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1. Introduction

We investigate the existence of periodic mild solutions for semilinear non-instantaneous impulsive
evolution equation in an ordered Banach space E

u′(t) + Au(t) = f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,

u(t) = hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,
(1.1)

where 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · · < tm−1 ≤ sm−1 < tm ≤ sm < tm+1 ≤ sm+1 < · · · , satisfying sm <

ω < tm+1 and lim
i→∞

si = ∞, lim
i→∞

ti = ∞ are pre-fixed numbers, and tnm+i = nω+ ti, snm+i = nω+ si, n ∈ N+,
ω > 0 is a constant, let J = [0, ω]; continuous function f : [0,+∞) × E → E is ω-periodic about
t. Functions hi ∈ C([ti, si] × E, E) and hnm+i(t + ω, ·) = hi(t + ω, ·) = hi(t, ·) for all i = 1, 2, · · · ,m;
A : D(A) ⊂ E → E is a closed linear operator and C0-semigroup T (t)(t ≥ 0) is generated by −A in E.
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We can find that the periodic problem (1.1) is equal to the following periodic value problem
u′(t) + Au(t) = f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,

u(0) = u(ω).

(1.2)

The theory of impulsive differential equations have paid more attention in numerous fields, such
as physical, biological, economical, engineering background and so on, see [1, 4, 10, 12, 34, 35] and
references therein. The instantaneous case has been deeply studied, see [3, 13, 16, 19, 27, 31], where
more properties of the solutions of impulsive equations are considered.

The monotone iterative method are important mechanism. Abbas and Benchohra [2] investigated
the existence of solutions for IVP of impulsive partial hyperbolic differential equations by employing
the method of lower and upper solutions and the Schauder fixed point theorem. Li and Liu [26], Guo
and Liu [17] studied impulsive integro-differential equations applying the monotone iterative method.
In the papers [6,7], authors considered the nonlocal evolution equations with impulses by exploiting the
monotone iterative method. For more monotone iterative method, we refer to the monographs [20–25]
and references there in.

Recently, E. Hernandez and D. O’Regan [18] firstly studied new non-instantaneous impulsive
evolution equations 

u′(t) = Au(t) + f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = hi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

u(0) = u0,

which have been used to describe gradual and continuous process such as the hemodynamic
equilibrium of a person, the introduction of the drugs in the bloodstream , the consequent absorption for
the body and so on. Authors investigated non-instantaneous impulsive fractional differential equations
in [14,29,32]. In [8], Colao and Muglia considered bounded solutions of non-instantaneous impulsive
differential equations with delay. Researchers in [30,33] studied PBVP of nonlinear non-instantaneous
impulsive volution equations.

However, the literature concerning the existence of periodic mild solutions to this problem is
untreated by using the perturbation method and the monotone iterative technique. Inspired by the
above literatures, this paper is to construct a new maximum principle for the ω-periodic solutions of
the corresponding linear equation with non instantaneous impulses. By using perturbation method and
monotone iterative technique, we consider the existence of the minimal and maximal periodic solutions
for Eq (1.1).

The organization of this paper as follows: some definitions and preliminary facts are recalled in
next section, which will be used through this paper. First, we investigate the existence of periodic
mild solution for linear non-instantaneous impulsive equation, which is significant for us to prove the
key conclusion. Furthermore, for linear impulsive evolution equation corresponding to Eq (1.1), we
established a new maximum principle. In Section 3, our major results on the periodic mild solutions of
Eq (1.1) are proposed and proved. In Section 4, we presented an example to demonstrate our abstract
results.
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2. Preliminaries

Let E be a Banach space, C0-semigroup T (t) (t ≥ 0) is generated by −A in E, where A : D(A) ⊂
E → E be a closed linear operator. Denote finite number

N ≡ sup
t∈J
‖T (t)‖.

