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1. Introduction

Throughout this paper, the following notations are used. R, RBQ represent the set of real number
and reduced biquaternion, respctively. Rt(Rt) represent the set of all real column(row) vectors with
order t. Rm×n, RBm×n

Q represent the set of all m × n real matrices, reduced biquaternion matrices,
respectively. RBn×n

HQ , RBn×n
AQ represent the set of all n × n Hermitian reduced biquaternion matrices and

Anti-Hermitian reduced biquaternion matrices, respectively. Ik represents the unit matrix with order
k, δi

k represents the ith column of unit matrix Ik. δk[i1, · · · , is] is a abbreviation of [δi1
k , · · · , δ

is
k ].

A = A1 + A2i + A3j + A4k ∈ RBm×n
Q , where Ai ∈ R

m×n, (i = 1 : 4) and define A = A1 − A2i − A3j − A4k
to be conjugate of A. AT , AH, A† represent the transpose, conjugate transpose, Moore-Penrose(MP)
inverse of matrix A. ⊗ represents the Kronecker product of matrices. ⋉ represents the semi-tensor
product of matrices. ∥·∥ represents the Frobenius norm of a matrix or Euclidean norm of a vector.

The concept of quaternion was proposed by Hamilton in 1843, which is an extension of complex
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number. It consists of four parts, i.e.

a = ar + aii + a jj + akk,

where ar, ai, a j, ak are real numbers and i, j, k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

As can be seen from the product rule above, quaternion is not commutative with respect to
multiplication. Owing to this reason, quaternion becomes more complicated in some operations, and
it will have great trouble in application to practical problems. This also promotes the generation of
reduced biquaternion to some extent. Reduced biquaternion is similar to quaternion in form, but it has
a different product rule.

Definition of reduced biquaternion [1]

a = ar + aii + a jj + akk,

where ar, ai, a j, ak are real numbers and

i2 = k2 = −1, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = −j.

e1 =
1+ j

2 , e2 =
1− j

2 are two special numbers in reduced biquaternion. Obviously,

en
1 = en−1

1 = . . . = e1, en
2 = en−1

2 = . . . = e2, e1e2 = 0.

Therefore, e1 and e2 are both idempotent elements and divisors of zero. Any reduced biquaternion with
the form k1e1 or k2e2 is also a divisor of zero and does not have a multiplicative inverse, where, k1, k2 are
arbitrary complex numbers. By means of e1 and e2, we can uniquely express the reduced biquaternion
a = ar + aii + a jj + akk as a = a1e1 + a2e2, where a1 = (ar + a j) + (ai + ak)i, a2 = (ar − a j) + (ai − ak)i.

The conjugate of a reduced biquaternion a is denoted by a and a = ar − aii − a jj − akk. The norm
of a reduced biquaternion a is

∥a∥ =
√

a2
r + a2

i + a2
j + a2

k .

Then, the Frobenius norm of A ∈ RBm×n
Q is defined as follows

∥A∥ =

√√ m∑
i=1

n∑
j=1

∥ai j∥
2.

The concept of reduced biquaternion was first defined by Schütte and Wenzel in 1990 [2]. It can be
seen that the product of reduced biquaternions has commutability compared with quaternion. Thus,
many operations of reduced biquaternion are simpler than those of quaternion. Such as, the
implementations of the discrete reduced biquaternion Fourier transform, convolution, correlation.
Therefore, it is of importance to study the theoretical knowledge and numerical calculation of reduced
biquaternions. Many good results on reduced biquaternions have obtained. For example, Pei et al.
investigated digital signal and image processing using reduced biquaternion in 2004 [1] and gave the
algorithms for calculating the eigenvalues, the eigenvectors, and the singular value decomposition of a
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reduced biquaternion matrix in 2008 [3]; Isokawa et al. studied two types of multistate Hopfield
neural networks using reduced biquaternion in 2010 [4]. At the same time, scholars also focused on
the solution of specific reduced biquaternion matrix equations because matrix equations have a wide
range of applications in control theory, stability and other fields. Hidayet derived the expressions of
the minimal norm least squares solution for the reduced biquaternion matrix equation AX = B using
the e1 − e2 form in 2019 [5]; Yuan studied the Hermitian solutions of the reduced biquaternion matrix
equation (AXB,CXD) = (E, F) using complex representation [6].

In this paper, we study the least squares problems of the reduced biquaternion matrix equation
k∑

i=1

AiXBi = C. (1.1)

Since Hermitian and Anti-Hermitian matrices are very useful in engineering problems and linear
system theory. So many researchers turn on the problems of (Anti)-Hermitian matrix equations, for
example, [7, 8] derived explicit determinantal representation formulas of the general, Hermitian, and
Anti-Hermitian solutions to the system of two-sided quaternion matrix equations A1XA∗1 = C1 and
A2XA∗2 = C2 in 2018 and the Sylvester type matrix equation AXA∗ + BYB∗ = C in 2019 using
determinantal representations of Moore-Penrose inverse, respectively. [9] proposed a recursive
algorithm for calculating the inversion of the confluent Vandermonde matrix that with consecutive
powers devoted just to the Hermite type interpolation and derived an explicit analytic formula for the
calculation of the inverse of the confluent Vandermonde matrix in 2013. [10] considered the
quaternion matrix equation X − AX̂B = C and studied its minimal norm least squares solution,
j-self-conjugate least squares solution and anti- j-self-conjugate least squares solution by means of
real representation matrices of quaternion matrix in 2020.

