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1. Introduction

For centuries, infectious diseases have ranked with wars and famine as major challenges to human
progress and survival [1]. The spread of infectious diseases in populations and how to control and
eliminate them from the populations are important and necessary subjects. Mathematical models are
introduced to study what happens when an infection enters in a population, and under which
conditions the disease will be wiped out from population or persist in population. Therefore,
mathematical epidemic models have been a popular topic for many years (see [2–5] and the
references therein).

In general, the dynamics of epidemic are a highly transited topic of investigation from the
epidemiological point of view. There are virous families of models depending on the assumption on
the mechanisms of propagation. For example, there are susceptible-infected-susceptible (SIS) models
which have been used to model nonlinear incidence rates and double epidemic hypotheses [6],
susceptible-infected-recovered (SIR) models which are employed to consider the awareness of the
presence of a disease [7], susceptible-exposed-infected-recovered (SEIR) models that predict the
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propagation of epidemics with nonlocal reaction functions [8],
susceptible-exposed-infected-quarantined-recovered (SEIQR) models used to account for adjusted
incidence and imperfect vaccinations [9], and so on. Among the variety of epidemic models, the SIR
model can be seen as the basis, over which more complex and realistic models have been built.
Hence, SIR epidemic models have been extensively investigated by ecologists and mathematicians
in [10–14] and the references therein. The literatures mentioned above investigate bifurcation
phenomena as one systemic parameter varies. However, they do not consider the analysis of
codimention-two bifurcation for epidemic models.

Most Researchers often study bifurcation phenomena as one systemic parameter varies. In fact,
many practical models contain several systemic parameters. Complicated bifurcations such as
codimension-two bifurcations likely occur when more than one systemic parameter is varied at the
same time. Codimension-two bifurcations, also known as double crises, occur when different
codimension-one bifurcation intersect in the two-dimensional plane of the systemic parameters. Many
literatures consider the codimention-two bifurcations for different fields. Luo et al. [15] consider 1:2
resonance bifurcation of a vibroimpact system. In [16], Yuan and Yang investigate the complex
dynamics of a discrete predator-prey system, and show that the system undergoes flip bifurcation,
Neimark-Sacker bifurcation and codimension-two bifurcation associated with 1:2 resonance. Ruan
and Wang [17] discuss Bogdanov-Takens bifurcation of a continuous epidemic model with a
nonlinear incidence rate. Yi et al. [18] derive the conditions for existence of codimension-one
bifurcations (fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation) and present the
condition for the occurrence of codimension-two bifurcation (fold-flip bifurcation). Ren and Yu [19]
study the codimension-two bifurcations of a discrete information diffusion model. The epidemic
model is usually a high-dimensional and complex system, including many parameters and variables.
Therefore, it is quite natural to ask how the parameters affect the dynamics of the model, what may
happen and what match rules about parameters are when two or many parameters change
simultaneously, which are what we concern. In our problem, we will study the codimension-two
bifurcations of a discrete SIR epidemic model.

Hu et al. [20] study a continuous-time SIR epidemic model as following
dS
dt = A − dS − λS I,
dI
dt = λS I − (d + r)I,
dR
dt = rI − dR,
N(t) = S (t) + I(t) + R(t),

(1.1)

where S (t), I(t), R(t), N(t) denote the numbers of susceptible, infective, recovered individuals, total
numbers of the individuals at time t, respectively; A is the recruitment rate of the population, d is the
natural death rate of the population, r is the recovery rate of the infective individuals, and λ stands for
the bilinear incidence rate.

We can get the following discrete-time epidemic model by the Euler scheme.
S n+1 = S n + h(A − dS n − λS nIn),
In+1 = In + h(λS nIn − (d + r)In),
Rn+1 = Rn + h(rIn − dRn),
Nn+1 = (1 − hd)Nn + hA,

(1.2)
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where h is the step size and all the parameters are positive. As the first two equations of model (1.2)
about (S n, In) not including Rn, and the third equation is the linear equation of Rn. Therefore, the
dynamical behaviors of model (1.2) are equivalent to the dynamical behaviors of the following model{

S n+1 = S n + h(A − dS n − λS nIn),
In+1 = In + h(λS nIn − (d + r)In),

(1.3)

which only includes S n and In.
For simplicity, we rewrite the above system in the form[

x
y

]
→

[
x + h(A − dx − λxy)
y + h(λxy − (d + r)y)

]
. (1.4)

Hu et al. have algebraically shown that the system undergoes Flip bifurcation and Neimark-Sacker
bifurcation, they also show that discrete-time epidemic models can produce a more richer set of
dynamic patterns than those observed in continuous-time models. Motivated by the above works, the
aim of this paper is to show that system (1.4) undergoes 1:2, 1:3 and 1:4 strong resonances, which
provide the sights to the complex dynamics of action potential. In this paper, we choose h and λ as
perturbation parameters to analyze the codimension-two bifurcations numerically and analytically.
All of these studies were previously not considered in the work of Hu et al. In fact, the problem
considered in the paper and the obtained results can be seen as a beneficial extension of [20].