We can see more relevant the properties of the C0-semigroup from the monographs [5, 28].
Let PC(J, E) =

{
u : J → E | u(t) is continuous in J′, and left continuous at ti, and u(t+

i ) exists,
i = 1, 2, · · · ,m

}
. KPC = {u ∈ PC(J, E)|u(t) ≥ θ, t ∈ J} is the positive cone and “ ≤ ” is the partial order

induced by KPC, then PC(J, E) is an order Banach space with the norm ‖·‖PC = sup
t∈J
‖u(t)‖ and the partial

order “ ≤ ”. KPC is normal with the same normal constant N. [v,w] = {u ∈ PC(J, E) | v ≤ u ≤ w}
is the order interval in PC(J, E). In E, denote [v(t),w(t)] = {u(t) ∈ E | v(t) ≤ u(t) ≤ w(t), t ∈ J}. Let
J′ = J \ {t1, t2, · · · , tm}, J′′ = J \ {0, t1, t2, · · · , tm}. We use E1 to denote the Banach space D(A) with the
graph norm ‖ · ‖1 = ‖ · ‖ + ‖A · ‖. We can find more relevant the properties of the partial and cone from
the monographs [9, 15].

For the linear problem in E
u′(t) + Au(t) = g(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m,

u(0) = x0,

(2.1)

we have got the following conclusion.
Lemma 2.1. Let T (t) (t ≥ 0) generated by −A be C0-semigroup in Banach space E. For any g ∈
PC(J, E), yi ∈ PC(J, E), i = 1, 2, · · · ,m, problem (2.1) has a unique mild solution u ∈ PC(J, E) given
by

u(t) =


T (t)x0 +

∫ t

0
T (t − τ)g(τ)dτ, t ∈ [0, t1];

yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m;

T (t − si)yi(si) +
∫ t

si
T (t − τ)g(τ)dτ, t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(2.2)

Proof. Let t ∈ [0, t1] = I, problem (2.1) is equivalent to the initial value problem of linear evolution
equation without impulse  u′(t) + Au(t) = g(t), t ∈ [0, t1],

u(0) = x0.
(2.3)

IVP (2.3) has a unique classical solution u ∈ C1(I, E) ∩C(I, E1) expressed by

u(t) = T (t)x0 +

∫ t

0
T (t − τ)g(τ)dτ.

Let t ∈ (ti, si], then u(t) = yi(t), i = 1, 2, · · · ,m.
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Let t ∈ (si, ti+1], problem (2.1) is changed into IVP of linear evolution equation u′(t) + Au(t) = g(t), t ∈ (si, ti+1], , i = 1, 2, · · · ,m,

u(si) = yi(si).
(2.4)

Then (2.4) has a unique mild solution u ∈ C([si, ti+1], E) given by

u(t) = T (t − si)yi(si) +

∫ t

si

T (t − τ)g(τ)dτ.

Furthermore, after calculated, the function u ∈ PC(J, E) defined by (2.2) is a mild solution of
problem (2.1). Hence problem (2.1) has a unique mild solution u ∈ PC(J, E) given by (2.2). This
completes the proof.�

Definition 2.1.( [11]) A function u ∈ PC([0, ω], E) is said to be a ω-periodic PC-mild solution of the
equation 

u′(t) + Au(t) = g(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · .
(2.5)

if it is a PC-mild solution of Cauchy problem (2.1) corresponding to some x0 and u(t + ω) = u(t) for
t ≥ 0.

By Definition 2.1, if a function u ∈ PC(J, E) defined by (2.2) is a solution of IVP (2.1), then

u(0) = x0 = u(ω), (2.6)

namely

x0 = T (ω − sm)ym(sm) +

∫ ω

sm

T (ω − τ)g(τ)dτ.

The solution of periodic boundary value problem
u′(t) + Au(t) = g(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m,

u(0) = u(ω).

