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1. Introduction

Boundary value problems(BVPs) of differential equations originate from many scientific fields
such as applied mathematics, physics, chemistry, biology, medical science, economics, engineering
science, etc. [1–4]. BVPs have always been the frontier of scientific research due to its important
applications and scientific implications. It is difficult to obtain analytic solutions of these equations,
which promotes the research of approximate methods to get numerical solutions. For instance, the
authors in [5] develop a numerical method for second-order three-point BVPs by using the idea of
piecewise approximation. A computational approach for multi-point BVPs is discussed based on
the least squares approximation method and the Lagrange-multiplier method in [6]. The authors
in [7] investigate the collocation method with linear/linear rational splines for the numerical solution
of two-point boundary value problems. Numerical approaches based on B-spline method [8–11]
and reproducing kernel techniques [12–14] are proposed respectively for solving singular linear and
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nonlinear equations. In [15] and [16], the authors applied Legendre polynomials to handle numerical
solutions. Recently, multiscale algorithms with different multiscale orthogonal basis are introduced
in [17, 18].

Numerical methods for solving linear equations have been studied extensively. This paper is
concerned with the the following BVPs:{

y(n)(x) + a1(x)y(n−1)(x) + · · · + an(x)y(x) = g(x), x ∈ (0, 1),
Biy = αi, i = 1, · · · , n.

(1.1)

where ai(x), i = 1, · · · , n, g(x) are sufficiently smooth functions and Biy = αi, i = 1, · · · , n are linear
boundary conditions. In this work, we will give a new approach to Eq (1.1) based on compressed
Legendre polynomials. The method can reduce computational cost and provide highly accurate
approximate solutions. What’s more, this method can avoid Runge phenomenon caused by high-
order polynomial approximation. Without loss of generality, we will discuss a class of equations with
boundary conditions as in Eq (1.2) to show our method conveniently. The whole analysis is also
applicable to higher order equations or equations with more complex boundary conditions by proper
modifications. {

y′′ + a1(x)y′ + a2(x)y = g(x), x ∈ (0, 1),
y(0) = α, y(1) = β.

(1.2)

This paper is organized as follows. In section 2, we introduce an orthonormal basis generated
from compressed Legendre polynomials. The numerical algorithm is established in section 3, and the
convergence analysis is given in section 4. In section 5, we give some numerical examples to testify
the effectiveness of our method.

2. A new basis based on compressed Legendre polynomials

For convenience, we homogenize the boundary conditions in Eq (1.2) so to get Eq (2.1).{
u′′ + a1(x)u′ + a2(u)u = f (x), x ∈ (0, 1),
u(0) = 0, u(1) = 0.

(2.1)

We define
W2

2 [0, 1] = {u(x)|u′ is absolutely continuous on [0, 1], u′′ ∈ L2[0, 1], u(0) = u(1) = 0}.
It is a reproducing kernel space as introduced in [19].
The inner product in W2

2 [0, 1] is given by

〈u, v〉 =

∫ 1

0
u′′v′′dx.

As we all know that Legendre polynomials Ln(x) is an orthogonal basis in L2[−1, 1]. Therefore,

Pn(x) =
√

2n + 1Ln(2x − 1). (2.2)

is an orthonormal basis of L2[0, 1].
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By using Eq (2.2), we will construct an orthonormal basis of W2
2 [0, 1]. First, we compress Pn(x) to

obtain a new basis in L2[0, 1].
Lemma 2.1. Given k, p ∈ Z+, with 1 ≤ k ≤ p, define

ϕnk(x) =

{ √
pPn(px − k + 1), x ∈ [ k−1

p ,
k
p ],

0, else.

where p is the compression coefficient, then {ϕnk}
∞ p
n=0,k=1 is an orthonormal basis of L2[0, 1].