The remainders of the paper are organized as follows. In Section 2, we present the existence and
local stability of fixed points for map (1.4). In Section 3, we show that there exist some values of
parameters such that map (1.4) undergoes codimension-two bifurcations. In Section 4, we give some
numerical simulations, which not only validate the effectiveness of the theoretical analysis, but also
prove that the alternation of the periodic and chaotic motions in two-dimensional parameter space with
the system parameter changing. The last section is devoted to the conclusion.

2. Stability analysis at fixed points

We first discuss the existence and stability of the positive fixed points of model (1.4). The basic
reproductive rate of model (1.4) is R0 = Aλ/d(d + r), which is the average number of secondary
infections generated by an initial population of infected individuals over their lifetimes. If R0 < 1, the
model (1.4) has an unique fixed point E0( A

d , 0); If R0 > 1, the model (1.4) has two fixed points: E0( A
d , 0)

and E1(x1, y1), where

x1 =
d + r
λ

, y1 =
A

d + r
−

d
λ
.

By using the Jacobian matrix and some mathematical calculations, we find that E0 does not come
into being any codimension-2 bifurcation. For E1, its Jacobian matrix evaluated is given by

J(x1, y1) =
(

1 − h Aλ
d+r −h(d + r)

h( Aλ
d+r − d) 1

)
.

The corresponding characteristic equation at E1(x1, y1) is given by

ρ2 − (2 + hG)ρ + 1 + hG + h2H = 0,
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where

G = −
Aλ

d + r
, H = Aλ − d(d + r).

According to the Lemma 1 in Ren and Yu [19], we state the following proposition about stability
criterion of E1(x1, y1).

Proposition 2.1. Suppose that the fixed point E1 of system (1.4) exists. Then it is
(I) Sink if one of the following conditions holds:

(I.1) G2 − 4H ≥ 0 and h < (−G −
√

G2 − 4H)/H;
(I.2) G2 − 4H < 0 and h < −G/H;

(II) Source if one of the following conditions holds:
(II.1) G2 − 4H ≥ 0 and h > (−G +

√
G2 − 4H)/H;

(II.2) G2 − 4H < 0 and h > −G/H;
(III) Saddle if the following conditions hold:

G2 − 4H ≥ 0 and (−G −
√

G2 − 4H)/H < h < (−G +
√

G2 − 4H)/H;
(IV) Non-hyperbolic if one of the following conditions holds:

(IV.1) G2 − 4H ≥ 0 and h = (−G ±
√

G2 − 4H)/H;
(IV.2) G2 − 4H < 0 and h = −G/H.

The non-hyperbolic case of fixed point can result in bifurcations and chaos, and the chaos of
epidemics can cause the population to run a higher risk of extinction due to the
unpredictability [21, 22]. Further, the theoretical proofs can provide strong evidences for the existence
and characteristic of the bifurcations. Therefore, it is important and necessary to give a detailed
analysis about the bifurcations. Thus, we focus on the parametric conditions of non-hyperbolic case.
Let ρ1,2 be two eigenvalues of Jacobian matrix J. It follows that ρ1ρ2 = 1, and that implies that
ρ1,2 = e±iθ0 for some real number θ0. If ρk

1,2 = 1 for k = 1, 2, 3, 4, system (1.4) may exhibit more
complicated dynamical behaviors, namely, chaos and codimension-2 bifurcations. As a matter of fact,
we can get the following conditions for the strong resonances. Thus, we define three bifurcation sets

F12 =

(A, d, r, h, λ) : h =
4(d + r)

Aλ
, λ =

2(d + r)2 ± 2
√

r(d + r)3

A
, 0 < d, r, λ < 1

 ,
F13 =

(A, d, r, h, λ) : h =
3(d + r)

Aλ
, λ =

3(d + r)2 ±
√

3(3r − d)(d + r)3

2A
, 0 < d, r, λ < 1

 ,
F14 =

(A, d, r, h, λ) : h =
2(d + r)

Aλ
, λ =

(d + r)2 ±
√

(r − d)(d + r)3

A
, 0 < d, r, λ < 1

 ,
at which 1:2, 1:3 and 1:4 resonances will occur, respectively.

