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Abstract: Vector-Borne Disease (VBD) is a disease that consequences as of an infection
communicated to humans and other animals by blood-feeding anthropoids, like mosquitoes, fleas,
and ticks. Instances of VBDs include Dengue infection, Lyme infection, West Nile virus, and malaria.
In this effort, we formulate a parametric discrete-time chaotic system that involves an environmental
factor causing VBD. Our suggestion is to study how the inclusion of the parasitic transmission media
(PTM) in the system would impact the analysis results. We consider a chaotic formula of the PTM
impact, separating two types of functions, the host and the parasite. The considered applications are
typically characterized by chaotic dynamics, and thus chaotic systems are suitable for their modeling,
with corresponding model parameters, that depend on control measures. Dynamical performances of
the suggested system and its global stability are considered.
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1. Introduction

The mathematical modeling system of VBD (discreet formula as well as the continuous type) is
presented by many researchers depending on the developments of VBD [1]. Dye [2] suggested the
simple population system by the formula

P(> + τ) =
ρP(τ)

(1 + %P(τ))γ
, (1)

where P(τ), P(> + τ) indicate the population magnitudes in straight groups, and ρ is the finite rate
of growth (net fertility after lifetime density autonomous humanities). For % is water containers, and
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γ is the upper slope of the association between humanity and log population magnitude. May [3]
formulated the following model

P(> + τ) = (ρP(τ)) exp (−% P(τ)) . (2)

Then Bellows [4] presented the design

P(> + τ) = (ρP(τ)) exp (−% Pγ(τ)) . (3)

Recently, systems (1)–(3) are generalized into 2D-systems called the parasitoid-host system (PHS) [5]

H(> + τ) = (ρ1H(τ)) (F(P(τ),H(τ)))

P(> + τ) = (ρ2H(τ)) (1 − F(P(τ),H(τ)))
(4)

where

• H, P are the population densities for host and parasitoid accordingly;
• F : R+ × R+ → R+ takes one of the formulas in (1)–(3) and it indicates the fraction

of host population that does not para-sized (infected). Special forms are given as follows:
F(P(τ),H(τ)) = exp(−% Pγ) and F(P(τ),H(τ)) = (1 + %P(τ))−γ. Note that when γ = 1, we
have the logistic function F(P(τ),H(τ)) = (1 + %P(τ))−1. Moreover, it can be formulated by
F(P(τ),H(τ)) = exp(−% Pτ) (see [5]). In our study, we suggest the Hyperbolic tangent, which is
the shifted and scaled type of the logistic function F(P(τ),H(τ)) = tanh(P(τ)). This function is
listed as an activation function as well as a Sigmoid function (utility function). As an application,
it can be utilized in the field of artificial intelligence, especially the artificial neural network [6,7].
• ρ1 represents the size of the growth of the host;
• ρ2 is the rate of a parasitoid population;
• τ,> is the recent time and its iteration respectively.

Different studies are considered for system (4) by researchers and investigators. Din [8] adapted
the PHS with the application of constant retreat effects and described global dynamics for the
projected model. In [9], the authors reformed the PHS with a growth function for the host population
and considered Neimark-Sacker bifurcation and chaos control. In [10], global stability and Hopf
bifurcation approved a class of PHS.

We proceed to define the third dimension of our system. We suggest including an environment
factor called parasitic transmission media (PTM), which includes all types of garbage, water, food, and
air. Human health is at hazard through our indecision. We keep creating large amounts of garbage, we
do not place of it properly, and in the end that will be our breakdown as it is for the environment and
nature in the bionetworks we all stake. We cannot avoid or promote longevity with how we delight our
Earth. The more emissions that we create due to how much trash we produce, affects us long term. One
can progress diseases such as asthma, birth defects, cancer, cardiovascular disease, childhood cancer,
COPD, infectious diseases, low birth weight, and preterm delivery. Bacteria, vermin and insects can
also be recognized to the problem that garbage effects.