We determine our research objective as the least squares Hermitian solution and the least squares
Anti-Hermitian solution as follows:

Problem 1. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

p×q
Q , C ∈ RBm×q

Q , and

S Q =

X|X ∈ RBn×p
Q ,

k∑
i=1

AiXBi = C

 .
Find out XQ ∈ S Q such that ∥∥∥XQ

∥∥∥ = min
X∈S Q
∥X∥ .

Problem 2. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

n×q
Q , C ∈ RBm×q

Q , and

S HQ =

X|X ∈ RBn×n
HQ ,

k∑
i=1

AiXBi = C

 .
Find out XHQ ∈ S HQ such that ∥∥∥XHQ

∥∥∥ = min
X∈S HQ

∥X∥ .

Problem 3. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

n×q
Q , C ∈ RBm×q

Q , and

S AQ =

X|X ∈ RBn×n
AQ ,

k∑
i=1

AiXBi = C

 .
AIMS Mathematics Volume 7, Issue 3, 3258–3276.



3261

Find out XAQ ∈ S AQ such that ∥∥∥XAQ

∥∥∥ = min
X∈S AQ

∥X∥ .

The semi-tensor product(STP) of matrices was proposed initially by Cheng to solve linearization
problem of nonlinear systems, which is a generalization of traditional matrix product for the case when
the two factor matrices do not meet the dimension matching condition. It has been proved to be a
power tool in many fields such as game theory [11], graph coloring [12], logic systems [13] and so on.
In this paper, we will convert the least squares problem of reduced biquaternion matrix equation to the
corresponding real problems by using the semi-tensor product of matrices.

This paper is organized as follows. In Section 2, some basic knowledge of semi-tensor product of
matrices is introduced. In Section 3, a new kind of real vector representation of a reduced biquaternion
matrix and the main properties are proposed. In Section 4, the solutions of Problems 1–3 are studied by
using the real vector representation of reduced biquaternion matrix, the special structure of solutions
and semi-tensor product of matrices. In Section 5, two examples are illustrated to demonstrate the
Algorithms. Finally the present thesis is summarized.

2. Semi-tensor product of matrices(STP)

In this section, we will recall some basic knowledge of semi-tensor product of matrices. Please
refer to [14, 15] for more details.

Definition 2.1. Let A ∈ Rm×n, B ∈ Rp×q, the semi-tensor product of A and B, denoted by

A ⋉ B = (A ⊗ It/n)(B ⊗ It/p),

where t = lcm(n, p) is the least common multiple of n and p. If n = p, the semi-tensor product reduces
to the traditional matrix product.

Next, a simple numerical example is used to explain the semi-tensor product of matrices.

Example 2.1. Suppose A =


2 −2 −1 1
1 0 3 −3
−2 −3 2 1

, B =
[

1 2
−2 −1

]
, then

A ⋉ B = A (B ⊗ I2) =


2 −2 −1 1
1 0 3 −3
−2 −3 2 1




1 0 2 0
0 1 0 2
−2 0 −1 0
0 −2 0 −1


=


4 −4 5 −5
−5 6 −1 3
−6 −5 −6 −7

 .
Lemma 2.1. Assume that A, B, C are real matrices with appropriate sizes, a, b ∈ R.
(1) (Distributive law) A ⋉ (aB ± bC) = aA ⋉ B ± bA ⋉C, (aA ± bB) ⋉C = aA ⋉C ± bB ⋉C.
(2) (Associative law)(A ⋉ B) ⋉C = A ⋉ (B ⋉C).
(3) (Transpose)(A ⋉ B)T = BT ⋉ AT .

(4) (Inverse)(A ⋉ B)−1 = B−1 ⋉ A−1, where A and B are invertible square matrices.
(5) Assume that x ∈ Rm, y ∈ Rn, then x ⋉ y = x ⊗ y.
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It can be seen from the Definition 2.1 that semi-tensor product of matrices is a generalization of
traditional matrix product. A large part of the properties of traditional matrix product are preserved by
semi-tensor product of matrices. Here, only (3) of Lemma 2.1 is simply proved and the other properties
of Lemma 2.1 are similarly proved.

Proof. Suppose A ∈ Rm×n, B ∈ Rp×q, t = lcm(n, p), we can obtain

(A ⋉ B)T =
((

A ⊗ It/n
) (

B ⊗ It/p

))T
=
(
B ⊗ It/p

)T (
A ⊗ It/n

)T
=
(
BT ⊗ It/p

) (
AT × It/n

)
= BT ⋉ AT .

□

The semi-tensor product of a matrix and a vector has the following property of quasi-commutativity.

Definition 2.2. A swap matrix W[m,n] is a mn × mn matrix, which is defined as

W[m,n] = δmn[1, · · · , (n − 1)m + 1, · · · , m, · · · , nm] ∈ Rmn×mn.

We use the following example to briefly illustrate the construction of swap matrix.