3. Codimension-two bifurcation analysis

In this section, we will give attention to recapitulate the codimension-two bifurcation of system (1.4)
around E1. Parameters h, λ are chosen as the bifurcation parameters.
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3.1. 1:2 strong resonance at E1

We first consider A, d, r as fixed parameters λ, h as free parameters. The system (1.4) has a 1:2
strong resonance at E1(x1, y1). Let u = x − x1, v = y − y1, then (x1, y1) is converted to the origin
point (0, 0), and the system (1.4) can be changed into[

u
v

]
→

[
1 − hd − hλy1 −hλx1

hλy1 1

] [
u
v

]
+

[
−hλuv
hλuv

]
. (3.1)

Let

K =
 h̄λ̄x1

2−h̄d−h̄λ̄y1

h̄λ̄x1
(2−h̄d−h̄λ̄y1)2

1 0

 .
Let us consider an inverse transaction [

u
v

]
= K

[
x̄
ȳ

]
.

The system (3.1) can be expressed as[
x̄
ȳ

]
→

[
−1 + a10(h̄, λ̄) 1 + a01(h̄, λ̄)

b10(h̄, λ̄) −1 + b01(h̄, λ̄)

] [
x̄
ȳ

]
+

[
f (x̄, ȳ)
g(x̄, ȳ)

]
, (3.2)

with

a10 = 2 +
h̄2λ̄2x1y1

2 − h̄d − h̄λ̄y1
, a01 = −1 +

h̄2λ̄2x1y1

(2 − h̄d − h̄λ̄y1)2
,

b01 = 2 − h̄d − h̄λ̄y1 −
h̄2λ̄2x1y1

2 − h̄d − h̄λ̄y1
, b10 = −h̄2λ̄2x1y1 − 2(2 − h̄d − h̄λ̄y1),

f (x̄, ȳ) = −
h̄2λ̄2x1

2 − h̄d − h̄λ̄y1
x̄2 −

h̄2λ̄2x1

(2 − h̄d − h̄λ̄y1)2
x̄ȳ = a20 x̄2 + a11 x̄ȳ,

g(x̄, ȳ) =
[
−h̄λ̄(2 − h̄d − h̄λ̄y1) − h̄2λ̄2x1

]
x̄2 +

[
h̄2λ̄2x1

h̄d + h̄λ̄y1 − 2
− h̄λ̄

]
x̄ȳ

= b20 x̄2 + b11 x̄ȳ.

Introduce the non-singular linear coordinate transformation[
x̄
ȳ

]
→

[
1 + a01(h̄, λ̄) 0
−a10(h̄, λ̄) 1

] [
x̃
ỹ

]
. (3.3)

Map (3.2) can be uniquely represented as[
x̃
ỹ

]
→

[
−1 1

θ1(h̄, λ̄) −1 + θ2(h̄, λ̄)

] [
x̃
ỹ

]
+

[
G(x̃, ỹ)
H(x̃, ỹ)

]
, (3.4)

where

θ1 = b10 + a01b10 − a10b01 = −h̄2λ̄2x1y1 − 2(2 − h̄d − h̄λ̄y1),
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θ2 = a10 + b01 = 4 − h̄d − h̄λ̄y1,

G(x̃, ỹ) = [a20(1 + a01) − a10a11]x̃2 + a11 x̃ỹ = g20 x̃2 + g11 x̃ỹ,

H(x̃, ỹ) = [a20(1 + a01)a10 − a2
10a11 + b20(1 + a01)2 − a10b11(1 + a01)]x̃2 + [a11a10 + b11(1 + a01)]x̃ỹ

= h20 x̃2 + h11 x̃ỹ.

Then we take

x̃ = ξ1 +
∑

2≤ j+k≤3

φ jk(h̄, λ̄)ξ j
1ξ

k
2, ỹ = ξ2 +

∑
2≤ j+k≤3

ψ jk(h̄, λ̄)ξ j
1ξ

k
2,

with

φ20 =
1
2

g20 +
1
4

h20, φ11 =
1
2

g20 +
1
2

g11 +
1
2

h20 +
1
4

h11,

φ02 =
1
4

g11 +
1
8

h20 +
1
4

h11, ψ20 =
1
2

h20,

ψ11 =
1
2

h20 +
1
2

h11, ψ02 =
1
4

h11.

