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Abstract: Bell polynomials are widely applied in many problems arising from physics and
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1. Introduction

Some special polynomials and numbers are diversely used in physics and engineering as well as in
mathematics. For example, Bell polynomials play an important role in the studies of water waves
which help energy development, mechanical engineering, marine/offshore engineering, hydraulic
engineering, etc (see [9–12,22]). There are various ways of studying special numbers and polynomials,
to mention a few, generating functions, combinatorial methods, p-adic analysis, umbral calculus,
differential equations, probability theory, special functions and analytic number theory (see [1,2]).
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The aim of this paper is to introduce several special polynomials and numbers, and to study their
explicit expressions, recurrence relations and identities involving those polynomials and numbers by
using generating functions.

Indeed, we introduce Bell polynomials and numbers of the second kind (see (2.3), (2.5)) and
poly-Bell polynomials and numbers of the second kind (see (4.1)). The generating function of Bell
numbers of the second kind is the compositional inverse of the generating function of Bell numbers
minus the constant term. Then Bell polynomials of the second kind are natural extensions of those
numbers (see [23]). The poly-Bell polynomials of the second kind, which are defined with the help
of polylogarithm, become the Bell polynomials of the second kind up to sign when the index of the
polylogarithm is k = 1.

We also consider degenerate versions of those numbers and polynomials, namely degenerate Bell
numbers and polynomials of the second (see (3.3), (3.5)) and degenerate poly-Bell numbers and
polynomials (see (5.1)), and derive similar results. It is worthwhile to note that degenerate versions of
many special numbers and polynomials have been explored in recent years with aforementioned tools
and many interesting arithmetical and combinatorial results have been obtained (see [14,15,18,19,26]).
In fact, studying degenerate versions can be done not only for polynomials and numbers but also for
transcendental functions like gamma functions. For the rest of this section, we recall the necessary
facts that are needed throughout this paper.

The Stirling numbers of the first kind, S 1(n,k), are given by

1
k!

(
log(1 + t)

)k
=

∞∑
n=k

S 1(n,k)
tn

n!
, (k ≥ 0), (see [7,25]), (1.1)

As the inversion formula of (1.1), the Stirling numbers of the second kind, S 2(n,k), are given by

1
k!

(
et −1

)k
=

∞∑
n=k

S 2(n,k)
tn

n!
, (k ≥ 0), (see [3,13−20]). (1.2)

It is well known that the Bell polynomials are defined as

Beln(x) =

n∑
k=0

S 2(n,k)xk, (n ≥ 0), (see [24,25]). (1.3)

From (1.3), we note that

ex(et−1) =

∞∑
n=0

Beln(x)
tn

n!
, (see [4,7,8,17,27]). (1.4)

When x = 1, Beln = Beln(1), (n ≥ 0) are called the Bell numbers.
For any λ ∈ R, the degenerate exponential function is given by

ex
λ(t) =

∞∑
n=0

(x)n,λ

n!
tn, (see [5,6,7,26,27]), (1.5)

where (x)0,λ = 1, (x)n,λ = x(x−λ) · · · (x− (n−1)λ), (n ≥ 1).
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When x = 1, we write eλ(t) = e1
λ(t).

The degenerate Stirling numbers of the first kind are defined by

1
k!

(
logλ(1 + t)

)k
=

∞∑
n=k

S 1,λ(n,k)
tn

n!
, (k ≥ 0), (see [15]), (1.6)

where

logλ(1 + t) =

∞∑
n=1

λn−1(1)n,1/λ
tn

n!
, (see [15]). (1.7)

In view of (1.2), the degenerate Stirling numbers of the second kind are defined by

1
k!

