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1. Introduction

Ostrowski formulate a formula in 1938 to calculate the deviation of differentiable functions from its
integral mean which is discussed in [1] and known as Ostrowski inequality given by

1 l2
u)du
12_llfll§()

can be proved by Montgomery identity as shown in [2] but this identity on time scale was discussed by
M. Bohner and T. Matthews in [3] which is given as

- Uity
Ev) - < sup [EWI — 1) [(v(—z) + —} (1.1)
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Lemma 1.1. Let [}, l,,u,ve T,ly <l and & : [l1,1;] — R be differentiable. Then
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Definition 1.1. (/4]) Let s € (0,1]. A function & : I C Ry — Ry, where Ry = [0, ), is said to be
s-convex function in second sense if

Ekly + (1 = k)h) < k&) + (1 - k)'s(l)

forallly, 1, € I
Definition 1.2. ([5]) Let s € (0, 1]. A function & : I C R — R is said to be exponentially convex if

E(kly + (1 = k)ly) < kvﬂ )y (1 gt

a/lz

forly,l, e Iwithly <, k€ [0,1] and @ € R.

Our aim of this paper is to discuss Hermite Hadamard inequality and Ostrowski type inequalities
on time scale for exponentially s-convex, s-convex functions.

2. Preliminaries

Definition 2.1. 7Time scale is defined as a non-empty close subset of real numbers.

The most important examples are R (set of real numbers) and Z (set of integers). For u,v € T
where T is a time scale, forward and backward jumped operators o~ and p respectively are defined as
owv)=inflkeT :k>vieT,p(v)=suptk € T : k<v}eT. Supplemented by inf¢ = supT and
supp = infT.

A point v is said to be right scattered and left scattered if o-(v) > v and p(v) < v respectively. If a
point v is both right and left scattered then it is isolated. If o(v) = v then v is called right dense and it
is said to be left dense if p(v) = v. If the point v is left and right dense both then it is called dense.

Suppose {; € T is right scattered minimum, then 7, = T — {{;} otherwise Ty = T. Suppose {, € T
is left scattered maximum, then 7% = T — {{,}, otherwise T" T. Moreover T} = T, N T*.

Definition 2.2. Delta derivative of function ¢ : T — R at v € T* is defined to be the number £*(v) (if it
exists) satisfying the property that, for any € > 0 there is a neighbourhood U of v such that

[€(e(v)) = Ew)] = EWo(v) — ull < elo(v) — ul (2.1)
forallueU.

Definition 2.3. A function & : T — R is continuous at right dense points of T and its left-sided limit
exist at left dense points of T, then & is known to be rd-continuous. Denoted by & € C,,.

Theorem 2.1. Let £ : T — R be an rd-continuous function. Then f has an anti-derivative E satisfying
EA =&
Proof. See [6, Theorem 1.74]. O

Definition 2.4. If ¢ : T — R is an rd-continuous function and |, € T, then we define the integral

E(v) = flf KAk forveT.

Therefore for & € C,; we have E(l) — E(1;) = flllz E(k)Ak. Where Z = ¢.
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Theorem 2.2. Ifl;, 1,15 € T,B € R and &,,& € C,y, then
(i) [FE0) + A = [FEMAY+ [P 6HMAY,
(ii) [ AV = B [ &),
(iii) [} &)V = = [ E()AY,
(iv) [P &0y = [Famav+ [7E0)A,
(v) I &A= 0,
(i) [} EEWEMAY = EE)D) — EEN) — [ ENME(T()AY,

(vii) [;* EMEW) = EE2)(l) — EENL) — [ EXWE(T (AW,
Proof. See [6, Theorem 1.77]. O

Theorem 2.3. Let l1,,b € T and &1,&, : T — R be rd-continuous. Then

I [ % 0> é
IE1(n)&E()|AY < ( &I AV) ( |§z(V)|qAV) : (2.2)
I3 I L
1,1 _
wherep,q>1and[—7+[—1— 1.
Proof. See [6. Theorem 6.13]. |

3. Main results

Keeping in mind the integral inequalities and inequalities on time scale [7—15] first we prove the
Hermite Hadamard inequality for exponentially s-convex functions on time scale. Throughout this
section K = [l;, L] C T.