(2.7)

can expressed by

u(t) =


T (t)[T (ω − sm)ym(sm) +

∫ ω

sm
T (ω − τ)g(τ)dτ] +

∫ t

0
T (t − τ)g(τ)dτ, t ∈ [0, t1];

yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m;

T (t − si)yi(si) +
∫ t

si
T (t − τ)g(τ)dτ, t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(2.8)

Next, we show that the solution of the Eq (2.5) is a ω-periodic.
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Lemma 2.2. Let T (t) (t ≥ 0) generated by −A be C0-semigroup in Banach space E. Suppose that the
following conditions are satisfied:
(G1) g ∈ C(J, E) is ω-periodic in t, g(t + ω) = g(t), t ≥ 0.
(Y1) yi ∈ C(J, E) is ω-periodic in t, i.e. yi+nm(t + ω) = yi(t + ω) = yi(t), n ∈ N+, t ≥ 0, i = 1, 2, · · · .
Then Eq (2.5) has ω-periodic mild solution.
Proof. In J, the periodic problem (2.5) is equal to PBVP (2.7). We only prove the solution u(t)
expressed by (2.8) of PBVP(2.7) is periodic.

Case 1. For t ∈ [0, t1], i.e. t + ω ∈ [ω, t1 + ω] = [ω, tm+1].
By the condition (G1) and (2.6), we have

u(t + ω) = T (t)u(ω) +

∫ t+ω

ω

T (t + ω − τ)g(τ)dτ

= T (t)u(ω) +

∫ t

0
T (t − τ)g(τ + ω)dτ

= u(t).

Case 2. For t ∈ (ti, si], this implies t + ω ∈ (ti + ω, si + ω] = (tm+i, sm+i], i = 1, 2, · · · ,m.
By the assumption (Y1), we have

u(t + ω) = ym+i(t + ω) = yi(t) = u(t).

Case 3. For t ∈ (si, ti+1], this implies t + ω ∈ (si + ω, ti+1 + ω] = (sm+i, tm+i+1], i = 1, 2, · · · ,m.
By the conditions (G1) and (Y1), we have

u(t + ω) = T (t + ω − sm+i)ym+i(sm+i) +

∫ t+ω

sm+i

T (t + ω − τ)g(τ)dτ

= T (t − si)yi(si + ω) +

∫ t+ω

si+ω

T (t + ω − τ)g(τ)dτ

= u(t).

Therefore, we can asset the solution u(t) of PBVP(2.7) is periodic. u(t) extended by ω-periodic is
the periodic mild solution of Eq (2.5).

The proof is completed.�
Remark 2.1. In Lemma 2.2, let T (t) (t ≥ 0) generated by −A be a positive C0-semigroup in an ordered
Banach space E. For any g ≥ θ, and yi ≥ θ, i = 1, 2, · · · ,m, then the mild solution of Eq (2.5) is a
positive solution.

Remark 2.1 implies the following maximum principle:

Lemma 2.3. Let T (t) (t ≥ 0) generated by −A be a positive C0-semigroup in an ordered Banach space
E. If 

u′(t) + Au(t) ≥ θ, t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) ≥ θ, t ∈ (ti, si], i = 1, 2, · · · ,m,
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then u(t) ≥ θ for t ≥ 0.

3. Main results

In this section, we present and prove our major results. We state the definition of the lower and
upper ω-periodic solutions of PBVP(1.2).

Definition 3.1. If functions v0 ∈ PC(J, E) ∩C1(J′′, E) ∩C(J′, E1) satisfy
v′0(t) + Av0(t) ≤ f (t, v0(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

v0(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

v0(0) ≤ v0(ω),

(3.1)

then v0 is known as a lower ω-periodic solution of problem (1.2); on the contrary , if all the inequalities
of (3.1) are inverse, it is called an upper solution of problem (1.2).

Theorem 3.1. Let T (t) (t ≥ 0) generated by −A be a positive and compact C0-semigroup in an ordered
Banach space E, which positive cone K is normal with the normal constant N0. Assume that v0 and w0

with v0(t) ≤ w0(t)(t ∈ J) are lower and upper solutions of problem(1.2) and the following conditions
are satisfied:

(F1) f ∈ C(J × E, E) is ω-periodic about t, f (t + ω, u) = f (t, u), t ≥ 0, and ∀u ∈ E.

