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Abstract: In this paper, we study the summability of solutions to the following semilinear elliptic
equations involving mixed local and nonlocal operators

−∆u(x) + (−∆)su(x) = f (x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω,

where 0 < s < 1, Ω ⊂ RN is a smooth bounded domain, (−∆)s is the fractional Laplace operator, f is a
measurable function.
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1. Introduction

The main aim of this paper is to investigate summability of the solutions to the following semilinear
elliptic equations 

−∆u(x) + (−∆)su(x) = f (x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω,

(1.1)
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where Ω ⊂ RN is a bounded domain with a smooth boundary and N > 2s, 0 < s < 1, the data f is
a nonnegative function that belongs to a suitable Lebesgue space. (−∆)s is defined by the following
formula

(−∆)su(x) = CN,sP.V.
∫
RN

u(x) − u(y)
|x − y|N+2s dy, u ∈ S(RN ),

where

CN,s =

(∫
RN

1 − cos ξ1

|ξ|N+2s dξ
)−1

= 22s−1π−
N
2
Γ( N+2s

2 )
|Γ(−s)|

.

During the last years, a lot of mathematical efforts have been devoted to the study of the fractional
Laplacian, which can be used to describe many phenomena in life, such as financial mathematics,
signal control processing, image processing, seismic analysis [2, 9, 10, 13, 22] and so on. Leonori
et al. [21] established an Lp-theory to a family of integro-differential operators related to the fractional
Laplacian 

Lu(x) = f (x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω,

(1.2)

whereL is integral operator with kernels functionsK(x, y). It is worth pointing out that they established
L∞ estimates for solutions to problem (1.2) with f ∈ Lm(Ω), m > N

2s by Moser and Stampacchia
methods respectively, see Proposition 9 of [23] also. Dipierro et al. [18] obtained an L∞ estimate for
the solutions to some general kind of subcritical and critical problems in RN . Barrios et al. [3] extended
the result of [21] to the following fractional p-Laplacian Dirichlet problem

(−∆)s
pu(x) = f (x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω.

(1.3)

Abdellaoui et al. [1] obtained existence and summability of solutions to the following nonlocal
nonlinear problem with Hardy potential

(−∆)su(x) − λ u(x)
|x|2s = f (x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω,

(1.4)

Recently, an increasing attention has been focused on the study of the elliptic operators involving
mixed local and nonlocal operators, which arise naturally in plasma physics [8] and population
dynamics [17]. Biagi et al. [7] proved a radial symmetry result for the following elliptic equation
by the moving planes method,

−∆u(x) + (−∆)su(x) = f (u(x)), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω,
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where f : R → R is a locally Lipschitz continuous function, Ω ⊂ RN is an open and bounded set
with C1 boundary, symmetric and convex with respect to the hyperplane {x1 = 0}. Biagi et al. [4]
investigated the existence, maximum principles, interior Sobolev regularity and boundary regularity
of solutions to problem (1.1). Dipierro et al. [16] discussed the spectral properties of mixed local and
nonlocal equation under suitable Neumann conditions. For some other related results of mixed local
and nonlocal equation, see [5, 6, 11, 12, 14, 17, 19, 20] and the references therein.

The purpose of this paper is to study the summability of solutions to problem (1.1). The main results
of this paper are the following theorems.

Theorem 1.1. Suppose that f ∈ Lm(Ω) with m > N
s+1 . Then there exists a constant K > 0, depending

on N, Ω, s, ‖u‖H1
0 (Ω), ‖ f ‖Lm(Ω), such that any solutions to problem (1.1) satisfy

‖u‖L∞(Ω) ≤ K. (1.5)

Remark 1.2. According to [24], we know that solutions to the following equations belong to L∞(Ω) if
f ∈ Lm(Ω) with m > N

2 , {
−∆u(x) = f (x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

While it is well known that for fractional elliptic equation [3, 23],
(−∆)su(x) = f (x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

u(x) = 0, x ∈ RN \Ω,

u ∈ L∞(Ω) if f ∈ Lm(Ω) with m > N
2s . Theorem 1.1 shows that solutions to problem (1.1) are bounded

if f ∈ Lm(Ω) with m > N
s+1 . Note that for 0 < s < 1,

N
2
<

N
s + 1

<
N
2s
. (1.6)

Furthermore, according to Proposition 4.4 of [15], we know that

lim
s→0+

(−∆)su = u.