Proof. ∀ϕnk, ϕm j, n , m,
i) k , j, ϕnk, ϕm j are orthogonal according to the definition;

ii) k= j,
∫ 1

0
ϕnkϕm jdx =

∫ 1

0
ϕnkϕmkdx =

∫ k
p

k−1
p

pPn(px − k + 1)Pm(px − k + 1)dx.

Let s = px − k + 1, ∫ 1

0
ϕnkϕm jdx =

∫ 1

0
Pn(s)Pm(s)ds = 0.

ϕnk(x) maintain the orthogonality.
And ∫ 1

0
ϕnk

2dx =

∫ k
p

k−1
p

pP2
n(px − k+1)dx =

∫ 1

0
P2

n(s)ds = 1.

It follows that ϕnk(x) are orthonormal.
In addition,
∀u ∈ L2[0, 1], if

∫ 1

0
uϕnkdx = 0, that is∫ 1

0
uϕnkdx =

∫ k
p

k−1
p

u
√

pPn(px − k + 1)dx =

√
p

p

∫ 1

0
uPn(s)ds = 0,

then u = 0.
So, ϕnk(x) are orthonormal and complete. Therefore {ϕnk}

∞ p
n=0,k=1 is an orthonormal basis of L2[0, 1].

Next, we construct an orthonormal basis of W2
2 [0, 1].

Define J2ϕnk as

J2ϕnk (x) =

∫ x

0
ds

∫ s

0
ϕnk dt − x

∫ 1

0
ds

∫ s

0
ϕnk dt. (2.3)

Note that J2ϕnk (0) = J2ϕnk (1) = 0. We will prove that {J2ϕnk}
∞ p
n=0,k=1 is a basis of W2

2 [0, 1].
Theorem 2.1. {J2ϕnk(x)}∞ p

n=0,k=1 is an orthonormal basis of W2
2 [0, 1].

Proof. J2ϕnk (x) are orthonormal. In fact,∫ 1

0
(J2ϕnk)′′(J2ϕm j)′′dt =

∫ 1

0
ϕnkϕm jdx =

{
1, n = m, k = j,
0, otherwise.

∀u ∈ W2
2 [0, 1], if

∫ 1

0
u′′(J2ϕnk)′′dx = 0, then

∫ 1

0
u′′ϕnkdx = 0, which implies that u′′ = 0.

Because u′ is absolutely continuous on [0, 1], we have u′ = C, C is a constant.
Notice that u(0) = u(1) = 0, so we have u = 0 on [0, 1] which shows the completeness.
Therefore,

{
J2ϕnk (x)

}
is an orthonormal basis of W2

2 [0, 1].
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3. Numerical method

In this section, we introduce a numerical algorithm for solving Eq (2.1).
Define a linear operator

L : W2
2 [0, 1]→ L2[0, 1],

by
Lu = u′′ + a1(x)u′ + a2(x)u.

Eq (2.1) can be transformed into the following operator form

Lu = f . (3.1)

It can be proved that the operator is bounded. Next, we demonstrate the implementation steps of
our numerical algorithm for solving Eq (3.1). The theoretical background and the error analysis will
be discussed in the upcoming section.

Definition 3.1. For any ε > 0, u is called an ε-approximate solution if ‖Lu − f ‖2L2[0,1] < ε.

Let F(c01, · · · · · · , cnp) =

∥∥∥∥∥∥ n∑
j=0

p∑
k=1

c jkLJ2ϕ jk − f

∥∥∥∥∥∥2

L2[0,1]

, and (c∗01, · · · · · · , c
∗
np) is the minimum value

point of F(c01, · · · · · · , cnp).

Theorem 3.1. For any ε > 0, ∃N, when n > N, unp =
n∑

j=0

p∑
k=1

c∗jkJ2ϕ jk is an ε-approximate solution

of Eq (3.1).

Proof. Assume that u is the exact solution of Eq (3.1), u =
∞∑
j=0

p∑
k=1

a jkJ2ϕ jk.