The normal form for 1:2 resonance can be achieved as follows[
ξ1

ξ2

]
→

[
−1 1

θ1(h̄, λ̄) −1 + θ2(h̄, λ̄)

] [
ξ1

ξ2

]
+

[
0

C(h̄, λ̄)ξ3
1 + D(h̄, λ̄)ξ2

1ξ2

]
, (3.5)

where

C(h̄, λ̄) = g20h20 +
1
2

h2
20 +

1
2

h20h11,

D(h̄, λ̄) =
1
2

g20h11 +
5
4

h20h11 +
5
2

g20h20 +
5
2

h20g11 + h2
20 +

1
2

h2
11 + 3g2

20.

Based on the results given in [23–26], We have the following theorem which gives parametric
conditions at 1:2 resonance point.

Theorem 3.1. Assume that C(h̄, λ̄) , 0 and D(h̄, λ̄) + 3C(h̄, λ̄) , 0. Then model (1.4) undergoes a
1:2 strong resonance bifurcation at E1 when parameters vary in a small neighbourhood of F12. If we
further assume C(h̄, λ̄) < 0 (resp., C(h̄, λ̄) > 0), then E1 is a saddle (resp., elliptic). D(h̄, λ̄) + 3C(h̄, λ̄)
determines the bifurcation scenarios near the 1:2 point. Moreover, model (1.4) has the following
bifurcation behaviors:

(I) There is a pitchfork bifurcation curve PF = {(θ1, θ2) : θ1 = 0}, and there exists nontrivial fixed
point for θ1 < 0;

(II) There is a non-degenerate Neimark-Sacker bifurcation curve H = {(θ1, θ2) : θ1 = −θ2+O((|θ1|+

|θ2|)2), θ1 < 0};
(III) There is a heteroclinic bifurcation curve HL = {(θ1, θ2) : θ1 = −

5
3θ2 + O((|θ1| + |θ2|)2), θ1 < 0}.

3.2. 1:3 strong resonance at E1

Based on the analysis given in Section 2, we take parameters (A, d, r, h̃, λ̃) from F13. We can also
transform E1 into the origin and expand the model as the same as system (3.1). The Jacobian matrix at
E1 is shown as
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J(h̃, λ̃) =
[

1 − h̃d − h̃λ̃y1 −h̃λ̃x1

h̃λ̃y1 1

]
.

J has two eigenvalues λ1,2 =
−1±
√

3i
2 . We can easily derive the corresponding eigenvalues q(h̃, λ̃) ∈

C2, and the adjoint eigenvector p(h̃, λ̃) ∈ C2 as follows:

q(h̃, λ̃) =
[

h̃λ̃x1
3−
√

3i
2 − h̃d − h̃λ̃y1

]
, p(h̃, λ̃) =

 3−
√

3i
2h̃λ̃x1

−
√

3i
3

 .
For any vector Z = (u, v)T ∈ R2, which can be represented in the form Z = zq + z̄q̄, we can make

the system (3.1) written in the following complex form:

z→

√
3i − 1
2

z +
∑

2≤ j+k≤3

g jk

j!k!
z jz̄k, (3.6)

where

g20 = 2h̃2λ̃2x1

3 −
√

3i
2

− h̃d − h̃λ̃y1

 3 +
√

3i
2

− h̃d − h̃λ̃y1 − h̃λ̃x1

 ,
g02 = 2h̃2λ̃2x1

3 +
√

3i
2

− h̃d − h̃λ̃y1

 3 +
√

3i
2

− h̃d − h̃λ̃y1 − h̃λ̃x1

 ,
g11 = h̃2λ̃2x1

(
3 − 2h̃d − 2h̃λ̃y1

) 3 +
√

3i
2

− h̃d − h̃λ̃y1 − h̃λ̃x1

 .
In order to eliminate some quadratic terms, we introduce the following transformation

z = w +
1
2

h20w2 + h11ww̄ +
1
2

h02w̄2, (3.7)

where h jk with j + k = 2 will be determined later. Under the transformation (3.7) and its inverse
transformation, model (3.6) can be transformed as