Theorem 3.1. Let T be a time scale and K = [l1,1]. Let ¢ : K — R is exponentially s-convex function
in the second sense on K° and A-integrable as well. Then for 1,1, € K with |, < I, and a € R, we have

55-1 g(ll + lz) L L [hem

2 N lg - ll I ey

1 1
PR VRN C) (I -ky
T etb 0 ekl +(1-k)l2) eth 0 ekl +(1-k)l2)

Ak. (3.1)

Proof. Using the definition of exponential s-convexity of & we have

X+y)sf&)+€@)

2 eax ew

2%(
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Making use of change of variable x = kl; + (1 — k), and y = (1 — k)l; + kl, and taking A-integral with
respect to k € [0, 1] we get

53
2S§:(ll + lz) < 2 g(W)AW

2 - lz - l] I eww
and z
L+ lz 1 3 (W)
27 ) < (3.2)
§ lz - l] I e“w
Now, we prove second inequality
£l +(1—hob) _ KRG+ - k57
e*(kly + (1 —k)l,) — e kh+(1-)
Taking A-integral w.r.t k € [0, 1] we get
1 LEw) &l (1 r HONSIEL)
12 _ ll 0 e A 5 eafll 0 ea/(kll+(1—k)lz) Ak ea’lz 0 ea(kll+(l—k)lz) Ak' (3.3)
Combining (7) and (8) we get (6). |

Corollary 3.1.1. For T = R we get the Hermite Hadamard inequality for exponentially s-convex
functions [5, Theorem 3.2].

Now, we will discuss Ostrowski inequality for exponentially s-convex function on time scale.

Theorem 3.2. Let T be a time scale and K C T. Let ¢ : K — R be a differentiable function on K° such
that & € K for 11,1, € K where I, < b,. If € is exponentially s-convex in second sense on [l;,1,] for

s € (0, 1] and sup; ., 1EA(V)| = M, v € [}, L,]. Then following inequality holds:

o) _7\2 1 /7s+1 _
fw - 1 gmom' L MO l) f (k L k- )Ak
I3 0

2= L-1 e el
M -bL? (kT k(1 k)
+ Mf + ( ) Ak. (3.4)
12 _ ll 0 e ealz

Proof. Using Montgomery identity

Iy

&7 (u)Au

&) =

1)
= v, )& () Au
Lol 'lz—llle)(( )E™(u)

53

(u— lz)lfA(u)lAu) -

< ( (u — IDIE W) Au +
L-4L\J,

Making use of change of variables we get
l>

1
£v) - hol, ) f (W) Au

<

1
f (v = 1)*KEN kv + (1 = k)l))| Ak

f (v— 12)2k|§ (kv + (1 — k)b)|Ak.
12 s
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Using exponential s-convexity of & we get

1 f2
&) - - E7(u)Au
»— 1
—_71.)2 A A
< v—-1) f (k(kSE (V)|) k(1 - k) SI€ (11)|))
L=1i Jo
—71.)2 A A
N v—=1>0) f (k(kYE (V)|) k(1 - k) '3 (lz)|))
L-1L Jo

1/ s+
< M(v_ll)zf (k ! k(l—k) )Ak
0

- lz — l] ewv el
M = 1,)? 1 /7s+1 _
lz - ll 0 ewv el

Corollary 3.2.1. If T = R, then we obtain Theorem 2.1 given in [16].

Theorem 3.3. Suppose that ¢ : K — R be a differentiable mapping on K° such that & € K forl,,l, € K
with [, < L. If|€2|7 is exponentially s-convex in the second sense on [1,,1,] for some s € (0,1], p,g > 1
and 1—1) + é =l and sup; .., 1E2(v)| = M, v € [, L], then the following inequality holds:

>

1 (O
&) - ﬁ f ()Au

1 1
—71.)2 1 » 1/ 1s AV q
SM fkpAk f K A=),
l2 — ll 0 0 ey eall
1 1
My =50 ( (" N AV
L My -by kaAk f K A= (3.5)
lz_ll 0 0 ey el

Proof. By Montgomery identity we have

753

1
Ev) - E(u)Au| =
L -1 J,

1 L2
== f X, WE WA

1 t I
< ( f (u — [)IENw)|Au + f (M—lz)lfA(u)lAu)-
L1 \J, .

