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1. Introduction

Many fundamental problems in optimization and mathematical programming can be described as a
linear complementarity problem (LCP). Such as quadratic programming, nonlinear obstacle problem,
invariant capital stock, the Nash eqilibrium point of a bimatrix game, optimal stopping, free boundary
problem for journal bearing and so on, see [1–3]. The error bound on the distance between an arbitrary
point in Rn and the solution set of the LCP plays an important role in the convergence analysis of
algorithm, for details, see [4–7].

It is well known that LCP has a unique solution for any vector q ∈ Rn if and only if M is a P-matrix.
Some basic definitions for the special matrix are given below: A matrix M = (mi j) ∈ Rn×n is called a
Z-matrix, if mi j ≤ 0 for any i , j; a P-matrix, if all its principal minors are positive; an M-matrix, if
M−1 ≥ 0 and M is a Z-matrix; an H-matrix, if its comparison matrix 〈M〉 is an M-matrix, where the
comparison matrix is given by

m̃i j =

{
|mi j|, i f i = j,
−|mi j|, i f i , j.

Linear complementarity problem is to find a vector x ∈ Rn such that

x ≥ 0,Mx + q ≥ 0, xT (Mx + q) = 0
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or to prove that no such vector x exists, where M = (mi j) ∈ Rn×n and q ∈ Rn. One of the essencial
problems in the LCP(M,q) is to estimate

max
d∈[0,1]n

‖(I − D + DM)−1‖∞,

which is used to bound the error ‖x − x∗‖∞, that is

‖x − x∗‖∞ ≤ max
d∈[0,1]n

‖(I − D + DM)−1‖∞‖r(x)‖∞,

where x∗ is the solution of the LCP(M, q), r(x) = min{x,Mx + q}, D = diag(di) with 0 ≤ di ≤ 1,
and the min operator r(x) denote the componentwise of the two vectors. When real H-matrices
with positive diagonal entries form a subclass of P-matrices, the error bound becomes simpler (see
formula (2.4) in [8]). Nowadays, many scholars interest in the research on special H-matrices, such
as QN-matrices [9], S -S DD matrices [10], Nekrasov matrices [11] and Ostrowski matrices [12]. The
corresponding error bounds for LCPs of QN-matrices are achieved by Dai et al. in [13] and Gao et al.
in [14]. A new error bound for the LCP of Σ-S DD matrices was given in [15], which only depended
on the entries of the involved matrices.

When the matrix A is not an H matrix we can not use formula (2.4) in [8]. However, for some
subclasses of P-matrices that are not H-matrices, error bounds for LCPs have also been needed.
For example, for S B-matrices [16], for BS -matrices [17], for weakly chained diagonally dominant
B-matrices [18], for DB-matrices [19] and for MB-matrices [20]. B-matrices as an important subclass
of P-matrices has been researched for years and has achieved fruitful results, see [18, 21–25].

In this paper, we focus on the error bound for the LCP(M, q) when M is an S -S DDS -B-matrix, that
is a P-matrix. In Section 2, we introduce some notations, definitions and lemmas, which will be used
in the subsequence analysis. In Section 3, a new error bound is presented, then the new error bound is
compared with the bound in [1]. In Section 4, we give some numerical examples and graphs to show
the efficiency of the method in our paper.

2. Preliminaries

In this section, some notations, definitions and lemmas are recalled.
Give a matrix A = (ai j) ∈ Rn×n and a subset S ⊂ 〈n〉, n ≥ 2, we denote

ri(A) =

n∑
j=1, j,i

|ai j|, i = 1, · · · n,

r j
i (A) = ri(A) − |ai j|, where j , i, i = 1, · · · , n,

and also

rS
i (A) =


∑

j∈S , j,i |ai j|, i ∈ S ,∑
j∈S |ai j|, i < S .

S̄ ∪ S = 〈n〉, S̄ is the complement of S in 〈n〉.
In according with [26], a matrix A = (ai j), n ≥ 2 is said to be S -S DD if the following conditions

are fulfilled:
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|aii| > rS
i (A), f or all i ∈ S ,

and
[|aii| − rS

i (A)][|a j j| − rS̄
j (A)] > rS̄

i (A)rS
j (A), f or all i ∈ S and j ∈ S̄ .

We extend the S -S DD matrices by introducing the following definitions.