Example 2.2. Suppose m = 2, n = 3, then

W[m,n] = δ6[1, 3, 5, 2, 4, 6] =
[
δ1

6, δ
3
6, δ

5
6, δ

2
6, δ

4
6, δ

6
6

]

=



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1


Remark 2.1. When m = n, we denote W[m,n] = W[n].

The function of a swap matrix is to exchange the order of two vectors in vector multiplication.

Lemma 2.2. Let x ∈ Rm and y ∈ Rn be two column vectors. Then W[m,n] ⋉ x ⋉ y = y ⋉ x.

Example 2.3. Suppose x =
[
x1

x2

]
, y =


y1

y2

y3

. Using the swap matrix constructed in Example 2.2, we can

obtain
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W[m,n] ⋉ x ⋉ y =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1


(
[
x1

x2

]
⊗


y1

y2

y3

) =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1





x1y1

x1y2

x1y3

x2y1

x2y2

x2y3



=



y1x1

y1x2

y2x1

y2x2

y3x1

y3x2


=



y1

y2

y3

 ⊗
[
x1

x2

] = y ⋉ x

Lemma 2.3. Assume A ∈ Rm×n is given, x ∈ Rt, ω ∈ Rt. Then

x ⋉ A = (It ⊗ A) ⋉ x,

A ⋉ ω = ω ⋉ (It ⊗ A).

Proof. Suppose x =
[
x1, x2, . . . , xt

]T
∈ Rt, A =


a11 . . . a1n
...

...

am1 . . . amn

 ∈ Rm×n, thus

x ⋉ A = (x ⊗ Im) A =


x1 ⊗ Im
...

xt ⊗ Im



a11 . . . a1n
...

...

am1 . . . amn


=


x1 0 . . . 0 . . . xt 0 . . . 0
0 x1 . . . 0 . . . 0 xt . . . 0
...
...
. . .

... . . .
...
...
. . .

...

0 0 0 x1 . . . 0 0 0 xt


T 

a11 . . . a1n
...

...

am1 . . . amn



=


x1A
x2A
...

xtA

 = (It ⊗ A) ⋉ x.

When ω is a row vector, we use the transpose property of the semi-tensor product of matrices to derive
the transformation. □

Definition 2.3. Let Wi (i = 0, 1, · · · , n) be vector spaces. The mapping F : Πn
i=1Wi → W0 is called a

multilinear mapping, if for any 1 ≤ i ≤ n, α, β ∈ R,

F(x1, · · · , xi−1, αxi + βyi, · · · , xn) = αF(x1, · · · , xi, · · · , xn) + βF(x1, · · · , yi, · · · , xn),

AIMS Mathematics Volume 7, Issue 3, 3258–3276.



3264

in which xi ∈ Wi, 1 ≤ i ≤ n, yi ∈ Wi. If dim(Wi) = ki, (i = 0, 1, · · · , n), and (δ1
ki
, δ2

ki
, · · · , δki

ki
) is the

basis of Wi. Denote

F(δ j1
k1
, δ

j2
k2
, · · · , δ

jn
kn

) =
k0∑

s=1

c j1, j2, ··· , jn
s δs

k0
,

in which jt = 1, · · · , kt, t = 1, · · · , n. Then{
c j1, j2, ··· , jn

s | jt = 1, · · · , kt, t = 1, · · · , n, s = 1, · · · , k0

}
are called structure constants of F. Arranging these structure constants in the following form

MF =


c11···1

1 · · · c11···kn
1 · · · ck1k2···kn

1
c11···1

2 · · · c11···kn
2 · · · ck1k2···kn

2
...

...
...

c11···1
k0

· · · c11···kn
k0

· · · ck1k2···kn
k0

 ,
MF is called the structure matrix of F.

3. A new kind of real vector representation of a reduced biquaternion matrix and its properties

In this section, we will propose the concept of real vector representation of a reduced biquaternion
matrix and study its properties.

Definition 3.1. Let x = x1 + x2i + x3j + x4k ∈ RBQ, denote vR(x) = [x1, x2, x3, x4]T , vR(x) is called as
the real vector representation of x.

Theorem 3.1. Let x, y ∈ RBQ, then

vR(xy) = MQ ⋉ vR(x) ⋉ vR(y), (3.1)

where

MQ =


1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

 ,
MQ is the structure matrix of multiplication of reduced biquaternions.

Proof. Suppose x = x1 + x2i + x3j + x4k, y = y1 + y2i + y3j + y4k, we can obtain

xy = (x1 + x2i + x3j + x4k) (y1 + y2i + y3j + y4k)

= (x1y1 − x2y2 + x3y3 − x4y4) + (x1y2 + x2y1 + x3y4 + x4y3) i
+ (x1y3 + x3y1 − x2y4 − x4y2) j + (x1y4 + x4y1 + x2y3 + x3y2) k,

thus the left hand side of (3.1) is 
x1y1 − x2y2 + x3y3 − x4y4

x1y2 + x2y1 + x3y4 + x4y3

x1y3 + x3y1 − x2y4 − x4y2

x1y4 + x4y1 + x2y3 + x3y2

 .
AIMS Mathematics Volume 7, Issue 3, 3258–3276.
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Since the right hand side of (3.1) is

MQ ⋉ vR(x) ⋉ vR(y) = MQ ⋉


x1

x2

x3

x4

 ⋉

y1

y2

y3

y4

 = MQ ⋉



x1

x2

x3

x4

 ⊗

y1

y2

y3

y4




=


x1y1 − x2y2 + x3y3 − x4y4

x1y2 + x2y1 + x3y4 + x4y3

x1y3 + x3y1 − x2y4 − x4y2

x1y4 + x4y1 + x2y3 + x3y2

 .
(3.1) can be obtained. □

Combined the real vector representation of a reduced biquaternion with vec operator of a real matrix,
we propose a new kind of real vector representation of a reduced biquaternion matrix. For this purpose,
we first propose the real vector representation of a reduced biquaternion vector as follows.

