l1

∫ 1

0

(
k(ks |ξ

∆(v)|
eαv ) + k((1 − k)s |ξ

∆(l1)|
eαl1

)
)
∆k

+
(v − l2)2

l2 − l1

∫ 1

0

(
k(ks |ξ

∆(v)|
eαv ) + k((1 − k)s |ξ

∆(l2)|
eαl2

)
)
∆k

≤
M(v − l1)2

l2 − l1

∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl1

)
∆k

+
M(v − l2)2

l2 − l1

∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl2

)
∆k.

�

Corollary 3.2.1. If T = R, then we obtain Theorem 2.1 given in [16].

Theorem 3.3. Suppose that ξ : K → R be a differentiable mapping on K0 such that ξ∆ ∈ K for l1, l2 ∈ K
with l1 < l2. If |ξ∆|q is exponentially s-convex in the second sense on [l1, l2] for some s ∈ (0, 1], p, q > 1
and 1

p + 1
q = 1 and supl1≤v≤l2 |ξ

∆(v)| = M, v ∈ [l1, l2], then the following inequality holds:∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

M(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0

(
ks

eαv +
(1 − k)s

eαl1

)
∆k

) 1
q

+
M(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0

(
ks

eαv +
(1 − k)s

eαl2

)
∆k

) 1
q

. (3.5)

Proof. By Montgomery identity we have∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
l2 − l1

∫ l2

l1
χ(v, u)ξ∆(u)∆u

∣∣∣∣∣∣
≤

1
l2 − l1

(∫ t

l1
(u − l1)|ξ∆(u)|∆u +

∫ l2

v
(u − l2)|ξ∆(u)|∆u

)
.

Making use of change of variables we obtain∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤ 1
l2 − l1

∫ 1

0
(v − l1)2k|ξ∆(kv + (1 − k)l1)|∆k

+
1

l2 − l1

∫ 1

0
(v − l2)2k|ξ∆(kv + (1 − k)l2)|∆k.
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Using (5) we get ∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0
|ξ∆(kv + (1 − k)l1)|q∆k

) 1
q

+
(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0
|ξ∆(kv + (1 − k)l2)|q∆k

) 1
q

.

Using the definition of exponential s-convexity of |ξ∆|q we have

∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0

(
ks |ξ

∆(v)|q

eαv + (1 − k)s |ξ
∆(v)|q

eαl1

)
∆k

) 1
q

+
(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0

(
ks |ξ

∆(v)|q

eαv + (1 − k)s |ξ
∆(v)|q

eαl2

)
∆k

) 1
q

≤
M(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0

(
ks

eαv +
(1 − k)s

eαl1

)
∆k

) 1
q

+
M(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0

(
ks

eαv +
(1 − k)s

eαl2

)
∆k

) 1
q

.

�

Corollary 3.3.1. If T = R then we obtain Theorem 2.2 given in [16].

Theorem 3.4. Let us consider a differentiable mapping ξ : K → R on K0 such that ξ∆ ∈ K for l1, l2 ∈ K
with l1 < l2. If |ξ∆|q is exponentially s-convex in the second sense on [l1, l2] for some s ∈ (0, 1], q > 1
and supl1≤v≤l2 |ξ

∆(v)| = M, v ∈ [l1, l2], then the following inequality holds:∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

M(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

)1− 1
q
(∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl1

)
∆k

) 1
q

+
M(v − l1)2

l2 − l1

(∫ 1

0
ks+1∆k

)1− 1
q
(∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl2

)
∆k

) 1
q

. (3.6)

Proof. By Montgomery identity we have∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
l2 − l1

∫ l2

l1
χ(v, u)ξ∆(u)∆u

∣∣∣∣∣∣
AIMS Mathematics Volume 7, Issue 3, 4700–4710.
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≤
1

l2 − l1

(∫ t

l1
(u − l1)|ξ∆(u)|∆u +

∫ l2

v
(u − l2)|ξ∆(u)|∆u

)
.

Making use of change of variables we obtain∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤
(

1
l2 − l1

)
[
∫ 1

0
(v − l1)2k|ξ∆(kv + (1 − k)l1)|∆k

+

∫ 1

0
(v − l2)2k|ξ∆(kv + (1 − k)l2)|∆k]

It follows that ∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l1

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

(v − l1)2

l2 − l1

(∫ 1

0
k∆k

)1− 1
q
(∫ 1

0
k|ξ∆(kv + (1 − k)l1)|q∆k

) 1
q

+
(v − l2)2

l2 − l1

(∫ 1

0
k∆k

)1− 1
q
(∫ 1

0
|ξ∆(kv + (1 − k)l2)|q∆k

) 1
q

Using the definition of exponential s-convexity of |ξ∆|q we have∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

(v − l1)2

l2 − l1

(∫ 1

0
k∆k

)1− 1
q
(∫ 1

0

(
ks+1 |ξ

∆(v)|q

eαv + k(1 − k)s |ξ
∆(v)|q

eαl1

)
∆k

) 1
q

+
(v − l2)2

l2 − l1

(∫ 1

0
k∆k

)1− 1
q
(∫ 1

0

(
ks+1 |ξ

∆(t)|q

eαv + k(1 − k)s |ξ
∆(v)|q

eαl2

)
∆k

) 1
q

≤
M(v − l1)2

l2 − l1

(∫ 1

0
k∆k

)1− 1
q
(∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl1

)
∆k

) 1
q

+
M(v − l2)2

l2 − l1

(∫ 1

0
k∆k

)1− 1
q
(∫ 1

0

(
ks+1

eαv +
k(1 − k)s

eαl2

)
∆k

) 1
q

.

�

Corollary 3.4.1. If T = R then we obtain Theorem 2.3 given in [16].