The dynamic variable G(τ) defines the mass of PTM in a specific PTM grip at time τ where 0 ≤
τ ≤ 24 and > ∈ R. As the system profits day-to-day garbage gathering, the time scale of deliberation
will be 24 hours and the unit of time utilized will be "hours". The mass of PTM G(τ) will be sized
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depending on its type. It is presumed that between time τ and >+ τ, a total of H(τ) number of persons
credit the PTM in the grip. The number of active garbage removal units at time τ is given by P(τ),
the amount of PTM left in the hold under the effect of these two functions is given by the chaotic
equation [11]

G(> + τ) = G(τ) + α1H(τ) − α2P(τ), (5)

where α1 is the mass of PTM given per person per unit time, α2 is the mass of PTM removed by
removal unit per unit time. Here, we define the chaotic formula of (5) as follows:

G(> + τ) = α0G(τ) + αH(τ) + (1 − α)P(τ), (6)

where α0 > 0 indicates the cumulative mass and α ∈ [0, 1]. Combining 2D-System (4) and and Eq (6)
to obtain the following 3D-discrete dynamic system

H(> + τ) = (ρ1H(τ)) (F(P(τ),H(τ)))

P(> + τ) = (ρ2H(τ)) (1 − F(P(τ),H(τ)))

G(> + τ) = α0G(τ) + αH(τ) + (1 − α)P(τ).
(7)

The remaining study in this paper is that the permanence of outcomes of Model (7) is reflected.
Global stability investigations of the set of fixed points of Model (7) are considered. The control
strategy is established for controlling the chaotic and fluctuating condition of Model (7) about its fixed
points. In the end, numerical simulations are given to confirm the mathematical investigations.

2. Illustrated systems

In this part, we illustrate a set of systems that are relevant to System (7). In the sequel, we deal with
the following structure.

Hn+1 = (ρ1Hn) (F(Pn,Hn))

Pn+1 = (ρ2Hn) (1 − F(Pn,Hn))

Gn+1 = α0Gn + αHn + (1 − α)Pn.

(8)

For special case, we assume that F(Pn,Hn) = tanh(Pn), (see Figure 1) we have the following system

Hn+1 = (ρ1Hn) (tanh(Pn))

Pn+1 = (ρ2Hn) (1 − tanh(Pn))

Gn+1 = α0Gn + αHn + (1 − α)Pn.

(9)
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Figure 1. The plot of tanh(P).

We note that tanh(.) is an activation function that income, we can catch the slope of the sigmoid
arc at every two points. Production values are bound between zero and one ( during the first epoch
of training), normalizing the output of every point. Also, the activation function tanh has a symmetric
value [-1,1]; henceforth, it types the strata lying to quicker saturation.

Moreover, one can generalize Model (9), by using the difference operator

ð(Xn) := Xn+1 − Xn

to formulate the model

Hn+1 − Hn = (ρ1Hn) (tanh(Pn)) − Hn

Pn+1 − Pn = (ρ2Hn) (1 − tanh(Pn)) − Pn

Gn+1 −Gn = α0Gn + αHn + (1 − α)Pn −Gn.

(10)

This implies the model

ð(Hn) = (ρ1Hn) (tanh(Pn)) − Hn

ð(Pn) = (ρ2Hn) (1 − tanh(Pn)) − Pn

ð(Gn) = αHn + (1 − α)Pn − (1 − α0)Gn.

(11)

Finally, the continuous model with respect to time t is formulated as follows:

d
dt

H(t) = (ρ1H(t)) (tanh(P(t))) − H(t)

d
dt

P(t) = (ρ2H(t)) (1 − tanh(P(t))) − P(t)

d
dt

G(t) = αH(t) + (1 − α)P(t) − (1 − α0)G(t).

(12)
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The Jacobian matrix of Model (11) is given by

J =



∂ f1

∂H
∂ f1

∂P
∂ f1

∂G

∂ f2

∂H
∂ f2

∂P
∂ f2

∂G

∂ f3

∂H
∂ f3

∂P
∂ f3

∂G


=


ρ1 tanh(P) − 1 ρ1 H sech 2(P) 0
ρ2(1 − tanh(P)) −ρ2Hsech 2(P) − 1 0

α α − 1 α0 − 1



where 
f1(H, P,G)
f2(H, P,G)
f3(H, P,G)

 =


(ρ1H) (tanh(P)) − H

(ρ2H) (1 − tanh(P)) − P
αH − (1 − α)P − (1 − α0)G

 .
Thus, we have

|J| = (α0 − 1)
(
−(ρ1 − 1)ρ2 H sech 2(P) − ρ1 tanh(P) + 1

)
≈ (ρ1 − 1)(1 − α0), P→ ∞.

