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asymptotic behavior
Mathematics Subject Classification: 39B82, 39B52, 39B62, 46C15

1. Introduction

Ulam [33] gave a fascinating and famous lecture in 1940 that encouraged the study of stability
problems for various functional equations. He discussed a number of important unsolved problems in
mathematics. Among them, a question of the stability of group homomorphisms seemed too abstract
for anyone to come to any conclusion. In fact, he asked the following question about the stability of
homomorphisms:

Let (G1, ∗) be a group and let (G2, �) be a metric group with a metric d. Given ε > 0, does there
exist a δ > 0 such that if a function f : G1 → G2 satisfies the inequality d( f (x ∗ y), f (x) � f (y)) < δ for
all x, y ∈ G1; then there is a homomorphism h : G1 → G2 with d( f (x), h(x)) < ε for all x ∈ G1?

If the answer is affirmative, the functional equation of homomorphisms is called stable. In 1941,
Hyers [11] was able to give a partial solution to the Ulam’ question, which was the first important step
forward and a step towards further solutions in this field. He was the first mathematician to present
the result about the stability of functional equations. He masterly answered the question of Ulam for
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the case in which it is assumed that G1 and G2 are Banach spaces. Aoki [3] and Th. M. Rassias [29]
extended the Hyers’ theorem by considering an unbounded Cauchy difference. They tried to weaken
the condition for the bound of the norm of the Cauchy difference as follows:

‖ f (x + y) − f (x) − f (y)‖ 6 ε(‖x‖p + ‖y‖p), x, y ∈ X.

where 0 6 p < 1. In 1994, Găvruta [9] provided a generalization of Rassias’ theorem by replacing the
bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y). In recent decades, several stability problems
for various functional equations and also for mappings with more general domains and ranges have
been investigated by a number of mathematicians. We refer the interested reader the following books
and surveys [5, 6, 12, 16, 17] and the references therein for more detailed information.

It will also be interesting to study the stability problems of additive and quadratic functional
equations on restricted domains. More precisely, the goal is whether there is a true additive (resp.
quadratic) function in the neighborhood of a function f which only satisfies ‖ f (x + y)− f (x) − f (y)‖ 6
ε

(
resp.‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y)‖ 6 ε

)
in a restricted domain. Skof [32] was the first

person to address the stability on a bounded domain. She proved the following theorem and applied
the result to the study of an asymptotic behavior of additive functions.

Theorem 1.1. Let E be a Banach space, and let d > 0 be a given constant. Suppose a function
f : R→ E satisfies the inequality

‖ f (x + y) − f (x) − f (y)‖ 6 ε, |x| + |y| > d.

for some ε > 0. Then there exists a unique additive function A : R→ E such that

‖ f (x) − A(x)‖ 6 9ε, x ∈ R.

Using this theorem, Skof [32] investigated an interesting asymptotic behavior of additive functions,
as we see in the following theorem.

Theorem 1.2. Let X and Y be a normed space and a Banach space, respectively. Suppose z is a fixed
point of Y. For a function f : X → Y the following two conditions are equivalent:

(i) f (x + y) − f (x) − f (y)→ z as ‖x‖ + ‖y‖ → ∞;
(ii) f (x + y) − f (x) − f (y) = z for all x, y ∈ X.

Z. Kominek [18] introduced a stability result for the Jensen’s equation on a bounded domain.
Another stability result of the Jensen’s equation on an unbounded and restricted domain was obtained
by S. M. Jung [14]. He was able to prove an asymptotic property of the additive functions which may
be regarded as a modification of Skof’s result mentioned above.

Among the normed linear spaces, inner product spaces play an important role. In an inner product
space E the parallelogram law is an algebraic identity, i. e.,

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ E.

This translates into a functional equation well known as the quadratic functional equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y), x, y ∈ X.
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where X is a linear space. Most mathematicians may be interested in the study of the quadratic
functional equation since the quadratic functions are applied to almost every field of mathematics.
Skof [32] was the first person who proved the Hyers–Ulam stability of the quadratic functional equation
for the functions f : X → Y, where X is a normed space and Y is a Banach space. In 1998,
Jung [13] investigated the Hyers–Ulam stability of the quadratic and Fréchet functional equations
on the unbounded restricted domains. He also investigated the asymptotic behavior of quadratic and
Fréchet functional equations. J. M. Rassias [30] improved the bounds and thus the stability results
obtained by S. M. Jung. Besides, he established the Ulam stability for more general functional
equations on a restricted domain. For more detailed information on the stability of the Cauchy and
quadratic functional equations, we can refer to [10, 19, 21–28, 30, 31].