(
eλ(t)−1

)k
=

∞∑
n=k

S 2(n,k)
tn

n!
, (see [15]). (1.8)

In [17], the degenerate Bell polynomials are defined by

ex
λ

(
eλ(t)−1

)
=

∞∑
n=0

Beln,λ(x)
tn

n!
. (1.9)

When x = 1, Beln,λ = Beln,λ(1), (n ≥ 0), are called the Bell numbers.
From (1.8) and (1.9), we note that

Beln,λ(x) =

n∑
k=0

S 2,λ(n,k)(x)k,λ, (n ≥ 0), (see [17]). (1.10)

The polylogarithm of index k is given by

Lik(x) =

∞∑
n=1

xn

nk , (k ∈ Z, |x| < 1), (see [3,13,14,16,21]). (1.11)

Note that Li1(x) = − log(1− x).
Recently, the degenerate polylogarithm is defined as

Lik,λ(x) =

∞∑
n=1

(−λ)n−1(1)n,1/λ

(n−1)!nk xn, (|x| < 1, k ∈ Z), (see [15]). (1.12)

Note that Li1,λ(x) = − logλ(1− x).
Here we mention that, to our best knowledge, the results of this paper are new.

2. Bell polynomials of the second kind

From (1.4), we note that

ex(et−1) =

∞∑
n=0

Beln(x)
tn

n!
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Let x = 1. Then we have

eet−1−1 =

∞∑
n=1

Beln
tn

n!
. (2.1)

Let f (t) = eet−1−1. Then the compositional inverse of f (t) is given by

f −1(t) = log
(
1 + log(1 + t)

)
. (2.2)

We consider the new type Bell numbers, called Bell numbers of the second kind, defined by

log
(
1 + log(1 + t)

)
=

∞∑
n=1

beln
tn

n!
. (2.3)

Now, we observe that

log
(
1 + log(1 + t)

)
=

∞∑
k=1

(−1)k−1

k
(
log(1 + t)

)k (2.4)

=

∞∑
k=1

(−1)k−1(k−1)!
1
k!

(
log(1 + t)

)k
=

∞∑
k=1

(−1)k−1(k−1)!
∞∑

n=k

S 1(n,k)
tn

n!

=

∞∑
n=1

( n∑
k=1

(−1)k−1(k−1)!S 1(n,k)
) tn

n!
.

Therefore, by (2.3) and (2.4), we obtain the following theorem.

Theorem 1. For n ≥ 1, we have

(−1)n−1beln =

n∑
k=1

(k−1)!
[
n
k

]
,

where
[
n
k

]
are the unsigned Stirling numbers of the first kind.

Also, we consider the new type Bell polynomials, called Bell polynomials of the second kind,
defined by

beln(x) =

n∑
k=1

(−1)k−1(k−1)!S 1(n,k)xk, (n ≥ 1). (2.5)

From (2.5), we can derive the following equation.

∞∑
n=1

beln(x)
tn

n!
=

∞∑
n=1

( n∑
k=1

(−1)k−1(k−1)!S 1(n,k)xk
) tn

n!
(2.6)

=

∞∑
k=1

(−1)k−1(k−1)!xk
∞∑

n=k

S 1(n,k)
tn

n!

=

∞∑
k=1

(−1)k−1k!
k

xk 1
k!

(
log(1 + t)

)k
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=

∞∑
k=1

(−1)k−1

k
xk( log(1 + t)

)k
= log(1 + x log(1 + t)).

Thus the generating function of Bell polynomials of the second kind is given by

log
(
1 + x log(1 + t)

)
=

∞∑
n=1

beln(x)
tn

n!
. (2.7)

Note here that beln = beln(1). From (2.7), we note that

x(
1 + x log(1 + t)

)
(1 + t)

=
d
dt

log
(
1 + x log(1 + t)

)
=

∞∑
n=0

beln+1(x)
tn

n!
. (2.8)

Replacing t by et −1 in (2.8), we get

x
1 + xt

e−t =

∞∑
k=0

belk+1(x)
1
k!

(
et −1

)k (2.9)

=

∞∑
k=0

belk+1(x)
∞∑

n=k

S 2(n,k)
tn

n!

=

∞∑
n=0

( n∑
k=0

belk+1(x)S 2(n,k)
) tn

n!
.