w→ λ1w +
∑

2≤ j+k≤3

σ jk

j!k!
w jw̄k, (3.8)

where

σ20 = λ1h20 + g20 − λ
2
1h20, σ11 = λ1h11 + g11 − |λ1|

2h11,

σ30 = 3(1 − λ1)g20h20 + 3g11h̄02 + 3(λ3
1 − λ

2
1)h2

20 + 3(λ3
1 − |λ1|

2)h11h̄02

− 3λ1ḡ02h11, σ02 = λ1h02 + g02 − λ̄
2
1h02,

σ21 = 2g11h̄11 + g11h20 + 2g20h11 + g02h̄02 + 2λ2
1(λ̄1 − 1)h20h11 − 2λ1g11h20

− λ̄1g20h11 + 2|λ1|
2(λ1 − 1)|h11|

2 − 2λ1h11ḡ11 + |λ1|
2(λ1 − 1)h11h20

− λ̄1ḡ02h02 + λ̄1(λ2
1 − λ̄1)|h02|

2,
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σ12 = 2g11h11 + g11h̄20 + 2g02h̄11 + g20h02 + λ1(λ̄2
1 − λ1)h20h02 − λ1ḡ20h11

− 2λ1g02h20 − 2λ̄1g11h11 + 2|λ1|
2(λ̄1 − 1)h2

11 + |λ1|
2(λ̄1 − 1)h11h̄20

+ 2λ̄2
1(λ1 − 1)h02h̄11 − 2λ̄1ḡ11h02,

σ03 = 3g11h02 + 3g02h̄20 + 3(λ̄3
1 − |λ1|

2)h11h02 − 3λ̄1g02h11 − 3λ̄1ḡ20h02

+ 3λ̄2
1(λ̄1 − 1)h02h̄20, λ1 =

√
3i − 1
2

.

Take

h20 =

√
3i

3
g20, h11 =

3 +
√

3i
6

g11, h02 = 0.

To further annihilate some cubic terms, we take the transformation

w = ξ +
1
6

h30ξ
3 +

1
2

h12ξξ̄
2 +

1
2

h21ξ
2ξ̄ +

1
6

h03ξ̄
3. (3.9)

Using (3.9) and its inverse transformation, we can obtain

ξ →

√
3i − 1
2

ξ +
1
2

g02ξ̄
2 +

∑
2≤ j+k≤3

r jk

j!k!
ξ jξ̄k,

where

r30 =

√
3i − 3
2

h30 + σ30, r21 = σ21,

r12 =
√

3ih12 + σ12, r03 =

√
3i − 3
2

h03 + σ03.

Let

h30 =
3 +
√

3i
6

σ30, h12 =

√
3i

3
σ12, h03 =

3 +
√

3i
6

σ03, h21 = 0.

Thus the normal form for 1:3 resonance is derived.

ξ →

√
3i − 1
2

ξ +C(h̃, λ̃)ξ̄2 + D(h̃, λ̃)ξ|ξ|2 + O(|ξ|4), (3.10)

where

C(h̃, λ̃) =
1
2

g02,

D(h̃, λ̃) =
3 +
√

3i
6

g20g11 +
3 −
√

3i
6
|g11|

2.

Let

C1(h̃, λ̃) = 3λ̄1C(h̃, λ̃) = −
3
2

(
√

3i + 1)C(h̃, λ̃),
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D1(h̃, λ̃) = −3|C(h̃, λ̃)|2 + 3λ2
1D(h̃, λ̃) = −3|C(β̃, δ̃)|2 −

3
2

(
√

3i + 1)D(h̃, λ̃).

Applying the above results and the analyses in the references (see [23–26]), we obtain the following
theorem regarding the system (3.10).

Theorem 3.2. Assume that C1(h̃, λ̃) , 0 and ReD1(h̃, λ̃) , 0. Then system (1.4) undergoes a 1:3
strong resonance bifurcation at E1. ReD1(h̃, λ̃) , 0 determines the stability of the bifurcation invariant
closed curve. Moreover, model (1.4) admits a number of the following complex codimension−one
bifurcation curves:

(I) There is a non-degenerate Neimark-Sacker bifurcation at trivial fixed point P0 of (3.10);
(II) There is a saddle cycle of period three corresponding to saddle Pk(k = 1, 2, 3) of (3.10);
(III) There is a homoclinic structure formed by the stable and unstable invariant manifolds of the

period three cycle intersecting transversally in an exponentially narrow parameter region.