In this paper, we investigate the Hyers–Ulam stability of additive and Fréchet functional equations
on some restricted domains. Moreover, we improve the bounds and thus the results obtained by S. M.
Jung and J. M. Rassias. As a consequence, we obtain asymptotic behaviors of functional equations
of different types. One of the objectives of this paper is to bring out the involvement of functional
equations in various characterizations of inner product spaces.

Throughout this paper, X,Y are normed linear spaces and Y is a Banach space.

2. Stability of additive functional equation on some restricted domains

Theorem 2.1. Let f : X → Y be an even function. If

‖ f (x + y) − f (x) − f (y)‖ 6 ε, ‖x + y‖ > d. (2.1)

Then f is bounded, i.e., ‖ f (x)‖ 6 3ε for all x ∈ X. Especially, limn→∞
f (nx)

n = 0 for all x ∈ X.

Proof. Let Ỹ be the completion of Y . Letting y = x in (2.1), we get

‖ f (2x) − 2 f (x)‖ 6 ε, ‖x‖ > d. (2.2)

Therefore ∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m

∥∥∥∥∥∥ 6 n∑
k=m

ε

2k+1 , ‖x‖ > d, n > m > 0. (2.3)

This implies that the sequence { f (2n x)
2n }n is Cauchy for all x ∈ X. Define T : X → Ỹ by

T (x) := lim
n→∞

f (2nx)
2n , x ∈ X.

Since f is even, T is even. In view of the definition of T , (2.1) implies that T (x + y) = T (x) + T (y) for
all x, y ∈ X with x + y , 0. Since T is even, we obtain

T (x − y) = T (x) + T (y) = T (x + y), x ± y , 0. (2.4)

By the definition of T , we have T (2x) = 2T (x) for all x ∈ X. Setting x = 3y, the last Eq (2.4) yields
T (2y) = T (4y) for all y ∈ X (notice that T (0) = 0). Then T (y) = 0 for all y ∈ X. Letting m = 0 and
allowing n tending to infinity in (2.3), we get

‖ f (x)‖ 6 ε, ‖x‖ > d. (2.5)
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Let x ∈ X be an arbitrary element, and choose y ∈ X such that ‖y‖ > d + ‖x‖. It is clear that ‖x + y‖ > d.
So (2.5) implies that

‖ f (y)‖ 6 ε and ‖ f (x + y)‖ 6 ε.

These together with (2.1) give ‖ f (x)‖ 6 3ε. This completes the proof. �

Theorem 2.2. Let X be a linear normed space and Y a Banach space. Suppose that f : X → Y
satisfies

‖ f (x + y) − f (x) − f (y)‖ 6 ε, ‖x + y‖ > d. (2.6)

for some d > 0. Then there exists a unique additive function A : X → Y such that

‖ f (x) − A(x)‖ 6 3ε, x ∈ X. (2.7)

Proof. We know the function f : X → Y can be written as f (x) = fe(x) + fo(x) for all x ∈ X, where
fe(x) =

f (x)+ f (−x)
2 is called the even part of f and fo(x) =

f (x)− f (−x)
2 is called the odd part of f . It is clear

that fe is even and fo is odd.
It is easy to see that fe and fo satisfy

‖ fe(x + y) − fe(x) − fe(y)‖ 6 ε, ‖x + y‖ > d, (2.8)
‖ fo(x + y) − fo(x) − fo(y)‖ 6 ε, ‖x + y‖ > d, (2.9)

By (2.8) and Theorem 2.1, we infer that limn→∞
fe(nx)

n = 0 for all x ∈ X.
Letting y = x in (2.9), we get

‖ fo(2x) − 2 fo(x)‖ 6 ε, ‖x‖ > d.

Therefore ∥∥∥∥∥∥ fo(2n+1x)
2n+1 −

fo(2mx)
2m

∥∥∥∥∥∥ 6 n∑
k=m

ε

2k+1 , ‖x‖ > d, n > m > 0. (2.10)

This implies that the sequence { fo(2n x)
2n }n is Cauchy for all x ∈ X. Define A : X → Y by

A(x) := lim
n→∞

fo(2nx)
2n , x ∈ X.

In view of the definition of A, (2.6) implies that A(x + y) = A(x) + A(y) for all x, y ∈ X with x + y , 0.
Since A is odd (we notice that fo is odd), we conclude that A is additive.

It is clear that

lim
n→∞

f (2nx)
2n = lim

n→∞

fo(2nx) + fe(2nx)
2n = lim

n→∞

fo(2nx)
2n = A(x), x ∈ X.