Taking x = −1 in (2.9), we have
∞∑

n=0

( n∑
k=0

belk+1(−1)S 2(n,k)
) tn

n!
= −

1
1− t

e−t = −

∞∑
n=0

dn
tn

n!
, (2.10)

where dn is the derangement number (see [19]).
Therefore, by comparing the coefficients on both sides of (2.10), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have
n∑

k=0

belk+1(−1)S 2(n,k) = −dn.

Replacing t by eet−1−1 in (2.3), we get

t =

∞∑
k=1

belk
1
k!

(
eet−1−1

)k
=

∞∑
k=1

belk
∞∑
j=k

S 2( j,k)
1
j!
(
et −1

) j (2.11)

=

∞∑
j=1

j∑
k=1

belkS 2( j,k)
∞∑

n= j

S 2(n,k)
tn

n!

=

∞∑
n=1

( n∑
j=1

j∑
k=1

belkS 2( j,k)S 2(n, j)
) tn

n!
.

Thus we obtain following theorem.

AIMS Mathematics Volume 7, Issue 3, 4004–4016.



4009

Theorem 3. For n ≥ 2, we have

n∑
j=1

j∑
k=1

belkS 2( j,k)S 2(n, j) = 0, and bel1 = 1.

Replacing t by et −1 in (2.7), we get

log(1 + xt) =

∞∑
k=1

belk(x)
1
k!

(
et −1

)k (2.12)

=

∞∑
k=1

belk(x)
∞∑

n=k

S 2(n,k)
tn

n!

=

∞∑
n=1

( n∑
k=1

belk(x)S 2(n,k)
) tn

n!
.

On the other hand,

log(1 + xt) =

∞∑
n=1

(−1)n−1

n
xntn. (2.13)

Therefore, by (2.12) and (2.13), we obtain the following theorem.

Theorem 4. For n ≥ 1, we have

xn =
(−1)n−1

(n−1)!

n∑
k=1

belk(x)S 2(n,k).

In particular,

1 =
(−1)n−1

(n−1)!

n∑
k=1

belkS 2(n,k).

3. Degenerate Bell polynomials of the second kind

From (1.3), we note that

eλ
(
eλ(t)−1

)
−1 =

∞∑
n=1

Beln,λ
tn

n!
. (3.1)

Let fλ(t) = eλ
(
eλ(t)−1

)
−1. Then the compositional inverse of fλ(t) is given by

f −1
λ (t) = logλ

(
1 + logλ(1 + t)

)
. (3.2)

We consider the new type degenerate Bell numbers, called degenerate Bell numbers of the second
kind, defined by

logλ
(
1 + logλ(1 + t)

)
=

∞∑
n=1

beln,λ
tn

n!
. (3.3)
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Now, we observe that

logλ
(
1 + logλ(1 + t)

)
=

∞∑
k=1

λk−1(1)k,1/λ
1
k!

(
logλ(1 + t)

)k (3.4)

=

∞∑
k=1

λk−1(1)k,1/λ

∞∑
n=k

S 1,λ(n,k)
tn

n!
.

=

∞∑
n=1

( n∑
k=1

λk−1(1)k,1/λS 1,λ(n,k)
) tn

n!
.

Therefore, by (3.3) and (3.4), we obtain the following theorem.

Theorem 5. For n ≥ 1, we have

beln,λ =

n∑
k=1

λk−1(1)k,1/λS 1,λ(n,k).

Also, we define the degenerate Bell polynomials of second kind by

beln,λ(x) =

n∑
k=1

λk−1(1)k,1/λS 1,λ(n,k)xk. (3.5)

Note that beln,λ = beln,λ(1).
From (3.5), we note that

∞∑
n=1

beln,λ(x)
tn

n!
=

∞∑
n=1

( n∑
k=1

λk−1(1)k,1/λS 1,λ(n,k)xk
) tn

n!
(3.6)

=

∞∑
k=1

λk−1(1)k,1/λxk
∞∑

n=k

S 1,λ(n,k)
tn

n!

=

∞∑
k=1

λk−1(1)k,1/λxk 1
k!

(
logλ(1 + t)

)k

= logλ
(
1 + x logλ(1 + t)

)
.