∀ε > 0, ∃N, when n > N, we have wnp =
n∑

j=0

p∑
k=1

a jkJ2ϕ jk satisfies

∥∥∥u − wnp

∥∥∥
W2

2 [0,1]
<

√
ε

‖L‖
2 .

Because ∥∥∥Lwnp − f
∥∥∥2

L2[0,1]
=

∥∥∥Lwnp − Lu
∥∥∥2

L2[0,1]
≤ ‖L‖

2
∥∥∥wnp − u

∥∥∥2

W2
2 [0,1]

< ε,

we get

∥∥∥Lunp − f
∥∥∥2

L2[0,1]
=

∥∥∥∥∥∥∥L
n∑

j=0

p∑
k=1

c∗
jk

J2ϕ jk − f

∥∥∥∥∥∥∥
2

L2[0,1]

= min
c jk

∥∥∥∥∥∥∥L
n∑

j=0

p∑
k=1

c jkJ2ϕ jk − f

∥∥∥∥∥∥∥
2

L2[0,1]

≤

∥∥∥∥∥∥∥L
n∑

j=0

p∑
k=1

a jkJ2ϕ jk − f

∥∥∥∥∥∥∥
2

L2[0,1]

=
∥∥∥Lwnp − f

∥∥∥2

L2[0,1]
< ε.

According to Theorem 3.1, we obtain an ε-approximate solution unp of Eq (3.1) by using the new
basis. The coefficient is the minimum value point of F. Now, we will prove the minimum value point
of F is unique.

Take partial derivatives of the function F with respect to cml,m = 0 · · · n, l = 1 · · · p.
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∂F
∂cml

= 2
n∑

j=0

p∑
k=1

c jk〈LJ2ϕ jk,LJ2ϕml〉 − 2〈LJ2ϕml, f 〉.

Let ∂F
∂cml

= 0, then
n∑

j=0

p∑
k=1

c jk〈LJ2ϕ jk,LJ2ϕml〉 = 〈LJ2ϕml, f 〉. (3.2)

Define a matrix D =
(
〈LJ2ϕ jk,LJ2ϕml〉

)
(n+1)p×(n+1)p

, and a vector b = (〈LJ2ϕml, f 〉)T
(n+1)p. Then

(c∗01, · · · · · · c
∗
np) is the solution of Dc = b, where c = (c01, · · · · · · cnp)T .

Theorem 3.2. Suppose that L is invertible, then the solution of (3.2) is unique.
Proof. The homogeneous equation corresponding to (3.2) is

n∑
j=0

p∑
k=1

c jk〈LJ2ϕ jk,LJ2ϕml〉 = 0,m = 0 · · · n, l = 1 · · · p.

Let’s multiply both sides of the above equations by cml,m = 0 · · · n, l = 1 · · · p , and add them all. We
have

〈

n∑
j=0

p∑
k=1

c jkLJ2ϕ jk,

n∑
m=0

p∑
l=1

cmlLJ2ϕml〉 = 0,

which is just

∥∥∥∥∥∥ n∑
j=0

p∑
k=1

c jkLJ2ϕ jk

∥∥∥∥∥∥2

L2[0,1]

= 0. Then
n∑

j=0

p∑
k=1

c jkLJ2ϕ jk = 0.

L is invertible and {J2ϕnk(x)}∞ p
n=0,k=1 is an orthonormal basis , so

c jk = 0, j = 0, · · · , n, k = 0, · · · , p.

Hence, Eq (3.2) has a unique solution.

4. Convergence and stability analysis

In this section, we will prove the convergence and stability of our method.