It follows from (2.6) that∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m

∥∥∥∥∥∥ 6 n∑
k=m

ε

2k+1 , ‖x‖ > d, n > m > 0. (2.11)
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Letting m = 0 and allowing n tending to infinity in (2.11), we get

‖ f (x) − A(x)‖ 6 ε, ‖x‖ > d. (2.12)

To extend (2.12) to the whole X, let x ∈ X and choose y ∈ X such that ‖y‖ > d + ‖x‖. Then ‖x + y‖ > d,
and (2.12) yields

‖ f (y) − A(y)‖ 6 ε and ‖ f (x + y) − A(x + y)‖ 6 ε.

Using these inequalities together with (2.6), we obtain

‖A(x + y) − A(y) − f (x)‖ 6 3ε.

Since A is additive, we get (2.7). The uniqueness of A follows easily from (2.7). �

Corollary 2.3. Suppose that f : X → Y satisfies

‖ f (x + y) − f (x) − f (y)‖ 6 ε, ‖x‖ + ‖y‖ > d.

for some d > 0. Then there exists a unique additive function A : X → Y such that

‖ f (x) − A(x)‖ 6 3ε, x ∈ X.

Proof. Because {(x, y) ∈ X × X : ‖x + y‖ > d} ⊆ {(x, y) ∈ X × X : ‖x‖ + ‖y‖ > d}, the result follows by
Theorem 2.2. �

Remark 2.4. We improved the bounds and thus the results of Losonczi [20] and S. M. Jung [15] by
obtaining sharper estimates.

Theorem 1.2 is a consequence of Theorem 2.2.

Corollary 2.5. Let X and Y be linear normed spaces. Suppose z is a fixed point of Y. For a function
f : X → Y the following conditions are equivalent:

(i) lim‖x+y‖→∞[ f (x + y) − f (x) − f (y)] = z;
(ii) lim‖x‖+‖y‖→∞[ f (x + y) − f (x) − f (y)] = z;

(iii) f (x + y) − f (x) − f (y) = z, x, y ∈ X.

Proof. It is clear that if f satisfies (ii), then f satisfies (i). To prove (i) ⇒ (iii), let f satisfy (i). Define
g(x) := f (x) + z for all x ∈ X. Then

lim
‖x+y‖→∞

[g(x + y) − g(x) − g(y)] = 0.

Let ε > 0 be an arbitrary real number. By (i) there exists dε > 0 such that

‖g(x + y) − g(x) − g(y)‖ 6 ε, ‖x + y‖ > dε.

LetY be the completion of Y . In view of Theorem 2.2 there exists a unique additive function Aε : X →
Y such that

‖g(x) − Aε(x)‖ 6 3ε, x ∈ X.
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Then

‖g(x + y) − g(x) − g(y)‖ 6 ‖g(x + y) − Aε(x + y)‖ + ‖g(x) − Aε(x)‖ + ‖g(y) − Aε(y)‖
6 9ε, x, y ∈ X.

Since ε is arbitrary, we get g is additive. Then

f (x + y) − f (x) − f (y) = g(x + y) − g(x) − g(y) + z = z, x, y ∈ X.

This implies (iii). The implication (iii)⇒ (ii) is obvious. Hence the proof is complete. �

Corollary 2.6. Let X and Y be linear normed spaces and let ϕ : X ×X → [0,+∞). Suppose z is a fixed
point of Y. A function f : X → Y satisfies

f (x + y) − f (x) − f (y) = z, x, y ∈ X

if one of the following conditions holds:

(i) lim
‖x+y‖→∞

ϕ(x, y) = +∞, lim sup
‖x+y‖→∞

ϕ(x, y)‖ f (x + y) − f (x) − f (y) − z‖ < ∞;

(ii) lim
‖x‖+‖y‖→∞

ϕ(x, y) = +∞, lim sup
‖x‖+‖y‖→∞

ϕ(x, y)‖ f (x + y) − f (x) − f (y) − z‖ < ∞.

Proof. It is obvious that (ii) implies (i). According to (i), there exist constants d > 0 and M > 0 such
that

ϕ(x, y)‖ f (x + y) − f (x) − f (y) − z‖ < M, ‖x + y‖ > d.

Since lim‖x+y‖→∞ ϕ(x, y) = +∞, we infer that

lim
‖x+y‖→∞

‖ f (x + y) − f (x) − f (y) − z‖ = 0.