Definition 2.1. [26] A matrix A = (ai j) ∈ Rn×n is said to be S -S DDS (S -S DD Sparse) if the following
conditions are satisfied:

(i) |aii| > rS
i (A) for all i ∈ S ,

(ii) |a j j| > rS̄
j (A) for all j ∈ S̄ ,

(iii) For all i ∈ S and all j ∈ S̄ such that ai j , 0 or a ji , 0

[|aii| − rS
i (A)][|a j j| − rS̄

j (A)] > rS̄
i (A)rS

j (A). (2.1)

If A = (ai j) ∈ Rn×n for each i = 1, · · · , n and r+
i := max{0, ai j| j , i}, then we write A = B++C, where

B+ = (bi j) =


a11 − r+

1 · · · a1n − r+
1

...
...

an1 − r+
n · · · ann − r+

n

 , C =


r+

1 · · · r+
1

...
...

r+
n · · · r+

n

 . (2.2)

Definition 2.2. Suppose that A = (ai j) ∈ Rn×n, n ≥ 2 is matrix with the form of A = B+ + C,we say A is
an S -S DDS -B matrix if and only if B+ is an S -S DDS matrix with positive diagonal entries.

There is an equivalence definition in [27], which is closely related to strictly diagonally
dominant matrices.

Definition 2.3. [27] Let A = (ai j) ∈ Rn×n and A = B+ + C, where B+ is defined as (2.2), then A is an
B-matrix if and only if B+ is a strictly diagonally dominant matrix.

Immediately, we know S -S DDS -B matrices contain B-matrices from Definition 2.3. That is

B-matrices ⊆ S -S DDS -B matrices.

Now,we will introduce some useful lemmas.

Lemma 2.1. [26] Let A = (ai j) ∈ Rn×n, n ≥ 2 is an S -S DDS matrix, then A is a nonsingular H-matrix.

Lemma 2.2. [26] Let A = (ai j) ∈ Rn×n, n ≥ 2 is an S -S DDS matrix, then

‖A−1‖∞ ≤

 max
i∈S :rS̄

i (A)=0

1
|aii| − rS

i (A)
, max

j∈S̄ :rS
j (A)=0

1

|a j j| − rS̄
j (A)

, max
i∈S , j∈S̄ :ai j,0

f S
i j (A), max

i∈S , j∈S̄ :a ji,0
f S̄
i j (A)

 , (2.3)

where

f S
i j (A) =

|a j j| − rS̄
j (A) + rS̄

i (A)

[|aii| − rS
i (A)][|a j j| − rS̄

j (A)] − rS̄
i (A)rS

j (A)
, i ∈ S , j ∈ S̄ .
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Lemma 2.3. [1] Let A ∈ Rn×n is a B-matrix, B+ is the matrix in (2.2), then

max ‖(I − D + DM)−1‖∞ ≤
n − 1

min{β, 1}
, (2.4)

where β = mini∈N{βi}, βi = bii −
∑n

j,i |bi j|.

Lemma 2.4. [21] Let γ > 0 and η > 0, for any x ∈ [0, 1],

1
1 − x + γx

≤
1

min{γ, 1}
,

ηx
1 − x + γx

≤
η

γ
.

Lemma 2.5. [27] Let A ∈ Rn×n is a nonsingular M-matrix, P is a nonnegative matrix with rank 1,
then A + P is a P-matrix.

3. Main results

In this section, a new error bound of LCP(M, q) is presented when M is an S -S DDS -B matrix.
Firstly, we prove that an S -S DDS -B matrix is a P-matrix.

Lemma 3.1. Let A ∈ Rn×n (n ≥ 2) be an S -S DDS -B matrix, then A is a P-matrix.

Proof. By Definition 2.2, we have that C in (2.2) is a nonnegative matrix with rank 1. By the fact that
S -S DDS matrix is a nonnegative H-matrix, we have B+ is a nonnegative M-matrix. We can conclude
A is a P-matrix from Lemma 2.5. �

Lemma 3.2. Suppose that M = (mi j) ∈ Rn×n (n ≥ 2) is an S -S DDS matrix with positive diagonal
entries, let

M̃ = I − D + DM = (m̃i j), D = diag(di), 0 ≤ di ≤ 1,

then M̃ is an S -S DDS matrix with positive diagonal entries.

Proof. From M̃ = I − D + DM = (m̃i j), we have

m̃i j =


1 − di + dimi j, i = j,

dimi j, i , j.

Because M is an S -S DDS matrix with positive diagonal entries and D = diag(di), 0 ≤ di ≤ 1, for any
i ∈ S , we get

|m̃ii| = |1 − di + dimii| > |dimii| > dirS
i (M) = rS

i (M̃).

Similarly, for some j ∈ S̄ , we have

|m̃ j j| = |1 − d j + d jm j j| > |d jm j j| > d jrS̄
j (M) = rS̄

j (M̃).