Let u(x) =
∞∑
j=0

p∑
k=1

a jkJ2ϕ jk is the exact solution of Eq (3.1), unp(x) =
n∑

j=0

p∑
k=1

c∗jkJ2ϕ jk is the ε-

approximate solution as constructed in the previous section.
Theorem 4.1. unp(x) uniformly converges to u(x) .
Proof. Theorem 3.1 implies that

∥∥∥Lunp − f
∥∥∥2

L2[0,1]
→ 0. We obtain that∥∥∥unp − u

∥∥∥
W2

2 [0,1]
=

∥∥∥L−1Lunp − L
−1Lu

∥∥∥
W2

2 [0,1]

≤
∥∥∥L−1

∥∥∥ ∥∥∥Lunp − Lu
∥∥∥

L2[0,1]
=

∥∥∥L−1
∥∥∥ ∥∥∥Lunp − f

∥∥∥
L2[0,1]

.
(4.1)

So, ∥∥∥unp − u
∥∥∥

W2
2 [0,1]

→ 0.
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Furthermore, ∣∣∣unp(x) − u(x)
∣∣∣ =

∣∣∣〈unp(·) − u(·),Rx(·)〉
∣∣∣ ≤ ∥∥∥unp − u

∥∥∥
W2

2 [0,1]‖Rx‖W2
2 [0,1],

where Rx(t) is the reproducing kernel of W2
2 [0, 1].

Because Rx(t) is bounded on [0, 1], we get∣∣∣unp(x) − u(x)
∣∣∣→ 0.

We now present the error analysis of our method.
Let

wnp =

n∑
j=0

p∑
k=1

a jkJ2ϕ jk.

By (4.1) , we get ∥∥∥unp − u
∥∥∥

W2
2 [0,1]

≤
∥∥∥L−1

∥∥∥ ∥∥∥Lunp − f
∥∥∥

L2[0,1]
.

By Theorem 3.1, it follows that∥∥∥Lunp − f
∥∥∥

L2[0,1]
≤

∥∥∥Lwnp − f
∥∥∥

L2[0,1]
=

∥∥∥Lwnp − Lu
∥∥∥

L2[0,1]
≤ ‖L‖

∥∥∥wnp − u
∥∥∥

W2
2 [0,1]

.

So, ∥∥∥unp − u
∥∥∥

W2
2 [0,1]

≤
∥∥∥L−1

∥∥∥ ‖L‖ ∥∥∥wnp − u
∥∥∥

W2
2 [0,1]

. (4.2)

In the above formula,∥∥∥u − wnp

∥∥∥2

W2
2 [0,1]

=

∫ 1

0
(u′′ − w′′np)2dx =

∥∥∥u′′ − w′′np

∥∥∥2

L2[0,1]
. (4.3)

Since u′′ =
∞∑
j=0

p∑
k=1

a jkϕ jk,w′′np =
n∑

j=0

p∑
k=1

a jkϕ jk, we get

a jk = 〈u′′, ϕ jk〉 =

∫ 1

0
u′′ϕ jkdx =

∫ k
p

k−1
p

u′′
√

pP j(px − k + 1)dx

=
1
p

∫ 1

0
u′′(

s + k − 1
p

)
√

pP j(s)ds.

Assume v(s, k) = u′′( s+k−1
p ),vn(s, k) = w′′np( s+k−1

p ), then

a jk =

√
p

p

∫ 1

0
v(s, k)P j(s)ds =

√
p

p
〈v(s, k), P j(s)〉 =

√
p

p
b jk,

where b jk are the coefficients of the generalized Fourier expansion with respect to the basis {P j(x)}∞j=1.

So v(s, k) =
∞∑
j=0

b jkP j(s), vn(s, k) =
n∑

j=0
b jkP j(s).

Now Eq (4.3) becomes

∥∥∥u′′ − w′′np

∥∥∥2

L2[0,1]
=

∥∥∥∥∥∥∥u′′ −
n∑

j=0

p∑
k=1

a jkϕnk

∥∥∥∥∥∥∥
2

L2[0,1]

=

∥∥∥∥∥∥∥u′′ −
√

p
p

n∑
j=0

p∑
k=1

b jkϕnk

∥∥∥∥∥∥∥
2

L2[0,1]
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=

∫ 1

0
(u′′ −

√
p

p

n∑
j=0

p∑
k=1

b jkϕ jk)2dx =

p∑
k=1

∫ k
p

k−1
p

(u′′ −
√

p
p

n∑
j=0

b jk
√

pP j(px − k + 1))2dx

=
1
p

p∑
k=1

∫ 1

0
(v(s, k) −

n∑
j=0

b jkP j(s))2ds =
1
p

p∑
k=1

∫ 1

0
(v(s, k) − vn(s, k))2ds.