Hence by Corollary 2.5 we conclude that f (x + y) − f (x) − f (y) = z for all x, y ∈ X. �

Theorem 2.7. Let X be a linear normed space and Y a Banach space. Suppose that f : X → Y
satisfies

‖ f (x + y) − f (x) − f (y)‖ 6 ε, min{‖x‖, ‖y‖} > d. (2.13)

for some d > 0. Then there exists a unique additive function A : X → Y such that

‖ f (0)‖ 6 7ε and ‖ f (x) − A(x)‖ 6 3ε, x ∈ X \ {0}.

Proof. Letting y = x in (2.13), we get

‖ f (2x) − 2 f (x)‖ 6 ε, ‖x‖ > d.

Therefore ∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m

∥∥∥∥∥∥ 6 n∑
k=m

ε

2k+1 , ‖x‖ > d, n > m > 0. (2.14)
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This implies that the sequence { f (2n x)
2n }n is Cauchy for all x ∈ X. Define A : X → Y by

A(x) := lim
n→∞

f (2nx)
2n , x ∈ X.

In view of the definition of A, (2.13) implies that A(x + y) = A(x) + A(y) for all x, y ∈ X \ {0}. Since
A(0) = 0, we conclude that A is additive. Letting m = 0 and allowing n tending to infinity in (2.14), we
get

‖ f (x) − A(x)‖ 6 ε, ‖x‖ > d. (2.15)

To extend (2.15) to the whole X, let x ∈ X \ {0} and choose a positive integer such that ‖nx‖ > d. Then
(2.15) yields

‖ f (−nx) − A(−nx)‖ 6 ε and ‖ f ((n + 1)x) − A((n + 1)x)‖ 6 ε.

On the other hand, (2.13) implies

‖ f (x) − f ((n + 1)x) − f (−nx)‖ 6 ε.

Using these inequalities, we obtain

‖ f (x) − A(−nx) − A((n + 1)x)‖ 6 3ε.

Since A is additive, we get ‖ f (x) − A(x)‖ 6 3ε for all x ∈ X \ {0}.
Now, let x ∈ X \ {0}. Then (2.13) yields ‖ f (0) − f (x) − f (−x)‖ 6 ε. Hence

‖ f (0)‖ 6 ‖ f (0) − f (x) − f (−x)‖ + ‖ f (x) − A(x)‖ + ‖ f (−x) − A(−x)‖
6 ε + 3ε + 3ε = 7ε.

The uniqueness of A follows easily from (2.7). �

Corollary 2.8. Let X and Y be linear normed spaces. Suppose z is a fixed point of Y. For a function
f : X → Y the following conditions are equivalent:

(i) limmin{‖x‖,y‖}→∞[ f (x + y) − f (x) − f (y)] = z;
(ii) limmax{‖x‖,‖y‖}→∞[ f (x + y) − f (x) − f (y)] = z;

(iii) f (x + y) − f (x) − f (y) = z, x, y ∈ X.

Corollary 2.9. Let X and Y be linear normed spaces and let ϕ : X ×X → [0,+∞). Suppose z is a fixed
point of Y. A function f : X → Y satisfies

f (x + y) − f (x) − f (y) = z, x, y ∈ X.

if one of the following conditions holds:

(i) lim
min{‖x‖,y‖}→∞

ϕ(x, y) = +∞, lim sup
min{‖x‖,y‖}→∞

ϕ(x, y)‖ f (x + y) − f (x) − f (y) − z‖ < ∞;

(ii) lim
max{‖x‖,‖y‖}→∞

ϕ(x, y) = +∞, lim sup
max{‖x‖,‖y‖}→∞

ϕ(x, y)‖ f (x + y) − f (x) − f (y) − z‖ < ∞.
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Proof. It is obvious that (ii) implies (i). According to (i), there exist constants d > 0 and M > 0 such
that

ϕ(x, y)‖ f (x + y) − f (x) − f (y) − z‖ < M, min{‖x‖, ‖y‖} > d.

Since limmin{‖x‖,‖y‖}→∞ ϕ(x, y) = +∞, we infer that

lim
min{‖x‖,‖y‖}→∞

‖ f (x + y) − f (x) − f (y) − z‖ = 0.

Hence by Corollary 2.8, we have f (x + y) − f (x) − f (y) = z for all x, y ∈ X. �

Corollary 2.10. Let X and Y be linear normed spaces, ε > 0 and let p < 0. Suppose z is a fixed point
of Y and f : X → Y satisfies

‖ f (x + y) − f (x) − f (y) − z‖ 6 ε(‖x‖p + ‖y‖p), x, y ∈ X \ {0}.

Then f (x + y) − f (x) − f (y) = z for all x, y ∈ X \ {0}.