The set of eigenvalues of J is

Λ :=
{
λ1 = α0 − 1,

λ2,3 =
±0.707

√
ρ2

1[cosh(4P) − 1] + 8ρ1ρ2H[2 cosh(2P) + 2 − sinh(2P)] + 8ρ2
2H2

2(cosh(2P) + 1)

+
ρ1 sinh(2P) − 2ρ2H − 2 cosh(2P) − 2

2(cosh(2P) + 1)

}
Model (11) has the following set of fixed points satisfying Hn+1 = Hn, Pn+1 = Pn,Gn+1 = Gn

Φ :=
{
ϕ0(0, 0, 0),

ϕ1


ρ1 log

(√
ρ1 + 1
ρ1 − 1

)
ρ2(ρ1 − 1)

, log


√
ρ1 + 1
ρ1 − 1

 , [ρ2(ρ1 − 1)(α − 1) − αρ1] log
(√

ρ1 + 1
ρ1 − 1

)
ρ2(ρ1 − 1)(α0 − 1)


}

:=
{
ϕ0(0, 0, 0), ϕ1

(
ρ1`

ρ2(ρ1 − 1)
, `,

[ρ2(ρ1 − 1)(α − 1) − αρ1]`
ρ2(ρ1 − 1)(α0 − 1)

) }
,

where ` := log
(√

ρ1 + 1
ρ1 − 1

)
providing that ρ1 , 1, α0 , 1 and ρ2 , 0. Hence, for α0 = 2, we get the

following cases of the set of the eigenvalues

•

Λϕ0 =
{
λ1 = 1, λ2,3 = −1

}
,

which dominated an attracting saddle. This surface has an unstable eigenvalue generating one
direction of outflow behavior and two stable eigenvalues generate a plane involving all the inflow
streamlines (see Figures2–4);
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• assuming α = 0, we obtain ϕ1 (` ([, 1,−1)) , where [ :=
ρ1

ρ2(ρ1 − 1)
then

Λϕ1 =
{
λ1 = 1,

λ2,3 = ±0.0071`
√

(1 − 2e4 + e8)ρ2
1 + 8e2(3 + 4e2 + e4)ρ1ρ2[ + 16e4ρ2

2[
2

+ ` (0.381ρ1 − 0.21ρ2[ − 1)
}

• when α = 1, we have ϕ1 (` ([, 1, [)) , which implies the same eigenvalues in Λϕ1 , where α = 0 and
α = 1 are the end points of the chaotic Model (11).
• If ρ1 = ρ2 , 1, then we have [ = 1/(1 − ρ1) and

Λϕ1 =
{
λ1 = 1,

λ2,3 = ±0.0071`ρ1

√
850[2 + 4974[ + 2719 + ` (0.38ρ1 − 1 − 0.21ρ1[)

}
.

Note that the zeros of
√

850[2 + 4974[ + 2719 are [1 = −0.6 and [2 = −5.24. This leads to
the approximated values of λ2,3 ≈ 0.00636 and λ2,3 ≈ 1.0405 respectively, when ρ1 = 2. More
approximation yields

Λϕ1 =
{
λ1 = 1, λ2,3 = 0.01

}
and

Λϕ1 =
{
λ1,2,3 ≈ 1

}
.

• The set of equilibrium points is as follows:

Ξ =
{
ψ0(0, 0, 0), ψ1(0, P,

P(1 − α)
α0

), ψ2(H,−
αH
α − 1

, 0), ψ3(H, P,
P − α(H + P)

α0
)
}
.