3.3. 1:4 strong resonance at E1

In this Section, we analyze the 1:4 strong resonance with arbitrary parameters (A, d, r, ĥ, λ̂) ∈ F14.
We can also transform E1 into the origin and expand the model as the same as system (3.1). The
Jacobian matrix for (ĥ, λ̂) at E1 is

J(ĥ, λ̂) =
[

1 − ĥd − ĥλ̂y1 −ĥλ̂x1

ĥλ̂y1 1

]
.

From Section 2, we know that J has two eigenvalues λ1,2 = ±i. We can obtain the corresponding
eigenvector q(ĥ, λ̂) ∈ C2 and the adjoint eigenvector p(ĥ, λ̂) ∈ C2 as following.

q(ĥ, λ̂) =
[

ĥλ̂x1

1 − ĥd − ĥλ̂y1 − i

]
, p(ĥ, λ̂) =

[ 1−i
2ĥλ̂x1

− i
2

]
.

For any vector Z = (u, v)T ∈ R2, which can be represented in the form Z = zq+ z̄q̄, we can make the
system (3.1) written in the following complex form:

z→ iz +
∑

2≤ j+k≤3

g jk

j!k!
z jz̄k, (3.11)

where

g20 = 2ĥ2λ̂2x1

(
1 − ĥd − ĥλ̂y1 − i

) (
1 − ĥd − ĥλ̂y1 − ĥλ̂x1 + i

)
,

g02 = 2ĥ2λ̂2x1

(
1 − ĥd − ĥλ̂y1 + i

) (
1 − ĥd − ĥλ̂y1 − ĥλ̂x1 + i

)
,

g11 = 2ĥ2λ̂2x1

(
1 − ĥd − ĥλ̂y1

) (
1 − ĥd − ĥλ̂y1 − ĥλ̂x1 + i

)
.

Similar as in Section 3.2, we can transform (3.11) into the following form by (3.7) and its inverse
transformation

w→ iw +
∑

2≤ j+k≤3

σ jk

j!k!
w jw̄k. (3.12)
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Let

h20 =
i − 1

2
g20, h11 =

i + 1
2

g11, h02 =
i + 1

2
g02.

By (3.9) and its inverse transformation, (3.12) can be changed into

ξ → iξ +
∑

2≤ j+k≤3

r jk

j!k!
ξ jξ̄k,

where

r30 = 2ih30 + σ30, r21 = σ21,

r12 = 2ih12 + σ12, r03 = σ03.

Take

h30 =
i
2
σ30, h12 =

i
2
σ12, h03 = h21 = 0.

Thus we can get the normal form at 1:4 resonance point as

ξ → iξ +C(ĥ, λ̂)ξ|ξ|2 + D(ĥ, λ̂)ξ̄3 + O(|ξ|4), (3.13)

where

C(ĥ, λ̂) =
3i + 1

4
g11g20 +

1 − i
2
|g11|

2 −
i + 1

4
|g02|

2,

D(ĥ, λ̂) =
i − 1

4
g02g11 −

1 + i
4

g11ḡ20.

Let C1(ĥ, λ̂) = −4iC(ĥ, λ̂), D1(ĥ, λ̂) = −4iD(ĥ, λ̂). If D1(ĥ, λ̂) , 0, we denote B(ĥ, λ̂) = C1(ĥ,λ̂)
|D1(ĥ,λ̂)|

.

Applying the above discussions and the results given in [23–26], we can obtain the following results.
Theorem 3.3. Assume that ReB(ĥ, λ̂) , 0 and ImB(ĥ, λ̂) , 0. Then map (1.4) has a 1:4 strong
resonance bifurcation at E1. B(ĥ, λ̂) determines the bifurcation scenarios near E1. Near the equilibrium
E1, there exist two-parameter families of equilibria of order four bifurcation from E1, and one of them
is unstable, or attractive or repelling invariant circles, which depends on the choices of parameters λ
and h. Moreover, there are many complex codimension−one bifurcation curves of map (3.13) in a
sufficiently small neighborhood of (ĥ, λ̂).