3. Stability of Fréchet functional equation on some restricted domains

A function f : X → Y between linear spaces X and Y satisfies the Fréchet equation if

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (x + z), x, y, z ∈ X. (3.1)

Theorem 3.1. Suppose that ε > 0 and f : X → Y is an odd function satisfies

‖ f (x + y + z) + f (x) + f (y) + f (z) − f (x + y) − f (y + z) − f (x + z)‖ 6 ε. (3.2)

for all x, y, z ∈ X with ‖x + y + z‖ > d, where d > 0 is a constant. Then there exist a unique additive
function A : X → Y such that

‖ f (x) − A(x)‖ 6 4ε, x ∈ X. (3.3)

Proof. Letting z = −y in (3.2), yields

‖ f (x + y) + f (x − y) − 2 f (x)‖ 6 ε, ‖x‖ > d. (3.4)

Settings y = x in (3.4), yields
‖ f (2x) − 2 f (x)‖ 6 ε, ‖x‖ > d.

Therefore ∥∥∥∥∥∥ f (2n+1x)
2n+1 −

f (2mx)
2m

∥∥∥∥∥∥ 6 n∑
k=m

ε

2k+1 , ‖x‖ > d, n > m > 0. (3.5)

Then it is easy to infer that the sequence { f (2n x)
2n }n is Cauchy for all x ∈ X. Define A : X → Y by

A(x) := lim
n→∞

f (2nx)
2n , x ∈ X.

Obviously, A is odd. In view of the definition of A, (3.4) implies that

A(x + y) + A(x − y) = 2A(x), x , 0.
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Since A is odd, we conclude that A is additive. Letting m = 0 and allowing n tending to infinity in (3.5),
we get

‖ f (x) − A(x)‖ 6 ε, ‖x‖ > d. (3.6)

It is natural to expect to extend this to the whole X. Let z ∈ X \ {0} and choose a positive integer n such
that ‖nz‖ > d. Setting x = (n + 1)z, y = nz in (3.4) yields

‖ f ((2n + 1)z) + f (z) − 2 f ((n + 1)z)‖ 6 ε.

On the other hand, (3.6) implies

‖A((2n + 1)z) − f ((2n + 1)z)‖ 6 ε and ‖2 f ((n + 1)z) − 2A((n + 1)z)‖ 6 2ε.

Using these inequalities, we obtain

‖ f (z) + A((2n + 1)z) − 2A((n + 1)z)‖ 6 4ε.

Since A is additive, we get ‖ f (z) − A(z)‖ 6 4ε for all z ∈ X \ {0}. Since A(0) = f (0) = 0, the last
inequality yields (3.3).

The uniqueness of A follows easily from (3.3) �

Theorem 3.2. Suppose that ε > 0, d > 0 and f : X → Y is an even function satisfies (3.2) for all
x, y, z ∈ X with ‖x + y + z‖ > d. Then there exist a unique quadratic function Q : X → Y such that∥∥∥∥∥Q(x) − f (x) +

f (0)
2

∥∥∥∥∥ 6 7ε
6
, ‖Q(x) − f (x)‖ 6

5ε
3
, x ∈ X. (3.7)

Proof. Letting z = −y in (3.2), yields

‖ f (x + y) + f (x − y) − 2 f (x) − 2 f (y) + f (0)‖ 6 ε, ‖x‖ > d. (3.8)

Settings y = x in (3.8), yields

‖ f (2x) − 4 f (x) + 2 f (0)‖ 6 ε, ‖x‖ > d.

Therefore ∥∥∥∥∥∥∥ f (2n+1x)
4n+1 −

f (2mx)
4m + 2

n∑
k=m

f (0)
4k+1

∥∥∥∥∥∥∥ 6
n∑

k=m

ε

4k+1 , ‖x‖ > d, n > m > 0. (3.9)

Then it is easy to infer that the sequence { f (2n x)
2n }n is Cauchy for all x ∈ X. Define Q : X → Y by

Q(x) := lim
n→∞

f (2nx)
4n , x ∈ X.

Obviously, Q is even. In view of the definition of Q, (3.8) implies that

Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y), x , 0.

Since Q is even and Q(0) = 0, we conclude that Q is quadratic. Letting m = 0 and allowing n tending
to infinity in (3.9), we get ∥∥∥∥∥Q(x) − f (x) +

2
3

f (0)
∥∥∥∥∥ 6 ε3 , ‖x‖ > d. (3.10)
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Now we extend (3.10) to all of X. Let y ∈ X and choose x ∈ X such that ‖x‖ > d + ‖y‖. Clearly,
‖x ± y‖ > d. By (3.10), we obtain∥∥∥∥∥Q(x + y) − f (x + y) +

2
3

f (0)
∥∥∥∥∥ 6 ε3;∥∥∥∥∥Q(x − y) − f (x − y) +

2
3

f (0)
∥∥∥∥∥ 6 ε3;∥∥∥∥∥2 f (x) − 2Q(x) −

4
3

f (0)
∥∥∥∥∥ 6 2ε

3
.