Definition 3.2. Let x =
[
x1, · · · , xn

]
, y =

[
y1, · · · , yn

]T
be reduced biquaternion vectors. Denote

vR(x) =


vR(x1)
...

vR(xn)

 , vR(y) =


vR(y1)
...

vR(yn)

 ,
vR(x) and vR(y) are called as the real vector representation of reduced biquaternion vectors x and y.

Now we define the concepts of the real vector representation of a reduced biquaternion matrix A.

Definition 3.3. For A = (Aed) ∈ RBm×n
Q , e = 1, · · · ,m, d = 1, · · · , n, denote

vR
c (A) =



vR(A11)
...

vR(Am1)
...

vR(A1n)
...

vR(Amn)


=


vR(Col1(A))
vR(Col2(A))

...

vR(Coln(A))

 , vR
r (A) =



vR(A11)
...

vR(A1n)
...

vR(Am1)
...

vR(Amn)


=


vR(Row1(A))
vR(Row2(A))

...

vR(Rowm(A))

 ,

vR
c (A) and vR

r (A) are called the real column stacking form and the real row stacking form of A,
respectively. Real column stacking form and real row stacking form of A are collectively called real
vector representation of A.

We can prove that this real vector representation has the following properties with respect to vector
or matrix operations.
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Theorem 3.2. Let x =
[
x1, x2, · · · , xn

]
, x̌ =

[
x̌1, x̌2, · · · , x̌n

]
, y =

[
y1, y2, · · · , yn

]T
, a ∈ R, xi, x̌i, yi ∈

RBQ, then

(1) vR(x + x̌) = vR(x) + vR(x̌),
(2) vR(ax) = avR(x),

(3) vR(xy) = MQ ⋉
n∑

i=1

(δi
n)T ⋉

(
I4n ⊗ (δi

n)T
)
⋉ vR(x) ⋉ vR(y).

Proof. By simply computing, we know (1), (2) hold. We only give a detailed proof of (3). Using
Theorem 3.1, we have

vR(xy) = vR(x1y1 + x2y2 + · · · + xnyn)
= MQ ⋉ vR(x1) ⋉ vR(y1) + · · · + MQ ⋉ vR(xn) ⋉ vR(yn)
= MQ ⋉ (δ1

n)T ⋉ vR(x) ⋉ (δ1
n)T ⋉ vR(y) + · · · + MQ ⋉ (δn

n)T ⋉ vR(x) ⋉ (δn
n)T ⋉ vR(y)

= MQ ⋉ (δ1
n)T ⋉

(
I4n ⊗ (δ1

n)T
)
⋉ vR(x) ⋉ vR(y) + · · · + MQ ⋉ (δn

n)T ⋉
(
I4n ⊗ (δn

n)T
)
⋉ vR(x) ⋉ vR(y)

= MQ ⋉
n∑

i=1

(δi
n)T ⋉

(
I4n ⊗ (δi

n)T
)
⋉ vR(x) ⋉ vR(y).

□

By using Theorem 3.2, we can drive the following results on the real vector representation of
multiplication of two reduced biquaternion matrices.

Theorem 3.3. Let A, Ǎ ∈ RBm×n
Q , B ∈ RBn×p

Q , α ∈ R, then

(1) vR
r (A + Ǎ) = vR

r (A) + vR
r (Ǎ), vR

c (A + Ǎ) = vR
c (A) + vR

c (Ǎ),
(2) vR

r (αA) = αvR
r (A), vR

c (αA) = αvR
c (A),

(3) vR
r (AB) = G ⋉ vR

r (A) ⋉ vR
c (B), vR

c (AB) = G′ ⋉ vR
r (A) ⋉ vR

c (B),

in which

G =



F ⋉ (δ1
m)T ⋉ [I4mn ⊗ (δ1

p)T ]
...

F ⋉ (δ1
m)T ⋉ [I4mn ⊗ (δp

p)T ]
...

F ⋉ (δm
m)T ⋉ [I4mn ⊗ (δ1

p)T ]
...

F ⋉ (δm
m)T ⋉ [I4mn ⊗ (δp

p)T ]


, G′ =



F ⋉ (δ1
m)T ⋉ [I4mn ⊗ (δ1

p)T ]
...

F ⋉ (δm
m)T ⋉ [I4mn ⊗ (δ1

p)T ]
...

F ⋉ (δ1
m)T ⋉ [I4mn ⊗ (δp

p)T ]
...