(F2) There exists a constant M ≥ 0 such that

f (t, u) − f (t, v) ≥ −M(u − v), t ∈ J,

for any t ∈ J, and v0(t) ≤ v ≤ u ≤ w0(t).

(H1) hi ∈ C(J, E) is ω-periodic in t, i.e. hi+nm(t + ω, u) = hi(t + ω, u) = hi(t, u), n ∈ N+, t ≥ 0, ∀u ∈ E,
i = 1, 2, · · · .

(H2) For ∀t ∈ J, v0(t) ≤ v ≤ u ≤ w0(t),

hi(t, u) ≥ hi(t, v), i = 1, 2, · · · ,m.

(H3) hi ∈ C(J × E, E)(i = 1, 2, · · · ,m) are compact operators.

Then PBVP (1.2) exist minimal and maximal ω-periodic mild solutions u and u between v0 and w0,
which can be obtained by iteration from v0 and w0.

Proof. It is well know that S (t) = e−CtT (t) generated by −(A + CI) is a positive compact semigroup.
Let N = sup

t∈J
‖S (t)‖. Denote D = [v0,w0]. For ∀g ∈ D, we consider the following PBVP in E


u′(t) + Au(t) + Mu(t) = f (t, g(t)) + Mg(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = hi(t, g(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,

u(0) = u(ω).

(3.2)
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From Lemma 2.2 and (2.8), PBVP (3.2) has periodic mild solution u ∈ PC(J, E) given by

u(t) =



S (t)B1(g) +
∫ t

0
S (t − τ)( f (t, g(τ)) + Mg(τ))dτ, t ∈ [0, t1];

hi(t, g(t)), t ∈ (ti, si], i = 1, 2, · · · ,m;

S (t − si)hi(si, g(si)) +
∫ t

si
S (t − τ)( f (t, g(τ)) + Mg(τ))dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

, Q(g) (3.3)

where
B1(g) = S (ω − sm)hm(sm, g(sm)) +

∫ ω

sm

S (ω − τ)( f (t, g(τ)) + Mg(τ))dτ.

Since f and hi are continuous, so Q : D → PC(J, E) is continuous. From Lemma 2.2, the ω-periodic
mild solutions of PBVP(1.2) are equivalent to the fixed points of operator Q. Now, we complete the
proof by four steps.

Step 1. We show that Q : D → PC(J, E) is an increasing operator. For ∀g1, g2 ∈ D and g1 ≤ g2,
from the conditions (F2) and (H2), we have

f (t, g1(t)) + Mg1(t) ≤ f (t, g2(t)) + Mg2(t), t ∈ J. (3.4)

and
hi(t, g1(t)) ≤ hi(t, g2(t)), i = 1, 2, · · · ,m. (3.5)

From C0-semigroup S (t) is positive, by (3.4) and (3.5), we have B1(g1) ≤ B1(g2).
Case 1. For ∀g1, g2 ∈ D , g1 ≤ g2 and for t ∈ [0, t1], we have

S (t)B1(g1) +
∫ t

0
S (t − τ)( f (τ, g1(τ)) + Mg1(τ))dτ

≤ S (t)B1(g2) +
∫ t

0
S (t − τ)( f (τ, g2(τ)) + Mg2(τ))dτ.

Case 2. For ∀g1, g2 ∈ D , g1 ≤ g2 and for t ∈ (ti, si], i = 1, 2, · · · ,m, we have

hi(t, g1(t)) ≤ hi(t, g2(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

Case 3. For ∀g1, g2 ∈ D , g1 ≤ g2 and for t ∈ (si, ti+1], i = 1, 2, · · · ,m, we have

S (t − si)hi(si, g1(si)) +
∫ t

si
S (t − τ)( f (τ, g1(τ)) + Mg1(τ))dτ

≤ S (t − si)hi(si, g2(si)) +
∫ t

si
S (t − τ)( f (τ, g2(τ)) + Mg2(τ))dτ.