Thus the generating function of beln,λ(x) is given by

logλ
(
1 + x logλ(1 + t)

)
=

∞∑
n=1

beln,λ(x)
tn

n!
. (3.7)

Replacing t by eλ(t)−1 in (3.7), we get

logλ(1 + xt) =

∞∑
k=1

belk,λ(x)
1
k!

(
eλ(t)−1

)k (3.8)

=

∞∑
k=1

belk,λ(x)
∞∑

n=k

S 2,λ(n,k)
tn

n!
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=

∞∑
n=1

( n∑
k=1

belk,λ(x)S 2,λ(n,k)
) tn

n!
.

On the other hand,

logλ(1 + xt) =

∞∑
n=1

λn−1(1)n,1/λxn tn

n!
. (3.9)

Therefore, by (3.8) and (3.9), we obtain the following theorem.

Theorem 6. For n ≥ 1, we have

xn =
λ1−n

(1)n,1/λ

n∑
k=1

belk,λ(x)S 2,λ(n,k).

In particular,

λn−1(1)n,1/λ =

n∑
k=1

belk,λS 2,λ(n,k).

Replacing t by eλ
(
eλ(t)−1

)
−1 in (3.3), we have

t =

∞∑
k=1

belk,λ
1
k!

(
eλ(eλ(t)−1)−1

)k (3.10)

=

∞∑
k=1

belk,λ
∞∑
j=k

S 2,λ( j,k)
1
j!
(
eλ(t)−1

) j

=

∞∑
j=1

( j∑
k=1

belk,λS 2,λ( j,k)
) ∞∑

n= j

S 2,λ(n, j)
tn

n!

=

∞∑
n=1

( n∑
j=1

j∑
k=1

belk,λS 2,λ( j,k)S 2,λ(n, j)
) tn

n!
.

Therefore, by comparing the coefficients on both sides of (3.10), we obtain the following theorem.

Theorem 7. For n ≥ 2, we have

n∑
j=1

j∑
k=1

belk,λS 2,λ( j,k)S 2,λ(n, j) = 0, and bel1,λ = 1.

4. Poly-Bell polynomials of the second kind

Now, we consider the poly-Bell polynomials of the second kind which are defined as

Lik
(
− x log(1− t)

)
=

∞∑
n=1

bel(k)
n (x)

tn

n!
. (4.1)
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When x = 1, bel(k)
n = bel(k)

n (1) are called the poly-Bell numbers of the second kind.
From (1.11), we note that

Lik
(
− x log(1− t)

)
=

∞∑
l=1

(−1)l

lk
xll!

1
l!
(
log(1− t)

)l (4.2)

=

∞∑
l=1

(−1)l

lk−1 (l−1)!xl
∞∑

n=l

(−1)nS 1(n, l)
tn

n!

=

∞∑
n=1

( n∑
l=1

(−1)n−l

lk−1 (l−1)!xlS 1(n, l)
) tn

n!
.

Therefore, by (4.1) and (4.2), we obtain the following theorem.

Theorem 8. For n ≥ 1, we have

bel(k)
n (x) =

n∑
l=1

xl

lk−1 (l−1)!
[
n
l

]
.

In particular,

bel(k)
n =

n∑
l=1

1
lk−1 (l−1)!

[
n
l

]
.

Note that

bel(1)
n (x) =

n∑
l=1

xl(l−1)!
[
n
l

]
= (−1)n−1beln(x).

Indeed,

Li1
(
− x log(1− t)

)
= − log

(
1 + x log(1− t)

)
=

∞∑
n=1

beln(x)(−1)n−1 tn

n!
.

Replacing t by 1− e−t in (4.1), we get

Lik(xt) =

∞∑
l=1

bel(k)
l (x)

1
l!
(
1− e−t)l (4.3)

=

∞∑
l=1

bel(k)
l (x)(−1)l

∞∑
n=l

S 2(n, l)(−1)n tn

n!
.

=

∞∑
n=1

( n∑
l=1

(−1)n−lbel(k)
l (x)S 2(n, l)

) tn

n!
.