According to [20], we can get

∥∥∥u′′ − w′′np

∥∥∥2

L2[0,1]
=

1
p

p∑
k=1

∫ 1

0
(v(s, k) − vn(s, k))2ds =

1
p

p∑
k=1

‖v(s, k) − vn(s, k)‖2L2[0,1]

≤
1
p

p∑
k=1

(C
1

n2m

m∑
l=min(m,n+1)

∥∥∥∂l
sv(s, k)

∥∥∥2

L2[0,1]
).

where C is a constant and m makes u(m+2) ∈ L2[0, 1].
Since v(s, k) = u′′( s+k−1

p ), ∂l
sv(s, k) = 1

pl u(l+2)(x).
Hence,

∥∥∥u′′ − w′′np

∥∥∥2

L2[0,1]
≤

1
p

p∑
k=1

(C
1

n2m

m∑
l=min(m,n+1)

1
p2l

∥∥∥u(l+2)
∥∥∥2

L2[0,1]
) ≤ C0

1
n2m

m∑
l=min(m,n+1)

1
p2l . (4.4)

where C0 is a constant.
By (4.3) and (4.4), we have that

∥∥∥u − wnp

∥∥∥2

W2
2 [0,1]

≤ C0
1

n2m

m∑
l=min(m,n+1)

1
p2l .

Plug it into (4.2), we conclude that

∥∥∥unp − u
∥∥∥2

W2
2 [0,1]

≤ M0
1

n2m

m∑
l=min(m,n+1)

1
p2l , (4.5)

where M0 is a constant.
Inequality (4.5) gives the error bound of our new approach. We summarize our result in the

following theorem.
Theorem 4.2. If u(m+2) ∈ L2[0, 1] with m ≥ 0, and n ≥ m − 1, then there exists a positive constant

M0 so that
∥∥∥unp − u

∥∥∥
W2

2 [0,1]
≤
√

M0
1

nm
1

pm .
Theorem 4.2 indicates the convergence of our algorithm is influenced by both of n and p. The rate

of convergence gets faster with the increasing of the two parameters.
In the end of this section, the stability of our algorithm is discussed by using the condition number

of the matrix D.
Let {ψi}

∞
i=1 = {J2ϕ01, · · · , J2ϕ0p, · · · , J2ϕn1, · · · , J2ϕnp, · · · }, then D =

(
〈LJ2ϕ jk,LJ2ϕml〉

)
M×M

could

be rewritten as D =
(
〈Lψi,Lψ j〉

)
M×M

, M = (n + 1)p.
Lemma 4.1 ( [17]) If u ∈ W2

2 [0, 1] with ‖u‖W2
2 [0,1] = 1, then ‖Lu‖L2[0,1] ≥

1
‖L−1‖

.

Theorem 4.3. The condition number of D satisfies Cond(D)2 ≤ ‖L‖
2
∥∥∥L−1

∥∥∥2
.
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Proof. Assume x = (x1, · · · xM)T is a unit eigenvector belonging to λ, i.e., λx = Dx, ‖x‖ = 1.
We have

λxi =

M∑
j=1

〈Lψi,Lψ j〉x j =

M∑
j=1

〈Lψi, x jLψ j〉 = 〈Lψi,

M∑
j=1

x jLψ j〉. (4.6)

Multiplying Eq (4.6) by xi, i = 1 · · ·M, and add all the equations.