Therefore, Q : D→ PC(J, E) is an increasing operator.
Step 2. We show v0 ≤ Q(v0), Q(w0) ≤ w0.
Let 

v′0(t) + Av0(t) + Mv0(t) = g̃(t) t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

v0(t) = h̃i(t), t ∈ (ti, si], i = 1, 2, · · · ,m.

v0(0) = v0(ω),

(3.6)
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by the definition of v0, we have
g̃(t) ≤ f (t, v0(t)) + Mv0(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

h̃i(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.
(3.7)

By Lemma 2.2, (3.6) and (3.7), we have

v0(t) =


S (t)B2(̃g) +

∫ t

0
S (t − τ)̃g(τ)dτ, t ∈ [0, t1];

h̃i(t), t ∈ (ti, si], i = 1, 2, · · · ,m;

S (t − si)̃hi(si) +
∫ t

si
S (t − τ)̃g(τ)dτ, t ∈ (si, ti+1], i = 1, 2, · · · ,m.

where

B2(̃g) = S (ω − sm)̃hm(sm) +

∫ ω

sm

S (ω − τ)̃g(τ)dτ.

By (3.7), we obtain

B2(̃g) ≤ S (ω − sm)hm(sm, v0(sm)) +

∫ ω

sm

S (ω − τ)( f (τ, v0(τ)) + Mv0(τ))dτ = B1(v0).

Particularly, v0(0) = B2(̃g). We divide our proof into three cases.
Case 1. For t ∈ [0, t1], we have

S (t)B2(̃g) +

∫ t

0
S (t − τ)̃g(τ)dτ

≤ S (t)B1(v0) +

∫ t

0
S (t − τ)( f (τ, v0(τ)) + Mv0(τ))dτ, t ∈ [0, t1].

Case 2. For t ∈ (ti, si], i = 1, 2, · · · ,m, by (3.7), we have

h̃i(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

Case 3. For t ∈ (si, ti+1], i = 1, 2, · · · ,m, combing case 2 with (3.7), we have

S (t − si)̃hi(si) +

∫ t

si

S (t − τ)̃g(τ)dτ

≤ S (t − si)hi(si, v0(si)) +

∫ t

si

S (t − τ)( f (τ, v0(τ)) + Mv0(τ))dτ.

Hence, v0(t) ≤ Q(v0)(t). Analogously, we also prove that Q(w0)(t) ≤ w0(t). Therefore, Q :
[v0,w0]→ [v0,w0] is a continuous and increase operator.

Step 3. The operator Q exist fixed points on interval [v0,w0].
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Denote two sequences
{
vn

}
and

{
wn

}
by

vn = Q(vn−1), wn = Q(wn−1), n = 1, 2, · · · (3.8)

Since the operator Q is monotonous, we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.9)

Next, we prove that
{
vn

}
and

{
wn

}
are convergent in J. Let G =

{
vn | n ∈ N

}
, G0 =

{
vn−1 | n ∈ N

}
, then

G0 =
{
v0

}
∪G and G = Q(G0). For any vn−1 ∈ G0, let

(Q1vn−1)(t) = S (t)B1(vn−1) +

∫ t

0
S (t − τ)( f (τ, vn−1(τ)) + Mvn−1(τ))dτ, t ∈ [0, t1];

(Q2vn−1)(t) = hi(t, vn−1(t)), t ∈ (ti, si], i = 1, 2, · · · ,m;

(Q3vn−1)(t) = S (t − si)hi(si, vn−1(si)) +

∫ t

si

S (t − τ)( f (τ, vn−1(τ)) + Mvn−1(τ))dτ,

t ∈ (si, ti+1], i = 1, 2, · · · ,m.

By the assumption (F2), it follows that

f (t, v0(t)) + Mv0(t) ≤ f (t, vn−1(t)) + Mvn−1(t) ≤ f (t,w0(t)) + Mw0(t).