Making use of change of variables we obtain

l>

1
&) - hol, ) f ()Au

<

1
! 1 f (v = 1)*k|EA (kv + (1 = k)I)|Ak
2= 1 Jo

f (v — L)*KEA (kv + (1 — k)b)|Ak.
12 -1
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Using (5) we get

>

E7(u)Au

£w) -
2~ Jl1
RIS 5l i
Loz ( f kPAk) ( f |§A(kv+(1—k)ll)|qu)
L—=1 \Jo 0
(v—lz>2( ! )( s )‘1’
+ fkpAk f|§ kv + (1 = bL)IAK] .
12 - ll 0 0

Using the definition of exponential s-convexity of €2 we have

Iy

1
&) - &7 (u)Au
L-14LJ,

1 ‘ ;
PtV ( f k”Ak) ( f ( EOF |§A<v>|q) k)
L-=0L \Jo

<v—lz>2( kpAk) ( ( e k),|§A<v>|q) k)q

L =1 el

M ([ (52
lz—ll ev el

1 1
L M- by (f k”Ak) ( ( Gl )Ak) :
12 _ ll e ealz

Corollary 3.3.1. If T = R then we obtain Theorem 2.2 given in [16].

Theorem 3.4. Let us consider a differentiable mapping € : K — R on K° such that é* € K forl,,l, € K
with I} < b,. If |€2|9 is exponentially s-convex in the second sense on [I,,1,] for some s € (0,1], g > 1

and sup;, <, 1E2W)| = M, v € [, L], then the following inequality holds:

l>

1
E) — E7(u)Au
L-10LJ,
1 1_5 1 s+ _ K} i
([ (245
l2 _ ll 0 0 ey eafll
gl =3/ Al s+l ;
g M= by (f k”lAk) (f (k Gl )Ak) . (3.6)
12 _ ll 0 0 exv edlz

Proof. By Montgomery identity we have

)

1
&) - hol, ) f (W) Au

b
—'—1 f X0, A
L-1J,
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)

(u— lz)lfA(u)lAu) -

< ( (1 — IDIE ()| Au +
L-0L\J,

Making use of change of variables we obtain

153
&7 (u)Au| < ( ; )[f (v = LKIEN kv + (1 = k)l Ak
I 2 -

§v) =+

2_11

1
+ f (v = LY KIE (kv + (1 = k)| Ak]
0

1 .
L -1 ‘fz £ G0
_ 2 1 1_5 1 é
< (ll/ l}) (f kAk) (f KIEN (kv + (1 —k)ll)Iqu)
2 — L 0 0
_ 2 1 1_5 1 é
. (v—1Dh) (f kAk) (f 1E8 kv + (1 — k)l2)|qu)
lz - ll 0 0

Using the definition of exponential s-convexity of €4 we have

It follows that

&) -

)

E7(u)Au

§v) =+

»— N Jy

’ -2 1 A A i

N Ol}z —1}1) (fo kAk) (L (kﬁl : (V)lq PRI . (V)lq) k)
_ 2 1 A A é
O ( fo kAk) ( [ (kmlf OF | 1 -k (v)|q) k)

1

AY s+1 EEY; 2
M(v l)( Ak) ( (k k(l k))Ak)

- L= el
1
— 2 s+1 I AY q
My by kAk LRIV
12 _ l 1 ey ealz

Corollary 3.4.1. If T = R then we obtain Theorem 2.3 given in [16].