(I) There is a Neimark-Sacker bifurcation curve at trivial fixed point P0 of (3.13). Furthermore, if
λ = −i, there is an invariant circle; if λ = i, the invariant circle will disappear;

(II) There are eight non-trivial fixed point S k, Pk(k = 1, 2, 3, 4) if |B(ĥ, λ̂)| > 1. The eight non-
trivial fixed point appear or disappear in pairs via the fold bifurcation at the corresponding parameter
values;

(III) There are Neimark-Sacker bifurcations at Pk(k = 1, 2, 3, 4). Moreover, four small invariant
circles bifurcate from Pk(k = 1, 2, 3, 4), then disappear at homoclinic loop bifurcation curve.
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4. Numerical simulations

In this section, we will give the bifurcation diagrams, largest Lyapunov exponents, phase portraits
and two-parameter space diagrams, in addition to confirming the results of our analysis, more behavior
is extracted from the model (1.4) by using numerical simulations. The bifurcation parameters are
considered in the following three cases, respectively:

Case (i): From R0 > 1 we find 0.23 < λ < 1 if there is 1:2 strong resonance at E1. Let A = 1.2, d =
0.4, r = 0.24. Then h̄ = 8.0594, λ̄ = 0.2647 and J(E1) has eigenvalues ρ1,2 = −1. We get an unique
fixed point E1(2.4178, 0.3639) and obtain C(h̄, λ̄) = −25.7506, D(h̄, λ̄) + 3C(h̄, λ̄) = −0.8093. From
Theorem 3.1, we can obtain that the conditions for the 1:2 strong resonance are satisfied.

Figure 1 gives the phase portraits with different h̄ varying in a neighborhood of h̄ = 8.0594. We
can observe that an invariant curve bifurcates from E1 causing by Neimark-Sacker bifurcation at h̄ =
8.0594, λ̄ = 0.2647.
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Figure 1. Phase portraits for various values of h. (a) h = 8.048, (b) h = 8.0594, (c) h = 8.06, (d)
h = 8.061.

Case (ii): Combining the theoretical analysis and numerical results, we find 0.21 < λ < 0.55 if
there is 1:3 strong resonance at E1. Let A = 1.2, d = 0.4, r = 0.24. Then h̃ = 5.2805, λ̃ = 0.303
and J has two eigenvalues ρ1,2 = e±

2π
3 i. We have an unique fixed point E1(2.1122, 0.5549) and get
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C1(h̃, λ̃) = −130.9 − 47.479i, ReD1(h̃, λ̃) = −139.41. From Theorem 3.2, we obtain that E1 is a 1:3
resonance point.

Figure 2(a) shows bifurcation diagram in (h, x), (h, y) space when h̃ vary in a neighborhood of
h̃ = 5.2805. The corresponding largest Lyapunov exponent is given in Figure 2(b), which is shown
to confirm the periodic motion and chaotic motion. Figure 2 shows that system (1.4) has chaotic
and periodic behaviors near 1:3 resonance point. Figure 2(b) shows that some Lyapunov exponents
are negative, which implies there exists stable fixed point or stable periodic window; the others are
positive, which means that there exists chaotic region.
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Figure 2. (a) Bifurcation diagram of map (1.4). (b) The Largest Lyapunov Exponent.

The phase portraits which are associated with Figure 2 are depicted in Figure 3(a)–(h). We observe
that there exist period 3 orbit, quasiperiodic orbit, attracting 3−point cycle, chaos and three curves
caused by Neimark-Sacker bifurcation near 1:3 resonance point. In reality, the occurrence of invariant
curve also shows the coexistence of susceptibles and infectives. The phase diagrams in Figure 3 also
show how the system enters the chaos.

Case (iii): Combining the theoretical analysis and numerical results, we find 0.013 < λ < 0.037
if there is 1:4 strong resonance at E1. Let A = 4, d = 0.15, r = 0.2. Then ĥ = 9.1864, λ̂ = 0.019.
We get an unique fixed point E1(18.3727, 3.5546), and obtain ReB(ĥ, λ̂) = 0.2251 , 0, ImB(ĥ, λ̂) =
−0.0037 , 0. By Theorem 3.3, it is easy to derive that E1 is a 1:4 resonance point.

Figure 4 shows the bifurcation diagrams in (h, x) space and (h, y) space with varying ĥ in range 9 <
h < 11.5. The phase portraits near E1 for different ĥ are shown in Figure 5(a)–(f). From which, we can
observe invariant circle, Neimark-Sacker bifurcation curve, quasi-period orbits and attracting chaotic
set near 1:4 resonance point. This is entirely consistent with the results we obtained analytically.
Numerical results illustrate that the theoretical analyses are effective.
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Figure 3. Phase portraits for various values of h corresponding to Figure 2. (a) h = 5.2805, (b)
h = 5.363, (c) h = 5.422, (d) h = 5.442, (e) h = 5.48, (f) h = 5.528, (g) h = 5.56, (h) h = 5.68.
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(a) (b)

Figure 4. (a) Bifurcation diagram of map (1.4) in (h, x) space; (b) Bifurcation diagram of map (1.4) in
(h, y) space.