F ⋉ (δm
m)T ⋉ [I4mn ⊗ (δp

p)T ]


,

and F = MQ ⋉
n∑

i=1
(δi

n)T ⋉
(
I4n ⊗ (δi

n)T
)
.

Proof. We still only prove the first equality in (3). We block A and B with its rows or columns as
follows
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A =


Row1(A)
Row2(A)
...

Rowm(A)

 , B =
[
Col1(B) Col2(B) · · · Colp(B)

]
.

Then we have

vR
r (AB) =



vR(Row1(A)Col1(B))
...

vR(Row1(A)Colp(B))
...

vR(Rowm(A)Col1(B))
...

vR(Rowm(A)Colp(B))


=



F ⋉ vR(Row1(A)) ⋉ vR(Col1(B))
...

F ⋉ vR(Row1(A)) ⋉ vR(Colp(B))
...

F ⋉ vR(Rowm(A)) ⋉ vR(Col1(B))
...

F ⋉ vR(Rowm(A)) ⋉ vR(Colp(B))



=



F ⋉ [(δ1
m)T ⋉ vR

r (A)] ⋉ [(δ1
p)T ⋉ vR

c (B)]
...

F ⋉ [(δ1
m)T ⋉ vR

r (A)] ⋉ [(δp
p)T ⋉ vR

c (B)]
...

F ⋉ [(δm
m)T ⋉ vR

r (A)] ⋉ [(δ1
p)T ⋉ vR

c (B)]
...

F ⋉ [(δm
m)T ⋉ vR

r (A)] ⋉ [(δp
p)T ⋉ vR

c (B)]


=



F ⋉ (δ1
m)T ⋉ [I4mn ⊗ (δ1

p)T ]
...

F ⋉ (δ1
m)T ⋉ [I4mn ⊗ (δp

p)T ]
...

F ⋉ (δm
m)T ⋉ [I4mn ⊗ (δ1

p)T ]
...

F ⋉ (δm
m)T ⋉ [I4mn ⊗ (δp

p)T ]


⋉ vR

r (A) ⋉ vR
c (B).

The second equality can be proved similarly. □

4. Algebraic solutions of Problems 1–3

In this section, we study Problems 1–3. By means of the real vector representation of reduced
biquaternion matrix and STP, we first convert Problems 1–3 into the corresponding real least squares
problems. And then we obtain their solutions.

Lemma 4.1. [16] The matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rm, has a solution x ∈ Rn if
and only if

AA†b = b.

In that case it has the general solution

x = A†b + (In − A†A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm solution of the linear system of equations
Ax = b is A†b

Theorem 4.2. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

p×q
Q , C ∈ RBm×q

Q , denote

M = G1 ⋉G ⋉
(
I4mn ⊗W[4pq,4np]

)
⋉

 k∑
i=1

vR
r (Ai) ⋉ vR

c (Bi)

 ,
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where G1 has the same structure as G in Theorem 3.3 excepting the dimension. Hence the set S Q of
Problem 1 is represented as

S Q =
{
X | vR

c (X) = M†vR
r (C) + (I4np − M†M)y, ∀y ∈ R4np

}
. (4.1)

And then, the minimal norm solution XQ of Problem 1 satisfies

vR
c (XQ) = M†vR

r (C). (4.2)

Proof.

k∑
i=1

AiXBi = C

⇐⇒ vR
r

 k∑
i=1

AiXBi

 = vR
r (C)

⇐⇒ G1 ⋉G ⋉
(
I4mn ⊗W[4pq,4np]

)
⋉

 k∑
i=1

vR
r (Ai) ⋉ vR

c (Bi)

 ⋉ vR
c (X) = vR

r (C)

⇐⇒ MvR
c (X) = vR

r (C).

For the real matrix equation
MvR

c (X) = vR
r (C),

by Lemma 4.1, its solutions can be represented as

vR
c (X) = M†vR

r (C) + (I4np − M†M)y, ∀y ∈ R4np.

Thus we get the formula in (4.1).
Notice

min
X∈RBn×p

Q

∥X∥ ⇐⇒ min
vR

c (X)∈R4np

∥∥∥vR
c (X)
∥∥∥

According to the previous proof of this theorem, we have that the minimal norm solution XQ ∈ S Q of
Problem 1 satisfies

vR
c (XQ) = M†vR

r (C).

Therefore, (4.2) holds. □

By Theorem 4.2, we can get the sufficient and necessary condition of compatibility of the reduced

biquaternion matrix equation
n∑

i=1
AiXBi = C and the expression of the solution when

n∑
i=1

AiXBi = C is

compatible.

Corollary 4.3. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

p×q
Q , C ∈ RBm×q

Q , M is given in Theorem 4.2. Then the following
statements are equivalent:
(a) Problem 1 has a solution X ∈ S Q;
(b) (MM† − I4mq)vR

r (C) = 0.
Moreover, if (b) holds, the solution set of (1.1) over RBn×p

Q can be represented as

S Q =
{
X | vR

c (X) = M†vR
r (C) + (I4np − M†M)y, ∀y ∈ R4np

}
.

AIMS Mathematics Volume 7, Issue 3, 3258–3276.