From (1.11) and (4.3), we note that

xn

nk =
1
n!

n∑
l=1

(−1)n−lbel(k)
l (x)S 2(n, l). (4.4)

Therefore, by (4.4), we obtain the following theorem.
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Theorem 9. For n ≥ 1, we have

xn =
nk−1

(n−1)!

n∑
l=1

(−1)n−lbel(k)
l (x)S 2(n, l).

5. Degenerate poly-Bell polynomials of the second kind

We define the degenerate poly-Bell polynomials of the second kind by

Lik,λ
(
− x logλ(1− t)

)
=

∞∑
n=1

bel(k)
n,λ(x)

tn

n!
. (5.1)

When x = 1, bel(k)
n,λ = bel(k)

n,λ(1) are called the degenerate poly-Bell numbers of the second.
From (2.1), we note that

Lik,λ
(
− x logλ(1− t) =

∞∑
l=1

(−λ)l−1(1)l,1/λ

(l−1)!lk
(
− x logλ(1− t)

)l (5.2)

= −

∞∑
l=1

(1)l,1/λ

lk−1 λl−1xl 1
l!
(
logλ(1− t)

)l.

= −

∞∑
l=1

(1)l,1/λ

lk−1 λl−1xl
∞∑

n=l

S 1,λ(n, l)(−1)n tn

n!

=

∞∑
n=1

(
(−1)n−1

n∑
l=1

1
lk−1 (1)l,1/λλ

l−1xlS 1,λ(n, l)
) tn

n!
.

Therefore, by (5.1) and (5.2), we obtain the following theorem.

Theorem 10. For n ≥ 1, we have

(−1)n−1bel(k)
n,λ(x) =

n∑
l=1

1
lk−1 (1)l,1/λλ

l−1xlS 1,λ(n, l).

For k = 1, we have

(−1)n−1bel(1)
n,λ(x) =

n∑
l=1

(1)l,1/λλ
l−1xlS 1,λ(n, l) = beln,λ(x), (n ≥ 0).

Indeed,

Li1,λ
(
− x logλ(1− t)

)
= − logλ

(
1 + x logλ(1− t)

)
=

∞∑
n=1

(−1)n−1beln,λ(x)
tn

n!
.

Replacing t by 1− eλ(−t) in (5.1), we get

Lik,λ(xt) =

∞∑
l=1

bel(k)
l,λ(x)

1
l!
(
1− eλ(−t)

)l (5.3)
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=

∞∑
l=1

bel(k)
l,λ(x)(−1)l 1

l!
(
eλ(−t)−1

)l

=

∞∑
l=1

bel(k)
l,λ(x)(−1)l

∞∑
n=l

S 2,λ(n, l)(−1)n tn

n!

=

∞∑
n=1

( n∑
l=1

(−1)n−lbel(k)
l,λ(x)S 2,λ(n, l)

) tn

n!
.

On the other hand,

Lik,λ(xt) =

∞∑
n=1

(−λ)n−1(1)n,1/λ

(n−1)!nk xntn =

∞∑
n=1

(−λ)n−1(1)n,1/λ

nk−1 xn tn

n!
. (5.4)

From (5.3) and (5.4), we get the following result.

Theorem 11. For n ≥ 1, we have

(−λ)n−1(1)n,1/λ

nk−1 xn =

n∑
l=1

(−1)n−lbel(k)
l,λ(x)S 2,λ(n, l).

6. Conclusions

Many special polynomials and numbers are widely used in physics and engineering as well as in
mathematics. In recent years, degenerate versions of some special polynomials and numbers have
been studied by means of various different tools. Here we introduced Bell polynomials of the second
kind, poly-Bell polynomials of the second kind and their degenerate versions, namely degenerate Bell
polynomials of the second kind and degenerate poly-Bell polynomials of the second kind. By using
generating functions, we explored their explicit expressions, recurrence relations and some identities
involving those polynomials and numbers.

It is one of our future projects to continue this line of research, namely to explore many special
numbers and polynomials and their degenerate versions with the help of various different tools.
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