Unfortunately, at least formally, (1.6) shows that the limit of ∆ + (−∆)s is not the operator ∆ + I as
s → 0+. In a forthcoming work, we consider the limiting behavior of solutions to boundary value
nonlinear problem (1.1) when the parameter s tends to zero.

Theorem 1.3. Suppose that f ∈ Lm(Ω) with

1 < m <
N

s + 1
. (1.7)

Then, there exists a constant c = c(N,m, s) > 0, such that any solutions to problem (1.1) satisfy

‖u‖Lm∗∗ (Ω) ≤ c‖ f ‖Lm(Ω), (1.8)

where

m∗∗ =
mN(N − 2s)

(N − 2)(N − 2ms)
. (1.9)
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Remark 1.4. Obviously, m∗∗ is monotone increasing in s and

lim
s→1−

m∗∗ =
mN

N − 2m
.

It is interesting to note that

mN
N − 2ms

< m∗∗ <
mN

N − 2m
, (1.10)

which shows that the exponent in (1.9) better than the one coming from the fractional Laplace (−∆)s

only, while which worse that the one coming from the Laplace operator −∆ only.
The surprising character of Theorem 1.3 lies mainly in the fact that, the mixed local and nonlocal

operators has its own features, one can not consider the fractional Laplacian as a lower order
perturbation only of the classical elliptic problem.

The paper is organized as follows. In Section 2 we present the relevant definitions and lemmas.
Section 3 is devoted to the proof of Theorem 1.1 and Section 4 contains the proof of Theorem 1.3.

2. Preliminaries

The definition of solution in this paper is defined as

Definition 2.1. A function u ∈ H1
0(RN) is a weak solution to (1.1), if for every test function φ ∈ C∞0 (Ω),∫

Ω

∇u · ∇φdx +

"
D(Ω)

(u(x) − u(y))(φ(x) − φ(y))
|x − y|N+2s dxdy =

∫
Ω

fφdx,

where

D(Ω) = RN × RN \ (CΩ × CΩ).

Here, we also need the Sobolev embedding theorem. Suppose that for s ∈ (0, 1) and N > 2s,
there exists a constant S = S(N, s) such that, for any measurable and compactly supported function
u : RN → R,

‖u‖2
L2∗s
≤ S

"
RN×RN

|u(x) − u(y)|2

|x − y|N+2s dxdy,

where 2∗s = 2N
N−2s .

In the proof of main theorem, we need some base results of [21]. For any k ≥ 0, define

Tk(u) = max {−k,min {k, u}} , Gk(u) = u(x) − Tk(u).

Lemma 2.2 (Lemma 4 of [21]). Let u(x) be a positive measurable function in RN . Then for any k ≥ 0,

[Tk(u(x)) − Tk(u(y))][Gk(u(x)) −Gk(u(y))] ≥ 0 a.e inD(Ω).
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Lemma 2.3 (Proposition 3 of [21]). Let v be a function in H s
0(Ω). For any k ≥ 0, we have

λ ‖Gk(v)‖2Hs
0(Ω) ≤

∫
Ω

Gk(v)(−∆)svdx,

and

λ ‖Tk(v)‖2Hs
0(Ω) ≤

∫
Ω

Tk(v)(−∆)svdx.