Since image sets of f (t, v0(t)) and f (t,w0(t)) are compact sets in E by the continuity of f (t, v0(t)) and
f (t,w0(t)) in compact set [0, ω], furthermore image sets are bounded. Additionally, since the cone K is
normal in E, we have ∃C1 > 0, ∀vn−1 ∈ G0,

‖ f (t, vn−1(t)) + Mvn−1(t)‖

≤ ‖ f (t, v0(t)) + Mv0(t)‖ + N0‖ f (t,w0(t)) + Mw0(t) − f (t, v0(t)) − Mv0(t)‖

≤ C1.

From the condition (H2), we get that

hi(t, v0(t)) ≤ hi(t, vn−1(t)) ≤ hi(t,w0(t)), i = 1, 2, · · · ,m.

Since the cone K is normal in E, for i = 1, 2, · · · ,m, we have ∃C2 > 0, ∀vn−1 ∈ G0,

‖hi(t, vn−1(t))‖

≤ ‖hi(t, v0(t))‖ + N0‖hi(t,w0(t)) − hi(t, v0(t))‖

≤ C2.

We divide our proof into three cases.

Case 1. In [0, t1], for ∀ε > 0 and t, t − ε ∈ [0, t1], let

(Qε
1vn−1)(t) := S (t)B1(vn−1) +

∫ t−ε

0
S (t − τ)( f (τ, vn−1(τ)) + Mvn−1(τ))dτ,
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then

‖(Q1vn−1)(t)) − (Qε
1vn−1)(t)‖

= ‖

∫ t

0
S (t − τ)( f (τ, vn−1(τ)) + Mvn−1(τ))dτ

−

∫ t−ε

0
S (t − s)τ)( f (τ, vn−1(τ)) + Mvn−1(τ))dτ‖

≤

∫ t

t−ε
‖S (t − τ)‖‖ f (τ, vn−1(τ)) + Mvn−1(τ)‖dτ

≤ NC1ε.

Therefore, applying the definition of the total boundedness, {(Q1vn−1)(t) | vn−1 ∈ G0} is precompact in
E.

Case 2. In t ∈ (ti, si], i = 1, 2, · · · ,m, from the condition (H3), the set {(Q2vn−1)(t) | vn−1 ∈ G0} is
precompact in E.

Case 3. In interval t ∈ (si, ti+1], i = 1, 2, · · · ,m, similar to the case 1, {(Q3vn−1)(t) | vn−1 ∈ G0} is
precompact in E.

Hence,
{
vn(t)

}
=

{
Q(vn−1)(t) | vn−1 ∈ G0

}
is precompact in E for t ∈ J, combining the normality of K

with the monotonicity of
{
vn

}
, we easily prove that

{
vn(t)

}
is convergent. Let

{
vn(t)

}
→ u(t) in t ∈ J.

Similarly, we prove that
{
wn(t)

}
→ u(t) in t ∈ J.

Evidently
{
vn(t)

}
,
{
wn(t)

}
∈ PC(J, E), so u(t) and u(t) is bounded integrable in J. Since for any

t ∈ J, vn(t) = Q(vn−1)(t), wn(t) = Q(wn−1)(t), letting n → ∞, by the Lebesgue dominated convergence
theorem, we have u(t) = Q(u)(t), u(t) = Q(u)(t) and u(t), u(t) ∈ PC(J, E). Combining this with
monotonicity (3.9), we have v0(t) ≤ u(t) ≤ u(t) ≤ w0(t).

Step 4. we prove that u(t) and u(t) are the minimal and maximal fixed points of Q in [v0,w0],
respectively. In fact, for any u∗ ∈ [v0,w0],Q(u∗) = u∗, we have v0 ≤ u∗ ≤ w0 and v1 = Q(v0) ≤
Q(u∗) = u∗ ≤ Q(w0) = w1. Continuing such progress, we get vn ≤ u∗ ≤ wn. Letting n → ∞, we get
u(t) ≤ u∗ ≤ u(t). Therefor, u(t) and u(t) between v0 and w0 are the minimal and maximal ω-periodic
mild solutions of PBVP (1.2), which can be obtained by iteration from v0 and w0, respectively. �

Replacing the condition (H3), we can get the following result.