As we show, all our analytical predictions have excellent argument with the numerical results. And
the above numerical simulations revel the dynamical behaviors of model (1.4) from the one-parameter
bifurcation point of view. While chaos does not appear simply via a period doubling sequence. The
bifurcation sequence is much more complex. It is very difficult to study this sequence from the
one-parameter bifurcation point of view. Hence we imbed this one-parameter sequence into the
(h, λ)-parameter space. Figure 6 shows a group of typical scenario of the parameter plane (h, λ) for
model (1.4), while holding all other parameters constant: A = 1.2, d = 0.4, r = 0.24. It is an
isoperiodic diagram obtained by discretizing the parameter interval in a grid of 1000 × 1000 points
equally spaced, which is generated numerically by using a method based on that described in [27–30].
For each point (h, λ), an orbit of initial condition (x0, y0) = (1.4222, 0.9861) converges to a chaotic, or
to a quasiperiodic, or to a periodic attractor, or to an attractor at infinity (an unbounded attractor). If
the trajectory initialized in (x0, y0) converges to infinity, that is diverges, which is described by dark
green in Figure 6(a). As is well known, quasiperiodic solutions arise after a Neimark-Sacker
bifurcation, which is not easy to obtain by isoperiodic diagram. Thus, the quasiperiodic regions are
identified by Lyapunov phase diagram of Figure 6(b). Figure 6(b) represents Lyapunov phase,
colorbar is associated with the magnitude of the largest Lyapunov exponent. In fact, Figure 6(a)
and (b) are two complementary ways phase diagrams.

As shown in Figure 6, the periodic windows and the intermittent chaotic responses generate
alternately. These phase diagrams unfold the detailed dynamics characteristics of the model (1.4). In
this figure, it is obviously observable that periodic response alternates with chaotic response to
produce some fractal structures. Compared to the codimension one bifurcation diagram, Figure 6
contains more information.

There are many parameters having a deterministic effect on the transitions of attractors in epidemic
model. A natural question now is to ask, what relations of these parameters are? To this end, we
extend a number of phase diagrams of other parameter combinations shown in Figures 7 and 8, where
the color representations are as the same as Figure 6. There also exist chaotic regions embedded in
period areas. We can also explore the alternation of the periodic and chaotic motion with the parameter
changing.
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Figure 5. Phase portraits for various values of h corresponding to Figure 4. (a) h = 9.1864, (b)
h = 10.1, (c) h = 11.1, (d) h = 11.2, (e) h = 11.25, (f) h = 11.5.
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(a) (b)

Figure 6. (a) Global view of the (h, λ) parameter-space for system (1.4), numbers indicate periods.
(b) Lyapunov phase diagram of parameter-space (h, λ), numbers show the magnitude of the largest
Lyapunov exponent.

(a) (b)

Figure 7. (a) Phase diagram with (h, d) for A = 1.2, r = 0.24, λ = 0.45, (b) The largest Lyapunov
exponent diagram.

(a) (b)

Figure 8. (a) Phase diagram with (h, r) for A = 1.2, d = 0.4, λ = 0.45, (b) The largest Lyapunov
exponent diagram.
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5. Conclusions

This paper investigates codimension-two bifurcations associated with 1:2, 1:3 and 1:4 strong
resonances of a discrete-time SIR epidemic model. Our work can be seen as an extension of [20].
Although it is a simple discrete epidemic model, we find that there are many complex and abundant
dynamical behaviors. The main results are included in Theorems 3.1–3.3. There are actually three
types of codimension-two bifurcations including 1:2, 1:3 and 1:4 strong resonances. We realize that
parameters λ and h have tremendous effect on the models equilibrium points. The numerical
simulations represented in Section 4 show that the discrete epidemic model has plentiful kinetic
characteristics. Good correlation between the numerical and theoretical results is found. Furthermore,
the dynamic characteristics of the model in two-dimensional parameter space are analyzed, and the
results show that we can more clearly and directly observe the chaotic phenomena, periodic
phenomena. The results obtained in this paper are interesting and useful and may be applied to a
variety of the life systems.
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