Lemma 2.4 (Theorem 16 of [21]). Let f be a positive function that belong to Lm(Ω) with 2N
N+2S ≤

m < N
2s . Then, there exists a constant c = c(N,m, s) > 0 such that the unique energy solution to (1.2)

satisfies

‖u‖Lm∗∗s (Ω) ≤ c ‖ f ‖Lm(Ω) ,

where

m∗∗s =
mN

N − 2ms
.

The following numerical iteration result is important in proving the boundedness results.

Lemma 2.5 (Lemma 4.1 in [24]). Let f : R+ → R+ be a non-increasing function such that

ψ(h) ≤
Mψ(k)δ

(h − k)γ
, ∀h > k > 0,

where M > 0, δ > 1 and γ > 0. Then ψ(d) = 0, where dγ = Mψ(0)δ−12
δγ
δ−1 .

3. Proof of main results

The main tool for the proof of Theorem 1.1 is Stampacchia method.

Proof. For any k > 0, taking Gk(u) as text function in the definition of weak solution, we have∫
Ω

∇u(x) · ∇Gku(x)dx +

"
D(Ω)

[u(x) − u(y)][Gk(u(x)) −Gk(u(y))]
|x − y|N+2s dxdy

=

∫
Ω

f (x)Gku(x)dx, (3.1)

whereD(Ω) = RN × RN \ (CΩ × CΩ).
Obviously, by u(x) = Tk(u(x)) + Gk(u(x)), we get"

D(Ω)

[u(x) − u(y)][Gk(u(x)) −Gk(u(y))]
|x − y|N+2s dxdy

=

"
D(Ω)

[Tk(u(x)) + Gk(u(x)) − Tk(u(y)) −Gk(u(y))][Gk(u(x)) −Gk(u(y))]
|x − y|N+2s dxdy
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=

"
D(Ω)

[Tk(u(x)) − Tk(u(y))][Gk(u(x)) −Gk(u(y))]
|x − y|N+2s dxdy

+

"
D(Ω)

|Gk(u(x)) −Gk(u(y))|2

|x − y|N+2s dxdy. (3.2)

According to Lemma 2.2, we have

[Tk(u(x)) − Tk(u(y))][Gk(u(x)) −Gk(u(y))] ≥ 0, a.e, (x, y) ∈ D(Ω), (3.3)

which, together with (3.2), implies that"
D(Ω)

|Gk(u(x)) −Gk(u(y))|2

|x − y|N+2s dxdy

≤

"
D(Ω)

[u(x) − u(y)][Gk(u(x)) −Gk(u(y))]
|x − y|N+2s dxdy. (3.4)

Note that
∫

Ω
∇u(x) · ∇Gku(x)dx ≥ 0, this fact, combine Sobolev’s embedding theorem, (3.1) with

(3.4), leads to

‖Gk(u)‖2
L2∗s (Ω)

≤S

"
D(Ω)

|Gk(u(x)) −Gk(u(y))|2

|x − y|N+2s dxdy

≤S

∫
Ak

f (x)Gk(u(x))dx

≤S‖ f ‖Lm(Ak) ‖Gk(u)‖L2∗s (Ak) |Ak|
1− 1

m−
1

2∗s , (3.5)

where Ak = {x ∈ Ω : u(x) ≥ k} and 2∗s = 2N
N−2s . Here we have used the Hölder inequality and the fact

that Gk(u(x)) = 0, x ∈ Ω \ Ak. Therefore,

‖Gk(u)‖L2∗s (Ω) ≤ S‖ f ‖Lm(Ak)|Ak|
1− 1

m−
1

2∗s , (3.6)

On the other hand, by ∇u(x) = ∇Gk(u(x)) for x ∈ Ak, we find∫
Ω

∇u · ∇Gk(u)dx =

∫
Ak

|∇Gk(u)|2dx. (3.7)

This fact, combine with the Sobolev embedding theorem, (3.1), (3.7) and Lemma 2.3, leads to