Consequently, we have

Jψ0 =


−1 0 0
ρ2 −1 0
α α − 1 α0 − 1


with the following set of eigenvalues

Λψ0 = {λ1,2 = −1, λ3 = α0 − 1},

which is equal to the set Λϕ0 when α0 = 2. Model (11) has a saddle surface (see Figures 2–4 for the
generation of the point), which satisfies the max-min inequality

sup
u∈U

inf
v∈V

σ(u, v) ≤ inf
v∈V

sup
u∈U

σ(u, v), σ : U × V → R.

Moreover, Model (9) is permanent if the inequality holds:

µ1 ≤ lim
n→∞

inf(Hn, Pn,Gn) ≤ lim
n→∞

sup(Hn, Pn,Gn) ≤ µ2, 0 < µ1 ≤ µ2,
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where S = {(HN , Pn,Gn)} is a positive solution for Model (9).

Figure 2. The 3D-plot of Model (11), when ρ1 = ρ2 = 2 for α = 0, 0.25, 0.5, 0.75, 1 and the
periodic solution (when α = 0.5) respectively.

Figure 3. The 3D-plot of Model (11), when ρ1 = 2, ρ2 = 1 for α = 0, 0.25, 0.5, 0.75, 1 and
the periodic solution (when α = 0.5) respectively.
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Figure 4. The 3D-plot of Model (11), when ρ1 = 5, ρ2 = 4 for α = 0, 0.25, 0.5, 0.75, 1 and
the periodic solution (when α = 0.5) respectively. It is clear that the point (0,0,0) on the
saddle corresponds to a degenerate critical point of the function G(H, P) at (0, 0) providing
that |1 − α0| < ε, ε > 0 is small enough.

Since complex behavior means that small changes to parameters or initial conditions can have large
effect on the biological system in long term, therefore, the reconstruction of the system offers (chaotic
system) an important tool to study the vector field and the biological dynamics.

3. Chaotic system

Chaos is a corporate factor that can exist in dynamical systems (discrete and continuous). Due
to its properties, it has several applications (see [12–15]). Numerous indications represent that
numerous biological models, particularly the human brain, perform in both chaotic and periodic
styles. Researchers presented that the brain’s utility permanently changes between various conditions.
These interchanges are because of irregularity or illnesses. Given that a beneficial instrument for
scrutinizing and improved considering of biological models, chaotic models have recurrently utilized
in investigative studies to analyze and formulate biological models (see [16–18]). The result curves
to chaotic systems commonly show fractal construction. The construction of the bizarre attractions
for general n-dimensional systems might be convoluted and problematic to detect evidently. The
subsequent appearances are approximately permanently showed by the resolutions of chaotic systems
(see Figures 5–7):

• Long-term episodic (non- episodic) conduct: the difficulty to realize the difference between
episodic and non- episodic conduct.
• Sympathy to initial conditions: depending on initial conditions.
• Fractal construction: the outcome plots to chaotic systems normally show a fractal structure
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Figure 5. The conduct of the chaos, when ρ1 = 1.3, ρ2 = 1.1, α0 = 0.45, α = 0.34. It is clear
that PTM is controlled by the hosted population. Therefore, parasitoid decreases.

Figure 6. The conduct of the chaos, when ρ1 = ρ2 = 1.1, α0 = 0.45, α = 0.34. It is clear that
PTM is controlled by the hosted population. Therefore, parasitoid decreases.
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Figure 7. The conduct of the chaos, when ρ1 = 1.1, ρ2 = 1.1, α0 = 0.6, α = 0.4. It is clear
that PTM is not under control. Therefore, parasitoid increases.

Theorem 1. Suppose that S = {(Hn, Pn,Gn)} is a positive solution for Model (9). If ρ1 > 1, ρ2 ∈ (0, ρ1]
and α0 ∈ (0, 1) then Model (9) is permanent. Moreover, the model has a saddle surface.

Proof. From Model (9), we have

Hn+1 ≤ (ρ1Hn)

Pn+1 ≤ (ρ2Hn)

Gn+1 ≤ α0Gn + αHn + (1 − α)Pn.