Adding these inequalities and (3.8), gives

‖Q(x + y) + Q(x − y) − 2Q(x) − 2 f (y) + f (0)‖ 6
7ε
3
.

Since Q is quadratic, the last inequality yields

‖2Q(y) − 2 f (y) + f (0)‖ 6
7ε
3
, y ∈ X.

Besides from(3.8) with y = 0, we get that ‖ f (0)‖ 6 ε. This gives the desired result (3.7).
The uniqueness of Q follows easily from (3.7) �

Theorem 3.3. Suppose that ε > 0 and f : X → Y is a function satisfies (3.2) for some d > 0. Then
there exist a unique additive A : X → Y and a unique quadratic function Q : X → Y such that

‖A(x) + Q(x) − f (x)‖ 6
17ε
3
, x ∈ X.

Proof. We know every function f : X → Y can be written as f (x) = fe(x) + fo(x) for all x ∈ X, where
fe(x) =

f (x)+ f (−x)
2 is called the even part of f and fo(x) =

f (x)− f (−x)
2 is called the odd part of f . It is clear

that fe is even and fo is odd.
It is easy to see that fe and fo satisfy (3.2). By Theorems 3.1 and 3.2, there exist a unique additive

A : X → Y and a unique quadratic function Q : X → Y such that

‖Q(x) − fe(x))‖ 6
5ε
3

and ‖A(x) − fo(x)‖ 6 4ε, x ∈ X.

Then
‖A(x) + Q(x) − f (x)‖ 6

17ε
3
, x ∈ X.

�

Remark 3.4. We note that

{(x, y, z) ∈ X × X × X : ‖x + y + z‖ > d} ⊆ {(x, y, z) ∈ X × X × X : ‖x‖ + ‖y‖ + ‖z‖ > d},

the above results remain valid if the condition ‖x + y + z‖ > d in (3.2) is replaced by ‖x‖+ ‖y‖+ ‖z‖ > d.

It should be noted that S. M. Jung [13] obtained the bound 21ε in inequalities (3.3) and (3.7). Later,
J. M. Rassias [30] improved this bound by replacing the bound 21ε with the bound 15ε. Obviously,
our bounds in inequalities (3.3) and (3.7) are also sharper than the corresponding inequalities of S. M.
Jung [13] and J. M. Rassias [30].
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Remark 3.5. If the condition ‖x + y + z‖ > d in (3.2) is replaced by min{‖x‖, ‖y‖, ‖z‖} > d, the results of
Theorems 3.1, 3.2 and 3.3 are still valid. In fact, the proofs are quite similar and the arguments can be
easily completed.

Now, we can prove the following corollary concerning an asymptotic property of the functional
Eq (3.1). For convenience, let

D f (x, y, z) := f (x + y + z) + f (x) + f (y) + f (z) − f (x + y) − f (y + z) − f (x + z), x, y, z ∈ X.

for a given f : X → Y .

Corollary 3.6. Let b ∈ Y be a fixed element. Suppose that f : X → Y satisfies one of the following
asymptotic behaviors

(i) lim‖x‖+‖y‖+‖z‖→∞ D f (x, y, z) = b;
(ii) lim‖x+y+z‖→∞ D f (x, y, z) = b;

(iii) limmin{‖x‖,‖y‖,‖z‖}→∞ D f (x, y, z) = b;
(iv) limmax{‖x‖,‖y‖,‖z‖}→∞ D f (x, y, z) = b.

Then f has the form f = b + A + Q, where A : X → Y is additive and Q : X → Y is quadratic.

Corollary 3.7. Let ϕ : X×X×X → [0,+∞) and b be a fixed point of Y. A function f : X → Y satisfies

D f (x, y, z) = b, x, y, z ∈ X.

if one of the following conditions holds:

(i) lim
min{‖x‖,‖y‖,‖z‖}→∞

ϕ(x, y, z) = +∞,

lim sup
min{‖x‖,‖y‖,‖z‖}→∞

ϕ(x, y, z)‖D f (x, y, z) − b‖ < ∞;

(ii) lim
max{‖x‖,‖y‖,‖z‖}→∞

ϕ(x, y, z) = +∞,

lim sup
max{‖x‖,‖y‖,‖z‖}→∞

ϕ(x, y, z)‖D f (x, y, z) − b‖ < ∞;

(iii) lim
‖x‖+‖y‖+‖z‖→∞

ϕ(x, y, z) = +∞,

lim sup
‖x‖+‖y‖+‖z‖→∞

ϕ(x, y, z)‖D f (x, y, z) − b‖ < ∞;

(iv) lim
‖x+y+z‖→∞

ϕ(x, y, z) = +∞,

lim sup
‖x+y+z‖→∞

ϕ(x, y, z)‖D f (x, y, z) − b‖ < ∞.