‖Gk(u)‖2L2∗ (Ω) ≤

∫
Ak

|∇Gk(u)|2dx

≤

∫
Ak

f (u)Gk(u)dx

≤ ‖ f ‖Lm(Ak) ‖Gk(u)‖L2s
∗ (Ak) |Ak|

1− 1
m−

1
2s
∗ . (3.8)

where 2∗ = 2N
N−2 . Now combine (3.6) with (3.8), we have

‖Gk(u)‖2L2∗ (Ω)
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≤‖ f ‖Lm(Ak)‖Gk(u)‖L2s
∗ (Ak)|Ak|

1− 1
m−

1
2s
∗

≤‖ f ‖2Lm(Ω)|Ak|
2(1− 1

m−
1

2∗s
) (3.9)

For every h > k we know that Ah ⊂ Ak and |Gk(u(x))|χAh(x) ≥ (h − k) in Ω, we have that

(h − k)|Ah|
1

2∗ ≤


∫
Ah

|Gk(u)|2
∗


1

2∗

≤ ‖Gk(u)‖L2∗ (Ω)

≤‖ f ‖Lm(Ω)|Ak|
(1− 1

m−
1

2∗s
)
. (3.10)

Therefore

|Ah| ≤
‖ f ‖2

∗

Lm(Ω) |Ak|
2∗(1− 1

m−
1

2∗s
)

(h − k)2∗ . (3.11)

Note that

2∗(1 −
1
m
−

1
2∗s

) > 1 (3.12)

if m > N
s+1 . Finally, we apply the Lemma 2.5 with the choice ψ(u) = |Au|, hence there exists k0 such

that ψ(k) ≡ 0 for any k ≥ k0 and thus ess supΩ u ≤ k0. �

4. Proof of Theorem 1.3

The main tools for the proof of Theorem 1.3 are Calderón-Zygmund theory and Sobolev embedding
theorem. The proof is divided into two parts.

Proof. Define

Φ(σ) =

{
σβ, 0 ≤ σ ≤ T,

βT β−1(σ − T ) + T β, σ > T,
(4.1)

where β =
N(m−1)
N−2ms > 1. Taking Φ(u) as text function in the definition of weak solution to (1.1), we have∫

Ω

∇u · ∇Φ(u)dx +

"
R2N

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy

=

∫
Ω

f Φ(u)dx. (4.2)

Firstly, we consider
∫

Ω
∇u · ∇Φ(u)dx. It is esaily to see that∫

Ω

∇u · ∇Φ(u)dx =

∫
Ω∪{u>T }

∇u · ∇Φ(u)dx +

∫
Ω∪{0≤u≤T }

∇u · ∇Φ(u)dx
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=βT β−1
∫

Ω∪{u>T }
|∇u|2dx +

∫
Ω∪{0≤u≤T }

∇u · ∇uβdx

≥0. (4.3)

Using (4.2) and (4.3), we get"
R2N

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy ≤

∫
Ω

f Φ(u)dx. (4.4)

Similar to the proof of Lemma 2.4, we know that

‖u‖Lm∗∗s (Ω) ≤ c ‖ f ‖Lm(Ω) , (4.5)

where c depends, on λ, S , s, N, m and Ω, m∗∗s = mN
N−2ms .

Secondly, we show that"
R2N

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy ≥ 0. (4.6)

In fact, decompose RN as

RN = {x ∈ RN : u(x) > T } ∪ {x ∈ RN : 0 ≤ u(x) ≤ T }.

Denote
Ω1 = {(x, y) ∈ RN × RN : u(x) > T, u(y) > T },

Ω2 = {(x, y) ∈ RN × RN : u(x) > T, 0 ≤ u(y) ≤ T },

Ω3 = {(x, y) ∈ RN × RN : 0 ≤ u(x) ≤ T, u(y) > T },

Ω4 = {(x, y) ∈ RN × RN : 0 ≤ u(x) ≤ T, 0 ≤ u(x) ≤ T }.

