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Abstract: We calculate several identities involving some Gauss sums of the 2¢-order character modulo
an odd prime p by using the elementary and analytic methods, and finally give several exact and
interesting formulae for them. The properties of the classical Gauss sums play an important role in the
proof of this paper.
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1. Introduction

Let ¢ > 1 be an integer and let y be Dirichlet character modulo g. The Gauss sums G(m, x; q) is
defined as

q
G(m,x;q) = Zx(a)e(%),
a=1

where m is integer and e(y) = e*™.

Gauss sums is very important in the analytic number theory and related research filed. Many
scholars studied its properties and obtained a series of interesting results (see [1-4,6,7,9-14,17,18]).
For example, let y be the primitive character modulo g, we have

G(m,x;q) = x(m)G(1, x; q) = x(m)t(x) and |t(x)| = /g,

where 7 (y) = X7_ x(b)e (s) and Y is the complex conjugate of y.

Berndt and Evans [3] studied the properties of cubic Gauss sums. Zhang and Hu [15] studied the
number of the solutions of the diagonal cubic congruence equation mod p, they obtained the following
results: Let p be a prime with p = 1 mod 3. Then for any third-order character A modulo p, one has


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022180

3251

the identity
(1) + 7 (1) = dp. (1.1)

where d is uniquely determined by 4p = d* + 27b* and d = 1 mod 3.

In addition, Chen and Zhang [8] studied the case of the fourth-order character modulo p, and
obtained an identity (see the Lemma 1). Chen [5] studied the properties of the Gauss sums of the
sixth-order character modulo p. It is not hard to see from [5, 8, 15], the number of these characters
i1s 2. What about the number of the characters > 2? Motivated by that, Zhang et al. [16] studied the
eight-order and twelve-order characters.

In this article, we shall further study the generalization. That is, the number of the characters is
¢(2k) = 21 > 4. We prove several identities involving the Gauss sums of the 2¢-order character
modulo an odd prime p with p = 1 mod 2%( k > 3). We give several exact and interesting formulae
for them.

Theorem 1. Let p be an odd prime with p = 1 mod 16. If ¢ denotes a sixteen-order character
modulo p, then we have the identity

' (X&) N ' (Xﬁé) _ ' ()&) +T4 (Xié) 2 |a
F00 P )| [P 0d) S

185 (a+a
where @ = > E ( ) a denotes the multiplicative inverse of a modulo p, and (;) denotes the
- p
a=1

Legendre’s symbol modulo p.

Theorem 2. Let p be an odd prime with p = 1 mod 32. If 3, denotes a 32-order character modulo p,
then we have the identity

) ) | ) )| 2
™ (y32) - T ()(22) T4 ()@2) T4 ()(g) /2

More generally, for any positive integer k, we have the following theorem.

Theorem 3. Let k > 5 be an integer. For any prime p with p = 1 mod 2, if yo« = W denotes a 2%-order
character modulo p, then we have the identity

2]\»71_1 2k71_1
[1 #() [] <)
j=1 j=1
j=—1 mod 8 j=—3 mod 8 2 |al

+ .
21 2k \P

[T <) ] #@)
h= 1hr:ni)d 8 hE3h;11)d 8
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2. Several lemmas

In this section, we will give several lemmas by using the relevant properties of character sums.

Lemma 1. Let p be a prime with p = 1 mod 4, then for any fourth-order character y, modulo p,

we have

2 () + 7 (7) = 27 - o

12
whereazEZ(

) and ) = x» denotes the Legendre’s symbol modulo p.
a=1

Proof. See Lemma 3 in [7].

O

Lemma 2. Let p be a prime with p = 1 mod 4. Then for any non-principal character  mod p, we

have the identity

RN (7%)
‘ (‘” ) - ) '

Proof. From the properties of the classical Gauss sums we have

p-1 p-1 p-1

Du(@-1)=> w(@+1?-1)= > y(a*+2q) wa)w(mz)

a=0 a=0 a=1

1 5 N (ba+2) | S b(a +2)

=—= Y(a) ) (D) ( )= — w(b) ) Yla) ( )

T(w); PN w); = MW

—2

_T(lﬁ) p-1 o (%) ~ T(!//) p-l — (%) B l//(4)7'(l// )T(lr//)
0 ;w(b)wao)e ") v e )= — R

On the other hand, for any integer b with (b, p) = 1, we have the identity

p—

1 b2
e(%)—HZ(lm(a))e( ) Z)(z(a)e( ) x2(b) - V.
=0

so note that y,(—1) = 1 we also have the identity

a

& S N ()
p(a@®-1)=— w<b>( )
a=0 <a ) T('ﬁ) a=0 b=1 p
-1 -1 -1
LS J<b>e(_—b)p e(”—“z):““_z)p J(b»(z(me( )
T(lﬁ) b=1 Pl \ P T(lﬁ) b=1
—1 __ -
P e[ 2) B
r(¥) 4= P w(¥)

(2.1

(2.2)
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Combining (2.1) and (2.2) we have the identity

o\ U= Pt (ix)
’ (‘” ) - ) '

This proves Lemma 2. O

Lemma 3. Let p be an odd prime with p = 1 mod 8. If yg is an 8-order character modulo p, then
we have

'74 (yg) + o ()(;)‘ =2. p% .