By the assumptions, we conclude

lim
n→∞

sup(Hn) ≤ (ρ1Hn) ≤ ρ1

lim
n→∞

sup(Pn) ≤ (ρ2Hn) ≤ ρ1

lim
n→∞

sup(Gn) ≤
ρ1

1 − α0
.

Hence, we have
lim
n→∞

sup(Hn, Pn,Gn) ≤
ρ1

1 − α0
.

Moreover, a conclusion implies that

lim
n→∞

inf(Hn, Pn,Gn) ≥ 1.

Consuming µ1 = 1 and µ2 =
ρ1

1 − α0
which leads that Model (9) is a permanent system achieving

1 ≤ lim
n→∞

inf(Hn, Pn,Gn) ≤ lim
n→∞

sup(Gn) ≤
ρ1

1 − α0
.
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Continue the second part, as follows:

sup
u∈U

inf
v∈V

G(H, P) ≤ inf
v∈V

sup
u∈U

G(H, P)

⇒ sup
u∈U

(1) ≤ inf
v∈V

(
ρ1

1 − α0

)
⇒ 1 ≤

1
1 − α0

,

where U = V = R+. Thus, the model has a saddle surface. �

Remark 1. Model (9) satisfies the chaos in the third equation for α0 → 0 such that

Hn+1 = (ρ1Hn) (tanh(Pn))

Pn+1 = (ρ2Hn) (1 − tanh(Pn))

Gn+1 = αHn + (1 − α)Pn.

(13)

And when α0 → 1, we get the chaos difference system

ð(Hn) = (ρ1Hn) (tanh(Pn)) − Hn

ð(Pn) = (ρ2Hn) (1 − tanh(Pn)) − Pn

ð(Gn) = αHn + (1 − α)Pn,

(14)

corresponding to the linear model

ð(Hn) = −Hn

ð(Pn) = −Pn

ð(Gn) = αHn + (1 − α)Pn,

(15)

and to the optimal model, when tanh(P) ≈ 1

ð(Hn) = (ρ1 − 1)Hn

ð(Pn) = −Pn

ð(Gn) = αHn + (1 − α)Pn,

(16)

3.1. Chaos control of model (11)

Model (11) can be controlled by 2D-controller law as follows:

UH = − (ρ1H) (tanh(Pn)) (17)
UP = − (ρ2H) (1 − tanh(Pn)) . (18)

The third equation can be controlled by suggesting values of α and α0 ∈ (0, 1). Figures 6 and 7
showed that the optimal interval for α0 ∈ (0, 0.5) and α ∈ (0, 0.4).
We have the following result
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Theorem 2. The Model (11) can be controlled by 2D-controller (17).

Proof. The controlled model can be recognized as follows:

ð(H) = (ρ1H) (tanh(P)) − H − UH

ð(P) = (ρ2H) (1 − tanh(P)) − P − UP

ð(G) = αH + (1 − α)P − (1 − α0)G.
(19)

�

Substituting (17) in (19), we obtain

ð(H) = −H

ð(P) = −P

ð(G) = αH + (1 − α)P − (1 − α0)G.
(20)

In matrix form, we have


ð(H)
ð(P)
ð(G)

 =


−1 0 0
0 −1 0
α (1 − α) −(1 − α0)



H
P
G

 . (21)

The goal is to prove that the zero equilibrium of (20) is asymptotically stable, which indicates that
the model states converge towards zero as time progresses. Since all the eigenvalues λ1,2 = −1, λ3 =

−(1 − α0), α0 ∈ (0, 1) of the model are negative; then by the stability theorem, we have that the zero
outcomes is asymptotically stable and, thus the system is stabilized.

3.2. Discrete Lyapunov formula (DLF)

The DLF is given by the structure

ΣχΣc − χ + Θ = 0

where Θ is a Hermitian matrix and Σc is the conjugate transpose of Σ. It is well known that for Θ > 0
there exists a unique ∆ > 0 such that Σ>∆Σ−∆+Θ = 0 if and only if the model is asymptotically stable.
In view of Theorem 2, the Model (11) is asymptotically stable for α ∈ (0, 1), α0 ∈ (0, 1), which leads to
satisfy the DLF, where χ>∆χ is the Lyapunov formula. Next example shows the DLF for Model (21)
with different parameters (see Figure 8).
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Figure 8. The 3D-plot of the linear Model (21), when α = 0.25, 0.5, 0.75, α0 ≈ 1
respectively.