Theorem 3.5. Let ξ : K → R be a differentiable mapping on K0 such that ξ∆ ∈ K for l1, l2 ∈ K with
l1 < l2. If |ξ∆|q is exponentially s-concave on [l1, l2], p > 1, 1

p + 1
q = 1, then the following inequality

holds: ∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤
(∫ 1

0
kp∆k

) 1
p (v − l1)2

l2 − l1
2

s−1
q

∣∣∣∣∣∣ξ∆

(
v + l1

2

)∣∣∣∣∣∣
+

(∫ 1

0
kp∆k

) 1
p (v − l2)2

l2 − l1
2

s−1
q

∣∣∣∣∣∣ξ∆

(
v + l2

2

)∣∣∣∣∣∣ . (3.7)
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Proof. Using Montgomery identity and making use of variables we get∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

1
l2 − l1

∫ 1

0
(v − l1)2k|ξkv + (1 − k)l1)|∆k

+
1

l2 − l1

∫ 1

0
(v − l2)2k|ξ∆(kv + (1 − k)l2)|∆k

≤
(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0
|ξ∆(kv + (1 − k)l1)|q∆k

) 1
q

+
(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0
|ξ∆(kv + (1 − k)l2)|q∆k

) 1
q

. (3.8)

Since |ξ∆|q is exponentially s-concave, by (6) we have

(∫ 1

0
|ξ∆(kv + (1 − k)l1)|q∆k

) 1
q

≤ 2s−1

∣∣∣∣∣∣ξ∆

(
v + l1

2

)∣∣∣∣∣∣q (3.9)

and (∫ 1

0
|ξ∆(kv + (1 − k)l2)|q∆k

) 1
q

≤ 2s−1

∣∣∣∣∣∣ξ∆

(
v + l2

2

)∣∣∣∣∣∣q . (3.10)

Using (14) and (15) in (13) we get the conclusion. �

Corollary 3.5.1. If T = R then we obtain Theorem 2.4 given in [16].

Now we discuss some results for s-convex functions.

Theorem 3.6. Let T be a time scale and K = [l1, l2] ⊆ T such that l1 < l2 ∈ T. Let ξ : K → R be a
delta differentiable on K0 such that ξ∆ ∈ K, for l1, l2 ∈ K with l1 < l2. If |ξ∆| is s-convex on K for some
fixed s ∈ (0, 1] and supl1≤v≤l2

∣∣∣ξ∆(v)
∣∣∣ = M for v ∈ K, then following inequality holds:∣∣∣∣∣∣ξ(v) −

1
l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤ M(v − l1)2

l2 − l1

∫ 1

0

(
[ks+1 + k(1 − k)s]

)
∆k

+
M(v − l2)2

l2 − l1

∫ 1

0

(
[ks+1 + k(1 − k)s]

)
∆k. (3.11)

Proof. The proof is analogous to Theorem 3.2 only difference is to use definition of s-convex function
|ξ∆| instead of exponentially s-convexity. �

Corollary 3.6.1. If T = R, then we obtain Theorem 2 given in [17].

Theorem 3.7. Let T be a time scale and K = [l1, l2] ⊆ T such that l1 < l2 ∈ T. Let ξ : K → R be
a delta differentiable on K0 such that ξ∆ ∈ K, for l1, l2 ∈ K with l1 < l2. If |ξ∆|q is s-convex on K for
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some fixed s ∈ (0, 1], p, q > 1, 1
p + 1

q = 1 and supl1≤v≤l2

∣∣∣ξ∆(v)
∣∣∣ = M for v ∈ K, then following inequality

holds: ∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣ ≤ M(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p

×(∫ 1

0
[ks + (1 − k)s] ∆k

) 1
q

+
M(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

) 1
p
(∫ 1

0
[ks + (1 − k)s] ∆k

) 1
q

. (3.12)

Proof. Proof is analogous to Theorem 3.3 but in place of definition of exponential s-convexity we use
s-convexity of |ξ∆|q. �

Corollary 3.7.1. If T = R, then we obtain Theorem 3 given in [17].

Theorem 3.8. Let T be a time scale and K = [l1, l2] ⊆ T such that l1 < l2 ∈ T. Let ξ : K → R be a
delta differentiable on K0 such that ξ∆ ∈ K for l1, l2 ∈ K with l1 < l2. If |ξ∆|q is s-convex in second sense
on K for some fixed s ∈ (0, 1], q > 1 and supl1≤v≤l2

∣∣∣ξ∆(v)
∣∣∣ = M for v ∈ K, then following inequality

holds: ∣∣∣∣∣∣ξ(v) −
1

l2 − l1

∫ l2

l1
ξσ(u)∆u

∣∣∣∣∣∣
≤

M(v − l1)2

l2 − l1

(∫ 1

0
kp∆k

)1− 1
q
(∫ 1

0
[ks + (1 − k)s] ∆k

) 1
q

+
M(v − l2)2

l2 − l1

(∫ 1

0
kp∆k

)1− 1
q
(∫ 1

0
[ks + (1 − k)s] ∆k

) 1
q

. (3.13)

Proof. Proof is analogous to Theorem 3.4 but we use definition of s-convexity of |ξ∆|q instead of
exponential s-convexity. �

Corollary 3.8.1. If T = R, then we obtain Theorem 4 given in [17].

4. Conclusions

From Theorem 3.1 we obtain the Hermite-Hadamard inequality for exponentially s-convex
functions on time scale. From Theorems 3.2–3.5 we obtain Ostrowski type inequalities for
exponentially s-convex functions on time scale. From Theorems 3.6–3.8 we obtain Ostrowski type
inequalities for s-convex functions on time scale.
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