Proof. Taking ¢ = ys, then > = y; is a four-order character modulo p. Note that y*(—4) = 1, from
Lemmas 1 and 2 we have

p-T (JXZ) P 2 (Yx2)

2. @.Q:TZ(J2)+TZ(¢/2):

() 72 (J)
or _
) “faxn) _2-a 03
() 72 (J) P :
Note that yy, = ¢°, ¥ = ¢’ and ig %% = ig?;, from (2.3) we have the identity
4 4( 3\ _ 2'_“ 2 2(. 3

™ (vs) + 7 (13) = 7w (x3)- (2.4)
Now Lemma 3 follows from (2.4). O

3. Proofs of the theorems

In this section, we shall give the proof of all results by using the properties of the classical Gauss
sums, the elementary and analytic methods. For Theorem 1, Let p be an odd prime with p = 1 mod 16,
and y¢ is a sixteen-order character modulo p, then from Lemma 2 we have

B0 () p* 7 ()

Y (ovg) = = 3.1
™ ) ™ (x16) ™ (x16) G-
and 12 2 4 2 2 4
T12_4). p2 . 1 . 5
7t (»72)=X‘6( Aiaaal ) S (X‘ﬁ). (3.2)

(o (X ?6) %4 ?6)
Applying (3.1), (3.2) and Lemma 3 we have

T ()(Z(,) N ' (Xfé)
™ (x16) 74()(?6)

2- p% e = ’74 (xg) + 7" ()(é)‘ = '74 (g) + 7 ()?;’)' =p*-
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or identity
“(d) | 7 ()

_2-|a
™(xie) 4 (X?(,) - ‘

\p

This proves Theorem 1.
Now we prove the Theorem 2. Let p be an odd prime with p = 1 mod 32, and y3; is a 32-order
character modulo p, then from Lemma 2 we have

Tl p? 7 ((5)  Ta@-pr 7 ()

™ (Yi6) = o) = o (3.3)
" Xo=H - P2 () @ p? (i)
™ (¥ls) = — = — . (3.4)
T (X 32) T (X 32)
Since)(i(Z) = x2(2) = 1, from (3.3) and (3.4) we get
() (1) 5
™ () (ng) . T ()(5) .
and
() _ T () 7 (i)
—— = ) (3.6)
“)7d))
Noting that
™ (¥a) - 7 )?32) N 7 ()_(gz) s ()?;)
(%) () ) ()
- ) ) ) () (3.7)
T4Q\,/32)'T4(X9 ) 74()(;2)'74()(;,;) '

' (ng) T4 (/\75) L (ng) T (Xég)
o) () () T (k)
P ) ) ()T ()
(¥h) ™ 0)  ™0) ()
[P0 T ) | ) ()
P h) ) ) ()
) Tae)| [T T 20
P@0) T (T)| [Fhe) ()| VP
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This proves Theorem 2.

From Theorems 1 and 2 we know that Theorem 3 is true for k = 4 and 5. Assuming that Theorem 3

holds true for k = n > 5. That is,

Zn_]—l 2)1—1_1
4(j 4
[[ “) ] #@)
J=1 Jj=1
j=-1mod 8 j==3 mod 8 2
2)171_1 \ \ 2n71_1 \ \ \/1_) ’
<) ] W)
h=1 h=1
h=1 mod 8 h=3 mod 8
where ¥ = y, is a 2"-order character modulo p.
So the conjugate of (3.8) is
21171_1 ) znfl_l .
[T ) I *@)
J=1 J=1
j=—1mod 8 j=—3mod 8 2
| | '
() @)
T\ T\
h=1 h=1
h=1 mod 8 h=3 mod 8

Then for k = n+ 1 and j with j = 1 mod 8, from Lemma 2 we have

() ()7 () 7

j(21=23+1)
X2n+l )

Note that the identity

2I’l
s=0

)?3(8”1) (24) _ )?2"*3+2"*1(2n*

on

()

'-1) (212) -1

From (3.9) and (3.10) we may immediately deduce the identity

Taking the conjugate for (3.11), this implies that Theorem 3 is complete for k = n + 1.

This proves Theorem 3 by mathematical induction.
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2"—1 2"—1
| | 4 (7/ 4 (o
T (inﬂ) l_[ T (inﬂ)
J=1 J=1
j=—1mod 8 j==3mod 8 2 |CY|
2] 2] N
4 (=h 4 (=h p
T XZ'H'] T X2n+1
h=1 h=1
h=1 mod 8 h=3 mod 8
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4. Conclusions

The main result of this paper is to prove a new identity for the classical Gauss sums. That is, if p is
a prime with p = 1 mod 2k k > 4, then for any 2k_order character ¥ modulo p, we have the identity

2k—1_1 2k—|_1
[ 7)) [] ~@)
J=1 J=1
j=—1mod 8 j=—-3mod 8 2 |a/|
+ = .
21\'71_1 zkfl_l [p
[[ 7)) [] 7@
h=1 h=1
h=1 mod 8 h=3 mod 8

These results give the exact values of some special Gauss sums and reveal the values distribution
of classical Gauss sums. This not only promotes the research of some well-known sums, such as
Kloosterman sums, which plays an important role in the study of the Diophantine equation, but also
makes new contributions to the research of other related fields.
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