Example 1. Let the following data hold

• α = 0.25, α0 = 0.75 then DLF is

−1 0 0
0 −1 0

0.25 0.75 −0.25

 ,

−0.0608116 −0.002466 −0.0243887
−0.002466 −0.0001 −0.000989
−0.0243887 −0.000989 −0.00978121


 ,

where the solution is


0.2466
0.01

0.0989

 ;

• α = α0 = 0.5 the DLF is given by

−1 0 0
0 −1 0

0.5 0.5 −0.5

 ,

−0.36 −0.03 −0.0006
−0.03 −0.0025 −0.00005
−0.0006 −0.00005 −1 × 10−6


 ,

for the solution


0.6

0.05
0.001

 .
• α = 0.75, α0 = 0.25, then


−1 0 0
0 −1 0

0.75 0.25 −0.5

 ,

−0.81 −0.135 −0.009
−0.135 −0.0225 −0.0015
−0.009 −0.0015 −0.0001




where the solution is


0.9
0.15
0.01

 ;

• α = 0.75, α0 = 0.25 then

−1 0 0
0 −1 0

0.75 0.25 −0.75

 ,

−1. −0.25 −0.02
−0.25 −0.0625 −0.005
−0.02 −0.005 −0.0004
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with the solution


1

0.25
0.02

 ;

• α = 0.75, α0 = 0 then, we get

−1 0 0
0 −1 0

0.75 0.25 −1

 ,

−1. −0.25 −0.02
−0.25 −0.0625 −0.005
−0.02 −0.005 −0.0004




satisfying the solution


1

0.25
0.021

 .
• α = 0.34, α0 = 0.45, then DLF is


−1 0 0
0 −1 0

0.34 0.6 −0.6

 ,

−4. −2.5 −0.4
−2.5 −1.5625 −0.25
−0.4 −0.25 −0.04




having the outcome


2

1.25
0.2

 .
Note that, the last solution is controlled by the hosted and decreases the parasitiod providing ρ1 = ρ2

(see Figure 9).

Figure 9. The 3D-plot of the linear Model (21), when α = 0.25, 0.5, 0.75, α0 ≈ 1
respectively.

4. Discussions

The Model (21) achieves

Rank


−1 0 0
0 −1 0
α (1 − α) −(1 − α0)

 = 3
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and all the matrices in the above example satisfy Rank < 3. The low-rank DLFs is of
pronounced significance, where normally hard to calculate in control system investigation and strategy.
Opportunely, Mesbahi and Papavassilopoulos [19] presented that under some conditions, the lowest-
rank results of the DLF can be professionally solved by linear programming.

In [20], the authors proved that the lowest-rank results of both the continuous and discrete Lyapunov
formulas over symmetric shape (like tanh function) are unique and can be precisely resolved by their
convex relaxations and the symmetric linear programming issues. Proposition 4.4 in [20] indicated
that the unique outcome could select an exact lowest-rank solution to DLF over the symmetric shape
to its trace minimization relaxation issue. Therefore, all solutions in Example 1 are unique for a set of
parameters.

5. Conclusions

A 3D-mathematical model for the Vector-Borne Disease is formulated. The design assumes three
sub-populations: the human population (H), the vector population (P) and the parasitic transmission
media (G). The design equilibrium explanations were indicated, and the environments for their stability
were recognized. A numerical solution to the model was recognized utilizing the discrete Lyapunov
formulas were simulated for different values of parameters of the disease situation, Figures 5–8.
Our simulations show that control actions, which minimize the population rank, the human-vector
transmission rate as well as vector-human transmission media (such as garbage collection and removal,
dirty food, body-liquids or substances, by airborne breath). Hence, control processes that address
these fixed factorize (disease transmission parameters) would be valuable in the attempt towards the
annihilation of the infection.
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