Corollary 3.8. Let p < 0 and b is a fixed point of Y. Suppose a function f : X → Y satisfies

‖D f (x, y, z) − b‖ 6 ε(‖x‖p + ‖y‖p + ‖z‖p), x, y, z ∈ X \ {0}.

Then D f (x, y, z) = b for all x, y, z ∈ X \ {0}.

AIMS Mathematics Volume 7, Issue 3, 3379–3394.



3390

4. Some characterizations of inner product spaces

Some known characterizations of inner product spaces and their generalizations can be found in
[1, 2, 4] and references therein. In this section we give various characterizations of inner product
spaces. Eq (3.1) was applied by Fréchet [8] in a characterization of the inner product spaces.

Theorem 4.1 (Fréchet). A normed linear space (X, ‖.‖) is an inner product space if and only if

‖x + y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2 = ‖x + y‖2 + ‖y + z‖2 + ‖x + z‖2, x, y, z ∈ X.

Theorem 4.2. Let X , {0} be a real normed linear space such that

‖x + y + z‖p + ‖x‖q + ‖y‖s + ‖z‖t = ‖x + y‖α + ‖y + z‖β + ‖x + z‖γ, x, y, z ∈ X. (4.1)

for some real numbers p, q, s, t, α, β, γ ∈ (0,+∞). Then X is an inner product space.

Proof. Letting y = z = 0 and choosing ‖x‖ = 2 in (4.1), we get 2p + 2q = 2α + 2γ. Letting z = 0 and
y = x with ‖x‖ = 1 in (4.1), we obtain 2p = 2α. Then p = α and q = γ. Letting x = 0 and z = y with
‖y‖ = 1 in (4.1), we infer that p = β. Letting y = 0 and z = x with ‖x‖ = 1 in (4.1), we infer that p = γ.
Hence p = q = α = β = γ. Setting x = z = 0 and choosing ‖y‖ = 2 in (4.1), we obtain s = β. Finally,
Setting x = y = 0 and choosing ‖z‖ = 2 in (4.1), we obtain t = γ. Therefore p = q = s = t = α = β = γ.
Putting y = x and z = −x with ‖x‖ = 1 in (4.1), we get α = 2. Then p = q = s = t = α = β = γ = 2.
Hence Theorem 4.1 provides the desired result. �

Let us recall the following result from [2].

Theorem 4.3. Let X be a normed linear space and φ : R → R be continuous with φ(0) = 0, φ(1) = 1
and satisfy

φ(‖x + y‖) + φ(‖x − y‖) = 2φ(‖x‖) + 2φ(‖y‖), x, y ∈ X.

Then X is an inner product space.

Now we consider a generalization of Theorem 4.3.

Theorem 4.4. Let X be a normed linear space and ϕi : R → R (1 6 i 6 4). Suppose that ϕi is
continuous with ϕi(0) = 0, ϕi(1) = 1 for some i, and

ϕ1(‖x + y‖) + ϕ2(‖x − y‖) = ϕ3(‖x‖) + ϕ4(‖y‖), x, y ∈ X.

Then X is an inner product space.

Proof. We may assume without loss of generality that ϕ1 is continuous with ϕ1(0) = 0 and ϕ1(1) = 1.
Define fi : X → R by

fi(x) := ϕi(‖x‖), x ∈ X, i = 1, 2, 3, 4.

Each fi is even and we have

f1(x + y) + f2(x − y) = f3(x) + f4(y), x, y ∈ X. (4.2)

By [17, Theorem 4.28], each fi − fi(0) is quadratic and

f2 = f1 + f2(0), f3 = 2 f1 + f3(0), f4 = 2 f1 + f4(0).
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Then
f1(x + y) + f1(x − y) + f2(0) = 2 f1(x) + 2 f1(y) + f3(0) + f4(0), x, y ∈ X.

Since f1(0) = 0, it follows from (4.2) that f2(0) = f3(0) + f4(0). Therefore

f1(x + y) + f1(x − y) = 2 f1(x) + 2 f1(y), x, y ∈ X.