Theorem 3.2. Let T (t) (t ≥ 0) generated by −A be a positive and compact C0-semigroup in an
ordered Banach space E, which positive cone K is normal with the normal constant N0. Assume
that problem(1.2) has lower and upper solutions v0 and w0 with v0(t) ≤ w0(t)(t ∈ J). Suppose that
conditions (F1), (F2), (H1), (H2) and the following condition are satisfied:
(H3′) For any increasing or decreasing monotonic sequence {xn} ⊂ [v0,w0], {hi(·, xn)}(i = 1, 2, · · · ,m)
are precompact in E.
Then PBVP (1.2) exist minimal and maximal ω-periodic mild solutions u and u between v0 and w0,
which can be obtained by iteration from v0 and w0.

Now, when we cancel the assumption of existence of the lower and upper solutions of problem (1.2),
we consider the existence of solutions for problem (1.2). For this purpose, we need the following
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conditions:
(H4) ∃b ≥ 0, g ∈ PC(J, E), g ≥ θ, yi(si) ∈ D(A), yi ≥ θ, i = 1, 2, · · · ,m, such that

f (t, x) ≤ bx + g(t), hi(t, x) ≤ yi(t), x ≥ 0;

bx − g(t) ≤ f (t, x), −yi(t) ≤ gi(t, x), x ≤ 0.

Theorem 3.3. Let T (t) (t ≥ 0) generated by −A be a positive and compact C0-semigroup in an
ordered Banach space E, which positive cone K is normal with the normal constant N0. Suppose that
the conditions (F1), (F2), (H1), (H2), (H3) and (H4) satisfied. Then PBVP (1.2) exist minimal and
maximal ω-periodic mild solutions, which can be obtained by monotone iterative procedure.

Proof. For g(t) ≥ θ, yi(t) ≥ θ, we discuss the linear non-instantaneous impulsive evolution equation in
E 

u′(t) + Au(t) − bu(t) = g(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

u(t) = yi(t), t ∈ (ti, si], i = 1, 2, · · · ,m.

u(0) = u(ω),

(3.10)

It is well know that S (t) = ebtT (t)(t ≥ 0) generated by −(A − bI) is a positive compact C0-semigroup
in E. By Lemma2.2 and assumption (H4), the problem (3.10) exist positive solution u∗ ≥ θ. Let
v0 = −u∗,w0 = u∗, from the assumptions (H1)–(H3) and (H4), we obtain

v′0(t) + Av0(t) = bv0(t) − g(t) ≤ f (t, v0(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

v0(t) = −yi(t) ≤ hi(t, v0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

v0(0) ≤ v0(ω),

and 
w′0(t) + Aw0(t) = bw0(t) + g(t) ≥ f (t,w0(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,

w0(t) = yi(t) ≥ hi(t,w0(t)), t ∈ (ti, si], i = 1, 2, · · · ,m.

w0(0) ≥ w0(ω),

So, it is indicated that the problem (1.2) has a lower solution v0 and an upper solution w0. Hence,
conclusion follow from Theorem 3.1. Then the proof is complete.�

When the positive cone is regular, we obtain the following conclusion of existence of PBVP (1.2).

Corollary 3.4. Let T (t) (t ≥ 0) generated by −A be a positive C0-semigroup in an ordered Banach
space E, which positive cone K is regular. Assume that v0 and w0 with v0(t) ≤ w0(t)(t ∈ J) are lower
and upper solutions of problem (1.2) and the conditions (F1), (F2), (H1), (H2) and (H3) are satisfied.
Then PBVP (1.2) exist minimal and maximal ω-periodic mild solutions u and u between v0 and w0,
which can be obtained by iteration from v0 and w0.