Therefore "
R2N

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy

=

("
Ω1

+

"
Ω2

+

"
Ω3

+

"
Ω4

)
[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]

|x − y|N+2s dxdy

:=I1 + I2 + I3 + I4. (4.7)

Firstly, we consider I1. By the definition of Φ, which given by (4.1), we find, for (x, y) ∈ Ω1,

Φ(u(x)) = βT β−1(u(x) − T ) + T β, Φ(u(y)) = βT β−1(u(y) − T ) + T β,

which implies that Φ(u(x)) − Φ(u(y)) = βT β−1[u(x) − u(y)]. Therefore

I1 =

"
Ω1

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy

=βT β−1
"

Ω1

[u(x) − u(y)]2

|x − y|N+2s dxdy

≥0. (4.8)
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For I2, it is obvious that, for (x, y) ∈ Ω2,

Φ(u(x)) = βT β−1(u(x) − T ) + T β, Φ(u(y)) = u(y)β ≤ T β.

Thus, for (x, y) ∈ Ω2, u(x) ≥ u(y) and

Φ(u(x)) − Φ(u(y)) = βT β−1(u(x) − T ) + (T β − uβ(y)) ≥ 0.

This fact gives that

I2 =

"
Ω2

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy

=

"
Ω2

[u(x) − u(y)][βT β−1(u(x) − T ) + (T β − uβ(y))]
|x − y|N+2s dxdy

≥0. (4.9)

For I3, it is easy to check that, for (x, y) ∈ Ω3,

Φ(u(x)) = u(x)β, Φ(u(y)) = βT β−1(u(y) − T ) + T β,

and

Φ(u(x)) − Φ(u(y)) = u(x)β − T β − βT β−1(u(y) − T ) ≤ 0.

Consequently

I3 =

"
Ω3

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy

=

"
Ω3

[u(x) − u(y)][(uβ(x) − T β) − (βT β−1(u(x) − T ))]
|x − y|N+2s dxdy

≥0, (4.10)

here we use that fact that u(x) − u(y) ≤ 0 for (x, y) ∈ Ω3.
For I4, obviously, for (x, y) ∈ Ω4,

Φ(u(x)) − Φ(u(y)) = u(x)β − u(y)β.

This fact, together with the monotonicity of tβ, leads to

I4 =

"
Ω4

[u(x) − u(y)][Φ(u(x)) − Φ(u(y))]
|x − y|N+2s dxdy

=

"
Ω4

[u(x) − u(y)][uβ(x) − uβ(y)]
|x − y|N+2s dxdy

≥0. (4.11)

Using (4.8)–(4.11), we derive that (4.6) holds.
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According to (4.2) and (4.6), we have∫
Ω

∇u · ∇Φ(u)dx ≤
∫

Ω

f Φ(u)dx. (4.12)

For large T > 0, by (4.1) we know that Φ(u) = uβ if 0 ≤ u(x) ≤ T . Thus (4.12), together with the
Hölder inequalities, yields

4
(β + 1)2

∫
Ω

|∇u
β+1

2 |2dx ≤
∫

Ω

f uβdx ≤ ‖ f ‖Lm(Ω)‖u‖
β

Lm∗∗s (Ω)
,

where

1
m

+
β

m∗∗s
= 1,

2∗

2
(β + 1) > 1, m∗∗s =

mN
N − 2ms

.

Therefore, using (4.5), we get

‖u
β+1

2 ‖2L2∗ (Ω) ≤ c‖ f ‖Lm(Ω)‖u‖
β

Lm∗∗s (Ω)
≤ c‖ f ‖β+1

Lm(Ω).

This fact implies that

‖u‖Lm∗∗ (Ω) ≤ c‖ f ‖Lm(Ω), (4.13)

where

m∗∗ =
Nm(N − 2s)

(N − 2)(N − 2ms)
.
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