λ = λ

M∑
i=1

xi
2 = 〈

M∑
i=1

xiLψi,

M∑
j=1

x jLψ j〉 =

∥∥∥∥∥∥∥
M∑

i=1

xiLψi

∥∥∥∥∥∥∥
2

L2[0,1]

≤ ‖L‖
2

M∑
i=1

xi
2 = ‖L‖2.

On the other hand,

λ =

∥∥∥∥∥∥∥
M∑

i=1

xiLψi

∥∥∥∥∥∥∥
2

L2[0,1]

=

∥∥∥∥∥∥∥L
M∑

i=1

xiψi

∥∥∥∥∥∥∥
2

L2[0,1]

= ‖Lu‖2L2[0,1] ,

where u=
M∑

i=1
xiψi.

From Lemma 4.1, λ ≥ 1

‖L−1‖
2 .

So

Cond(D)2 =

∣∣∣∣∣λmax

λmin

∣∣∣∣∣ ≤ ‖L‖2 ∥∥∥L−1
∥∥∥2
.

The stability is proved.

5. Numerical examples

In this part, we will test four examples of BVPs which have been discussed by different algorithms
in [17, 21–24]. In the following examples, comparison of numerical results demonstrate the efficiency
and stability of our method. The absolute error function is defined as E =

∣∣∣ynp(x) − y(x)
∣∣∣ , 0 ≤ x ≤ 1,

where y(x) is the exact solution and ynp(x) is an ε-approximate solution.
Example 1. ( [17, 21]) Consider an equation with Robin boundary condition:

{
y′′(x) + xy(x) = x3 + 2, x ∈ (0, 1),
y′(0) − y(0) = 0, y′(1) − y(1) = 1.

(5.1)

y = x2 is the exact solution of Eq (5.1). The numerical results using our method are compared
with [17, 21] in Table 1. It shows that our method converges rapidly with higher accuracy.
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Table 1. Absolute error for Example 1.

x Method in [21] Method in [17]
Present method

n = 4, p = 3 n = 7, p = 3
0.0 1.91E-5 1.12E-10 3.52E-11 3.82E-12
0.1 2.10E-5 1.39E-10 3.69E-11 3.96E-12
0.2 2.29E-5 1.66E-10 3.37E-11 3.56E-12
0.3 2.46E-5 1.96E-10 2.49E-11 2.57E-12
0.4 2.60E-5 2.28E-10 5.40E-12 6.78E-13
0.5 2.71E-5 2.63E-10 2.03E-11 2.04E-12
0.6 2.78E-5 2.96E-10 5.11E-11 5.51E-12
0.7 2.79E-5 3.26E-10 8.62E-11 9.91E-12
0.8 2.73E-5 3.54E-10 1.22E-10 1.48E-11
0.9 2.61E-5 3.82E-10 1.53E-10 1.89E-11
1.0 2.41E-5 4.09E-10 1.72E-10 2.19E-11

Example 2. Consider the following two-point BVP:{
y′′(x) + sin xy′(x) + y(x) = f (x), x ∈ (0, 1),
y′(0) = 0, y(1) = 0.

(5.2)

where f (x) =

{
x cos x, 0 ≤ x < 1

2 ,

(−x/2 + 1) sinh x, 1
2 ≤ x ≤ 1.

. Since the exact solution of Eq (5.2) is not known,

we discuss the absolute residual error function defined as R = |Lunp − f |. The results are listed in Table
2. It shows that the numerical error is rather smaller by our method.