3269

Proof.
k∑

i=1

AiXBi = C ⇐⇒MvR
c (X) = vR

r (C)⇐⇒ MM†MvR
c (X) = vR

r (C)

⇐⇒MM†vR
r (C) = vR

r (C)⇐⇒
(
MM† − I4mq

)
vR

r (C) = 0.

□

In order to study Problem 2, we define vR
s (X) and give the relation of vR

s (X) and vR
c (X) for an

Hermitian matrix.

Theorem 4.4. Let X =


x11 · · · x1n
...

...
...

xn1 · · · xnn

 ∈ RBn×n
HQ , xi j = x1

i j + x2
i ji + x3

i jj + x4
i jk ∈ RBQ, denote

LXi =


xii

vR(xi(i+1))
...

vR(xin)

 , vR
s (X) =


LX1

LX2
...

LXn

 , J =



J1
...

Jr
...

Jn


, Jr =



J1r
...

Jmr
...

Jnr


,

Jmr
m<r
=



(
δ
γ+η+2
2n2−n

)T(
−δ
γ+η+3
2n2−n

)T(
−δ
γ+η+4
2n2−n

)T(
−δ
γ+η+5
2n2−n

)T , Jmr
m=r
=


(
δλ+1

2n2−n

)T
01×2n2−n

01×2n2−n

01×2n2−n

, Jmr
m>r
=



(
δλ+θ+2

2n2−n

)T(
δλ+θ+3

2n2−n

)T(
δλ+θ+4

2n2−n

)T(
δλ+θ+5

2n2−n

)T ,
where, γ = (m−1)(8n+2−4m)

2 , η = 4(r − m − 1), λ = (r−1)(8n+2−4r)
2 , θ = 4(m − r − 1). Then

vR
c (X) = J ⋉ vR

s (X).

Remark 4.1. It can be seen from the structural characteristics of matrix X that only part of the elements
in matrix X can be used to represent the whole matrix X. So we need to find all the non-zero and non-
repeating elements in X, which reduces the number of elements in vR

c (X). J is a correspondence between
the real vector representation of the matrix X and the real vector representation of the independent
elements of the matrix X.

Theorem 4.5. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

n×q
Q , C ∈ RBm×q

Q , denote

M̃ = G3 ⋉G4 ⋉
(
I4mn ⊗W[4nq,4n2]

)
⋉

 k∑
i=1

vR
r (Ai) ⋉ vR

c (Bi)

 ⋉ J,

where G3, G4 have the same structure as G in Theorem 3.3 excepting the dimension. Hence the set
S HQ of Problem 2 is represented as

S HQ =
{
X|vR

s (X) = M̃†vR
r (C) +

(
I2n2−n − M̃†M̃

)
y, ∀y ∈ R2n2−n

}
. (4.3)

And then, the minimal norm solution XHQ of Problem 2 satisfies

vR
s (XHQ) = M̃†vR

r (C). (4.4)
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Proof.
k∑

i=1

AiXBi = C ⇐⇒ vR
r

 k∑
i=1

AiXBi

 = vR
r (C).

Using Theorem 4.4, we can obtain

vR
r

 k∑
i=1

AiXBi

 = vR
r (C)

⇐⇒ G3 ⋉G4 ⋉
(
I4mn ⊗W[4nq,4n2]

)
⋉

 k∑
i=1

vR
r (Ai) ⋉ vR

c (Bi)

 ⋉ vR
c (X) = vR

r (C)

⇐⇒ G3 ⋉G4 ⋉
(
I4mn ⊗W[4nq,4n2]

)
⋉

 k∑
i=1

vR
r (Ai) ⋉ vR

c (Bi)

 ⋉ J ⋉ vR
s (X) = vR

r (C)

⇐⇒ M̃vR
s (X) = vR

r (C).

For the real matrix equation
M̃vR

s (X) = vR
r (C),

we can obatin vR
s (X) = M̃†vR

r (C)+
(
I2n2−n − M̃†M̃

)
y by using Lemma 4.1. Thus we get the formula (4.3).

Notice
min

X∈RBn×n
HQ

∥X∥ ⇐⇒ min
vR

s (X)∈R2n2−n

∥∥∥vR
s (X)
∥∥∥ ,

we obtain that the minimal norm reduced biquaternion Hermitian solution XHQ ∈ S HQ of Problem 2
satisfies

vR
s (XHQ) = M̃†vR

r (C).

Therefore, (4.4) holds. □

Corollary 4.6. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

n×q
Q , C ∈ RBm×q

Q , M̃ is given in Theorem 4.5. Then the following
statements are equivalent:
(c) Problem 2 has a solution X ∈ S HQ;
(d) (M̃M̃† − I4mq)vR

r (C) = 0.
Moreover, if (c) holds, the solution set of (1.1) over RBn×n

HQ can be represented as

S HQ =
{
X | vR

s (X) = M̃†vR
r (C) +

(
I2n2−n − M̃†M

)
y, ∀y ∈ R2n2−n

}
.

Remark 4.2. When X is a Hermitian matrix, Theorem 4.4 can be used to transform the reduced

biquaternion matrix equation
n∑

i=1
AiXBi = C into real matrix equation M̃vR

s (X) = vR
r (C). Corollary 4.6

can be obtained by a proof method similar to Corollary 4.3.