Proof. We show that Q : [v0,w0] → [v0,w0] is a continuous and increase operator by Theorem 3.1.
Similarly, in [v0,w0], we define the two sequences

{
vn(t)

}
and

{
wn(t)

}
by (3.8). Since conditions
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(F2), (H2) and (H3) are satisfied, so sequences
{
vn(t)

}
and

{
wn(t)

}
are ordered-monotonic and ordered-

bounded in E.
Any ordered-monotonic and ordered-bounded sequence in E is convergent while the cone K is

regular. Using the similar method of Theorem 3.1, we can prove that u(t) and u(t) are the minimal and
maximal ω-periodic mild solutions of the problem (1.2) between v0 and w0, which can be obtained by
iteration from v0 and w0, respectively. �

Corollary 3.5 Let T (t) (t ≥ 0) generated by −A be a positive C0-semigroup in an ordered and weakly
sequentially complete Banach space E, which positive cone K is normal with the normal constant N0.
Assume that v0 and w0 with v0(t) ≤ w0(t)(t ∈ J) are lower and upper solutions of problem (1.2) and the
conditions (F1), (F2), (H1), (H2) and (H3) are satisfied.
Then PBVP (1.2) exist minimal and maximal ω-periodic mild solutions u and u between v0 and w0,
which can be obtained by iteration from v0 and w0.

Proof. We know that the normal cone K is regular in an ordered and weakly sequentially complete
Banach space. �

4. Application

We make an example in this section to illustrate the main theorem.

Example 4.1 Let integer n ≥ 1,Ω ⊂ Rn is a bounded domain with a sufficiently smooth boundary
∂Ω. We consider the following parabolic partial differential equation with non-instantaneous impulses:

∂
∂t w(x, t) − O2w(x, t) = 1

3 sin(w(x, t)), x ∈ Ω, t ∈ [0, π2 ]
⋃

(π, 2π],

w(x, t) =
|w(x,t)|

(1+|w(x,t)|)et , x ∈ Ω, t ∈ (π2 , π],

w |∂Ω= 0,

w(x, 0) = w(x, 2π), x ∈ Ω,

(4.1)

where O2 is the Laplace operator, J = [0, 2π], s0 = 0, t1 = π
2 , s1 = π, t2 = 2π = ω.

Let E = L2(Ω), K = {u ∈ L2(Ω) | u(x) ≥ 0 a.e. x ∈ Ω}, and we define the operator A as follows:

D(A) = H2(Ω) ∩ H1
0(Ω), Au = −O2u.

Then we know that E is a Banach space, K is a regular cone of E, and −A generates a positive and
compact analytic C0-semigroup T (t)(t ≥ 0) in E (see [6, 7, 28]).

Denote u(t) = w(·, t), f (t, u(t)) = 1
3 sin(w(x, t)), hi(t, u(t)) =

|w(x,t)|
(1+|w(x,t)|)et , then the impulsive parabolic

partial differential equation (4.1) can be abstracted into the form of PBVP (1.2).
Theorem 4.2 Let the first eigenvalue of operator −O2u be λ1 under zero boundary conditions

and ϕ1(x) be the corresponding positive eigenvector. Then the impulsive parabolic partial differential
equation (4.1) has minimal and maximal mild solutions.

Proof. It is easy to prove that v0 ≡ 0 and w0 ≡ ϕ1 are lower and upper solutions of the Eq (4.1)
respectively. We can easily verify that conditions (F1), (F2) are satisfied with 1

3 < M < 1 and the
conditions (H1), (H2) and (H3) are satisfied too. Therefore, by Theorem 3.1, we have that PBVP (4.1)
has minimal and maximal mild solutions. Then the proof is complete.�
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5. Conclusions

In this paper, when the nonlinear of the non instantaneous impulsive evolution equation is quasi-
monotonicity, we have considered the existence of the minimal and maximal ω-periodic mild solutions
by combining perturbation method and monotone iterative technique. The main result (Theorem 3.1)
is new.
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