Table 2. Absolute residual error for Example 2.

x n = 4, p = 4 n = 5, p = 4 n = 5, p = 8
0.0 1.54E-6 4.06E-8 7.05E-10
0.1 4.60E-7 3.45E-9 6.86E-10
0.2 2.37E-7 8.77E-9 6.83E-10
0.3 1.48E-8 1.22E-8 7.39E-10
0.4 6.07E-8 4.94E-9 7.24E-10
0.5 8.95E-7 7.00E-9 6.26E-10
0.6 2.81E-7 1.52E-9 6.30E-11
0.7 1.34E-7 1.50E-10 2.33E-10
0.8 1.11E-7 3.37E-9 4.54E-11
0.9 2.52E-7 1.76E-9 9.79E-11
1.0 7.12E-7 1.74E-8 9.74E-10

Example 3. ( [22, 23] We consider the following sixth-order BVP:{
y(6)(x) + 6ex = y(x), x ∈ (0, 1),
y(0) = 1, y(1) = 0, y′′(0) = −1, y′′(1) = −2e, y(4)(0) = −3, y(4)(1) = −4e.

(5.3)
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y = (1 − x)ex is the exact solution of Eq (5.3). The results are reported in the Table 3. The absolute
error of our method is smaller than those obtained in [22] by homotopy perturbation method and in [23]
by Legendre wavelet collocation method.

Table 3. Absolute error for Example 3.

x Method in [22] Method in [23]
E(Present method)

n = 4, p = 2 n = 4, p = 8
0.0 0 0 0 0
0.1 4.1E-4 1.3E-10 1.23E-12 1.29E-16
0.2 7.8E-4 2.4E-10 2.21E-12 3.73E-17
0.3 1.1E-3 3.3E-10 2.82E-12 5.72E-17
0.4 1.3E-3 3.7E-10 3.32E-12 3.64E-17
0.5 1.3E-3 3.9E-10 3.65E-12 1.73E-17
0.6 1.3E-3 3.6E-10 3.63E-12 1.14E-16
0.7 1.1E-3 3.0E-10 3.06E-12 9.02E-17
0.8 7.8E-4 2.8E-10 1.91E-12 3.82E-17
0.9 4.1E-4 1.1E-10 8.81E-13 0
1.0 0 3.2E-16 3.47E-17 3.47E-17

Example 4. ( [24]) Consider the following nonlinear fourth-order BVP:{
y(4)(x) − exy′′(x) + y(x) + sin(y(x)) = f (x), x ∈ (0, 1),
y(0) = 1, y′(0) = 1, y(1) = 1 + sinh(1), y′(1) = cosh(1).

(5.4)

where f (x) = 1+sin(1+sinh(x))−(ex−2) sinh(x). The exact solution of Eq (5.4) is y(x) = 1+sinh(x).
Firstly, Eq (5.4) is linearized by Newton iterative method [13]. Then, we use our method to solve the
linear equation. The numerical results obtained after three iterations are given in Table 4. It is seen
from Table 4 that we have got a better approximation to the exact solution of the nonlinear problem.

Table 4. Absolute error for Example 4.

x Method in [24]
Present method

n = 3, p = 3 n = 3, p = 8
0.0 0 0 0
0.1 2.78E-8 1.78E-12 1.52E-14
0.2 8.09E-8 3.90E-12 3.83E-14
0.3 1.20E-7 2.63E-12 3.40E-14
0.4 1.25E-7 3.87E-12 1.76E-14
0.5 9.56E-8 9.55E-12 1.07E-13
0.6 4.82E-8 2.09E-12 1.92E-13
0.7 7.38E-9 1.62E-13 2.20E-13
0.8 1.07E-8 1.31E-11 1.65E-13
0.9 7.08E-9 6.80E-12 6.01E-14
1.0 0 0 0
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6. Conclusions

In this paper, a new basis {J2ϕnk(x)}∞ p
n=0,k=1 of W2

2 [0, 1] is constructed from compressed Legendre
polynomials. This basis is simple, efficient, and practical. Our method can avoid Runge phenomenon
caused by high-order polynomial approximation. Using the concept of ε-approximate solution, we
describe a method with the new basis to solve boundary value problems. The convergence and stability
of our algorithm are proved. Our algorithm is tested by some numerical examples with different
boundary conditions. The numerical results show that our method have higher accuracy for solving
linear and nonlinear problems.
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