Similar to Theorem 4.4, we can give the relationship between vR
s (X) and vR

c (X) in the reduced
biquaternion Anti-Hermitian matrix for studying Problem 3.
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Theorem 4.7. Let X =


x11 · · · x1n
...

...

xn1 · · · xnn

 ∈ RBn×n
AQ , xi j = x1

i j + x2
i ji + x3

i jj + x4
i jk ∈ RBQ, denote

L̃Xi =



x2
ii

x3
ii

x4
ii

vR(xi(i+1))
...

vR(xin)


, vR

s (X) =


L̃X1

L̃X2
...

L̃Xn

 , J′ =



J′1
...

J′r
...

J′n


, J′r =



J′1r
...

J′mr
...

J′nr


,

J′mr
m<r
=


−
(
δ
σ+ξ

2n2+n

)T(
δ
σ+ξ+1
2n2+n

)T(
δ
σ+ξ+2
2n2+n

)T(
δ
σ+ξ+3
2n2+n

)T , J′mr
m=r
=


01×2n2+n(
δτ+1

2n2+n

)T(
δτ+2

2n2+n

)T(
δτ+3

2n2+n

)T , J′mr
m>r
=



(
δ
τ−ξ

2n2+n

)T(
δ
τ−ξ+1
2n2+n

)T(
δ
τ−ξ+2
2n2+n

)T(
δ
τ−ξ+3
2n2+n

)T ,
where, σ = (m−1)(8n+6−4m)

2 , τ = (r−1)(8n+6−4r)
2 , ξ = 4(r − m). Then

vR
c (X) = J′ ⋉ vR

s (X).

Theorem 4.8. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

n×q
Q , C ∈ RBm×q

Q , denote

M̂ = G3 ⋉G4 ⋉
(
I4mn ⊗W[4nq,4n2]

)
⋉

 k∑
i=1

vR
r (Ai) ⋉ vR

c (Bi)

 ⋉ J′,

where, G3,G4 are defined in Theorem 4.5. Hence the set S AQ of Problem 3 is represented as

S AQ =
{
X|vR

s (X) = M̂†vR
r (C) +

(
I2n2+n − M̂†M̂

)
y, ∀y ∈ R2n2+n

}
. (4.5)

And the minimal norm reduced biquaternion Anti-Hermitian solution XAQ ∈ S AQ of Problem 3 satisfies

vR
s (XAQ) = M̂†vR

r (C). (4.6)

Corollary 4.9. Let Ai ∈ RB
m×n
Q , Bi ∈ RB

n×q
Q , C ∈ RBm×q

Q , M̂ is given in Theorem 4.8. Then the following
statements are equivalent:
(e) Problem 3 has a solution X ∈ S AQ;
(f) (M̂M̂† − I4mq)vR

r (C) = 0.
Moreover, if (f) holds, the solution set of (1.1) over RBn×n

AQ can be represented as

S AQ =
{
X|vR

s (X) = M̂†vR
r (C) +

(
I2n2+n − M̂†M̂

)
y, ∀y ∈ R2n2+n

}
.

5. Algorithm and numerical experiments

Based on the algebraic solutions in Section 4, we now present the numerical algorithms and
numerical examples for finding solutions of Problems 1–3 in this section.
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Algorithm 5.1. For Problem 1
Step1: Input: Ai, Bi, C, W[4pq,4np] Ai ∈ RB

m×n
Q Bi ∈ RB

p×q
Q

and C ∈ RBm×q
Q (i = 1 : k)

Step2: Compute vR
r (Ai), vR

c (Bi), vR
r (C), G1, G, M

Step3: if b in Corollary 4.3 holds, then calculate the
solution X ∈ S Q according to (4.1).

Step4: if b in Corollary 4.3 and rank(M) = 4np hold, then
calculate the unique solution XQ according to (4.2).

Step5: Output: the solution X ∈ S Q

Algorithm 5.2. For Problem 2
Step1: Input: Ai, Bi, C, W[4nq,4n2] Ai ∈ RB

m×n
Q Bi ∈ RB

n×q
Q

and C ∈ RBm×q
Q (i = 1 : k)

Step2: Compute vR
r (Ai), vR

c (Bi), vR
r (C), G3, G4, M̃

Step3: if d in Corollary 4.6 holds, then calculate the
solution X ∈ S HQ according to (4.3).

Step4: if b in Corollary 4.6 and rank(M̃) = 2n2 − n hold, then
calculate the unique solution XHQ according to (4.4).

Step5: Output: the solution X ∈ S HQ

Algorithm 5.3. For Problem 3
Step1: Input: Ai, Bi, C, W[4nq,4n2] Ai ∈ RB

m×n
Q Bi ∈ RB

n×q
Q

and C ∈ RBm×q
Q (i = 1 : k)

Step2: Compute vR
r (Ai), vR

c (Bi), vR
r (C), G3, G4, M̂

Step3: if f in Corollary 4.9 holds, then calculate the
solution X ∈ S AQ according to (4.5).

Step4: if f in Corollary 4.9 and rank(M) = 2n2 + n hold, then
calculate the unique solution XAQ according to (4.6).