This means
ϕ1(‖x + y‖) + ϕ1(‖x − y‖) = 2ϕ1(‖x‖) + 2ϕ1(‖y‖), x, y ∈ X.

Hence X is an inner product space by Theorem 4.3. �

It is proven that if for all x, y ∈ X (y , 0), the corresponding function ϕ : R → R given by
ϕ(t) = ‖x + ty‖2 is a polynomial in t of degree 2, then X is an inner product space (see [2]). Now we
prove the following result.

Proposition 4.5. Suppose that the continuous function f : R → R is such that, for each x, y ∈ X (y ,
0), the function ϕ : R→ R given by ϕ(t) = f (‖x + ty‖2) + f (‖x − ty‖2) is a polynomial in t of degree 2.
Then X is an inner product space.

Proof. Let
ϕ(t) = f (‖x + ty‖2) + f (‖x − ty‖2) = at2 + bt + c,

where a, b, c are functions of x and y. It is clear that c = ϕ(0) = 2 f (‖x‖2) and

f (‖x + y‖2) + f (‖x − y‖2) =
1
2

[ϕ(1) + ϕ(−1)] = a + c = 2 f (‖x‖2) + a, x, y ∈ X.

Letting x = 0, the equation above yields a = 2 f (‖y‖2) − 2 f (0). Define ψ : X → R by ψ(x) :=
f (‖x‖2) − f (0) for all x ∈ X. Then

ψ(x + y) + ψ(x − y) = 2ψ(x) + 2ψ(y), x, y ∈ X. (4.3)

Since f is continuous, ψ is continuous. Therefore (4.3) yields ψ(tx) = t2ψ(x) for all x ∈ X and t ∈ R.
Setting x ∈ X with ‖x‖ = 1, we get

f (t) − f (0) = f
(
‖
√

tx‖2
)
− f (0)

= ψ
(√

tx
)

= tψ(x) = t[ f (‖x‖2) − f (0)] = t[ f (1) − f (0)], t > 0.

So we conclude that ψ(x) = ‖x‖2[ f (1) − f (0)] for all x ∈ X. Since ϕ(t) is a polynomial in t of degree 2,
we infer f (1) − f (0) , 0, and (4.3) implies

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

Thus X is an inner product space. �

Corollary 4.6. Let ‖x + ty‖2 + ‖x − ty‖2 be a polynomial in t of degree 2 for x, y ∈ X (y , 0). Then X is
an inner product space.
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Now, we recall a result from [2].

Theorem 4.7. Let X be a real normed linear space such that

‖x + y + z‖2 + ‖x + y − z‖2 − ‖x − y + z‖2 − ‖x − y − z‖2, x, y, z ∈ X.

is independent of z. Then X is an inner product space.

Theorem 4.8. Let p, q, r, s > 0 be real numbers and X , {0} be a real normed linear space such that

‖x + y + z‖p + ‖x + y − z‖q − ‖x − y + z‖r − ‖x − y − z‖s, x, y, z ∈ X. (4.4)

is independent of z. Then X is an inner product space.

Proof. Setting z = x + y and z = 0 in (4.4), we obtain

2p‖x + y‖p − 2r‖x‖r − 2s‖y‖s = ‖x + y‖p + ‖x + y‖q − ‖x − y‖r − ‖x − y‖s, x, y ∈ X. (4.5)

Letting y = 0 and choosing x with ‖x‖ = 1 in (4.5), we infer p = r. Similarly by letting x = 0 and
choosing y with ‖y‖ = 1 in (4.5), we infer p = s. Hence p = r = s. Letting y = x with ‖x‖ = 1 and
‖x‖ = 2 in (4.5), respectively, we obtain

4p − 3 × 2p = 2q and 8p − 3 × 4p = 4q.

Therefore
4q = 8p − 3 × 4p = 2p[4p − 3 × 2p] = 2p2q =⇒ p = q.

Hence 4p − 3 × 2p = 2p implies p = 2. Then p = q = r = s = 2, and we conclude

‖x + y + z‖2 + ‖x + y − z‖2 − ‖x − y + z‖2 − ‖x − y − z‖2, x, y, z ∈ X

is independent of z. Now, by Theorem 4.7, we obtain the result sought. �

5. Conclusions

In this work, we established a new strategy to study the Hyers-Ulam stability of additive and Fréchet
functional equations on restricted domains. We also improved the bounds and thus the results obtained
by S. M. Jung and J. M. Rassias. As a consequence, we obtained asymptotic behaviors of functional
equations of different types. One of the objectives of this paper was to bring out the involvement of
functional equations in various characterizations of inner product spaces.
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