Theorem 3.5. Let £ : K — R be a differentiable mapping on K° such that £€* € K for l;, I, € K with
Iy < L. If |2 is exponentially s-concave on [l},1,], p > 1, % + é = 1, then the following inequality

holds:
1
”(v—ll) A(v+ll)
<| | xak
L1 J, (fo ) ol ElS

! (v—zz) Av+D
(f m) — g( - )
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Proof. Using Montgomery identity and making use of variables we get

by

E7(u)Au

Ev) -

1
L—-1
1
L—-1

_ 2 1 % 1 %
< v-=10) (f kpAk) (f |§A(kv +(1- k)ll)|qu)
12 - ll 0 0

(v—lz>2( ! )( Lo 5
+ f kP Ak f [E5(kv + (1 = b)DL)"Ak] . (3.8)
Ll \Jo 0

Since |2 is exponentially s-concave, by (6) we have

L-14LJ,

1
f (v — 1)*KEY + (1 = b)) Ak
0

<

+

1
f (v — L) k|E2 (kv + (1 — k)b)|Ak
0

1 é q
( f 1E8 kv + (1 —k)ll)lqu) < 25! gﬁ(%ll) (3.9)
0
and .
1 7 q
( f 1E8kv + (1 —k)lz)lqu) < 2! gﬂ(%lz) (3.10)
0
Using (14) and (15) in (13) we get the conclusion. O

Corollary 3.5.1. If T = R then we obtain Theorem 2.4 given in [16].
Now we discuss some results for s-convex functions.

Theorem 3.6. Let T be a time scale and K = [l,,1,) C T suchthatly, <1, € T. Let¢ : K - Rbe a
delta differentiable on K° such that &* € K, for l,,1, € K with [, < L. If|€"| is s-convex on K for some
fixed s € (0,1] and sup, ., |§A(v)| = M forv € K, then following inequality holds:

. o M(V—l1)2 : s+1 s
€)== | ¢ (u)Aulsﬁfo (1" + k(1 = k)°1) Ak
132
Mf (16! + k(1 k)°1) Ak 3.11)
12_11 0

Proof. The proof is analogous to Theorem 3.2 only difference is to use definition of s-convex function
|€2| instead of exponentially s-convexity. O

Corollary 3.6.1. If T = R, then we obtain Theorem 2 given in [17].

Theorem 3.7. Let T be a time scale and K = [l;,1] C T such thatl; <1, € T. Let ¢ : K — R be
a delta differentiable on K° such that & € K, for 1,1, € K with I} < L. If |£2|9 is s-convex on K for

AIMS Mathematics Volume 7, Issue 3, 4700-4710.
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some fixed s € (0,1], p, g > 1, % +_-=1landsup, .., |§A(v)| = M forv € K, then following inequality

holds:

1
q

1)) _7.)2 1 %
£0) - f"(u)AulS—M(V IR
0

L-14LJ, L -1

1 7 a2 ol 3/l !
(f [k° + (1 —k)°] Ak) + M (f kpAk) (f [+ (1 -k)°1Ak] . (3.12)
0 L-1 0 0

Proof. Proof is analogous to Theorem 3.3 but in place of definition of exponential s-convexity we use
s-convexity of |£2]9. ]

Corollary 3.7.1. If T = R, then we obtain Theorem 3 given in [17].

Theorem 3.8. Let T be a time scale and K = [1;,1,] C T such thatly, <l € T. Let¢( : K — R be a
delta differentiable on K° such that £* € K forl,, I, € K with [; < I,. If|€*|9 is s-convex in second sense
on K for some fixed s € (0,1], ¢ > 1 and sup, ., |§A(v)| = M for v € K, then following inequality
holds:

>
&) - E7(u)Au
L-4LJ,
M -1 ( (N[ g
< —1(f kPAk) (f [k + (1 = k)*] Ak)
L-1 0 0
1 1
M@ — 1) 1 1= 1 7
+ My - by (f k”Ak) (f [£* + (1 - k)] Ak) . (3.13)
L-1 0 0
Proof. Proof is analogous to Theorem 3.4 but we use definition of s-convexity of |27 instead of
exponential s-convexity. O

Corollary 3.8.1. If T = R, then we obtain Theorem 4 given in [17].

4. Conclusions
From Theorem 3.1 we obtain the Hermite-Hadamard inequality for exponentially s-convex
functions on time scale. From Theorems 3.2-3.5 we obtain Ostrowski type inequalities for

exponentially s-convex functions on time scale. From Theorems 3.6-3.8 we obtain Ostrowski type
inequalities for s-convex functions on time scale.
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