Step5: Output: the solution X ∈ S AQ

To simplify the process of checking the algorithms, in the following numerical examples, we use
the reduced biquaternion matrix equation A1XB1 +A2XB2 = C. To ensure that Problem 1 under testing
has a solution, we suppose Ai, Bi, C, X are known reduced biquaternion matrices.

Example 5.1. Let m = n = p = q = 3, and Ai = Ai1 + Ai2i + Ai3j + Ai4k ∈ RBm×n
Q , Bi = Bi1 + Bi2i +

Bi3j + Bi4k ∈ RBp×q
Q (i=1,2), X = X1 + X2i + X3j + X4k ∈ RBn×p

Q . We take

A11 =


5 2 4
3 7 6
7 2 8

 , A12 =


1 5 3
9 4 5
8 4 5

 , A13 =


8 4 4
8 8 9
6 5 9

 , A14 =


6 2 2
6 3 8
6 5 2

 ,
A21 =


2 4 4
2 3 2
2 9 9

 , A22 =


10 3 3
4 4 6
1 6 7

 , A23 =


2 3 1
1 4 3
3 5 8

 , A24 =


0 5 5
9 6 10
7 2 5

 ,
B11 =


5 6 4
2 7 10
5 4 0

 , B12 =


9 1 7
9 3 1
8 3 7

 , B13 =


1 8 9
7 7 3
5 9 7

 , B14 =


2 5 6
0 5 6
7 9 9

 ,
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B21 =


8 2 5
6 9 2
2 0 10

 , B22 =


7 1 1
5 7 5
5 0 1

 , B23 =


8 1 10
8 7 6
7 5 8

 , B24 =


5 1 4
4 1 8
8 2 8


X1 =


1 4 3
4 7 4
5 6 0

 , X2 =


10 4 3
2 2 10
1 5 9

 , X3 =


1 4 4
7 5 10
3 9 3

 , X4 =


7 7 1
7 7 10
5 2 2

 .
Compute

C = A1XB1 + A2XB2. (5.1)

Denote ε1 = log10∥MM† − I4mq∥, we obtain

rank(M) = 36, ε1 = −12.6916.

According to Algorithm 5.1, the reduced biquaternion matrix equation (5.1) has a unique solution
XQ ∈ S Q, we can get ε2 = log10∥XQ − X∥ = −11.3929.

Example 5.2. Ai and Bi (i = 1, 2) are defined in Example 5.1. Suppose

X̃1 =


1 2 2
2 0 5.5
2 5.5 7

 , X̃2 =


0 −2 2.5
2 0 −3
−2.5 3 0

 , X̃3 =


0 −2 −1.5
2 0 0

1.5 0 0

 , X̃4 =


0 1.5 0
−1.5 0 1

0 −1 0

 ,
X̃ = X̃1 + X̃2i + X̃3j + X̃4k

=


1 2 − 2i − 2j + 1.5k 2 + 2.5i − 1.5j

2 + 2i + 2j − 1.5k 0 5.5 − 3i + k
2 − 2.5i + 1.5j 5.5 + 3i − k 7

 ∈ RB3×3
HQ

Compute (5.1). we can get ε3 = log10∥M̃M̃† − I4mq∥ = −10.7394 and rank(M̃) = 15. The reduced
biquaternion matrix equation (5.1) has a unique solution XHQ by using Algorithm (5.2). So we can get
ε4 = log10∥XHQ − X̃∥ = −13.5758.

Example 5.3. Ai and Bi (i = 1, 2) are defined in Example 5.1. Suppose

X1 =


0 −0.5 −1.5

0.5 0 2
1.5 −2 0

 , X2 =


1 7 5.5
7 4 4.5

5.5 4.5 5

 , X3 =


8 6 5
6 8 7
5 7 9

 , X4 =


6 4 4
4 3 6.5
4 6.5 2

 ,
X = X1 + X2i + X3j + X4k

=


i + 8j + 6k −0.5 + 7i + 6j + 4k −1.5 + 5.5i + 5j + 4k

0.5 + 7i + 6j + 4k 4i + 8j + 3k 2 + 4.5i + 7j + 6.5k
1.5 + 5.5i + 5j + 4k −2 + 4.5i + 7j + 6.5k 5i + 9j + 2k

 ∈ RB3×3
AQ
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Similarly, Compute (5.1). we can get ε5 = log10∥M̂M̂† − I4mq∥ = −9.6723 and rank(M̃) = 21. The
reduced biquaternion matrix equation (5.1) has a unique solution XAQ by using Algorithm 5.3. So we
can get ε6 = log10∥XAQ − X∥ = −12.6248.

Example 5.4. For m = n = p = q = 2K, Ai and Bi generated randomly for K = 2 : 6. Consider the
reduced biquaternion matrix equation (1.1), we record the errors in the three Problems in Figure 1.

Figure 1. Errors in different dimensions.

Examples 5.1–5.4 are used to show the feasibility of Algorithms 5.1–5.3.

6. Conclusions

In this paper, we proposed a real vector representation of reduced biquaternion matrix, which
preserves the relative positions of the elements in the original reduced biquaternion matrix. For every
element in reduced biquaternion, the real and three imaginary parts are remained as a whole.
Combined this real vector representation with semi-tensor product of matrices, we solved the
Problems 1–3.
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