For any i ∈ S , j ∈ S̄ , we obtain

(|m̃ii| − rS
i (M̃))(|m̃ j j| − rS̄

j (M̃)) = (|1 − di + dimii| − dirS
i (M))(|1 − d j + d jm j j| − d jrS̄

j (M))

> did j(|mii| − rS
i (M))(|m j j| − rS̄

j (M))

> did jrS̄
i (M)rS

j (M) = rS̄
i (M̃)rS

j (M̃).

From Definition 2.1, M̃ is an S -S DDS matrix with positive diagonal entries. �
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Theorem 3.1. Let A = [ai j] ∈ Rn×n is an S -S DDS -B matrix, denote A = B+ + C, where B+ = (bi j) is
defined as (2.2), then

max
dn∈[0,1]

‖(I − D + DA)−1‖∞ ≤ (n − 1) max{µi(B+), µ j(B+), µS
i j(B

+), µS̄
ji(B

+)}, (3.1)

where
µi(B+) = max

i∈S :rS̄
i (B+

D)=0
{(bii − rS

i (B+))−1, 1},

µ j(B+) = max
j∈S̄ :rS

j (B+
D)=0
{(b j j − rS̄

j (B+))−1, 1},

µS
i j(B

+) = max
i∈S , j∈S̄ ,bi j,0

(b j j − rS̄
j (B+))( bii−rS

i (B+)
min{bii−rS

i (B+),1} +
rS̄

i (B+)

min{b j j−rS̄
j (B+),1}

)

(bii − rS
i (B+))(b j j − rS̄

j (B+)) − rS̄
i (B+)rS

j (B+)
,

µS̄
ji(B

+) = max
i∈S , j∈S̄ ,b ji,0

(bii − rS
i (B+))(

b j j−rS̄
j (B+)

min{b j j−rS̄
j (B+),1}

+
rS

j (B+)

min{bii−rS
i (B+),1} )

(b j j − rS̄
j (B+))(bii − rS

i (B+)) − rS
j (B+)rS̄

i (B+)
.

Proof. We denote AD = I − D + DA, then

AD = I − D + DA = I − D + D(B+ + C) = B+
D + CD,

where B+
D = I − D + DB+, CD = DC. Since B+ is an S -S DDS matrix with positive diagonal entries,

it’s easy to know B+
D is an S -S DDS matrix from Lemma 3.2.

Note that

‖A−1
D ‖∞ ≤ ‖(I + (B+

D)CD)−1‖∞‖(B+
D)−1‖∞ ≤ (n − 1)‖(B+

D)−1‖∞, (3.2)

the estimation of the ‖(B+
D)−1‖∞ will be given below. Since B+

D = I−D+DB+ =: (b̃i j), from Lemma 2.2,
we have

‖(B+
D)−1‖∞ ≤ { max

i∈S :rS̄
i (B+

D)=0

1

|b̃ii| − rS̄
i (B+

D)
, max

j∈S̄ :rS
j (B+

D)=0

1
|b̃ j j| − rS

j (B+
D)
,

max
i∈S , j∈S̄ :b̃i j,0

f S
i j (B

+
D) , max

i∈S , j∈S̄ :b̃ ji,0
f S̄
i j (B

+
D)}.

When rS
i (B+

D) = 0, it is easy to get rS
i (B+) = 0, or di = 0 for any i ∈ N.

(1) If di = 0, for any i ∈ N, we get

‖(B+
D)−1‖∞ =

1
b̃ii − rS

i (B+
D)

=
1

1 − di + dibii − dirS
i (B+)

= 1

≤ max

1
min{bii−rS

i (B+),1} + 1
min{b j j−rS̄

j (B+),1}

rS̄
i (B+)

bii−rS
i (B+)

1 − rS̄
i (B+)

bii−rS
i (B+)

rS
j (B+)

b j j−rS̄
j (B+)

= µS
i j(B

+). (3.3)
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(2) If rS̄
i (B+) = 0, for any i ∈ S , we have

‖(B+
D)−1‖∞ ≤ max

i∈S :rS̄
i (B+

D)=0

1
b̃ii − rS

i (B+
D)

= max
i∈S :rS̄

i (B+
D)=0

1
1−di+dibii

1 − dirS
i (B+)

1−di+dibii

≤ max
i∈S :rS̄

i (B+
D)=0

{
1

bii − rS
i (B+)

, 1
}
. (3.4)

(3) If rS̄
i (B+) = 0, for any i ∈ S , j ∈ S̄ , we obtain

‖(B+
D)−1‖∞ ≤ max

j∈S̄ :rS
j (B+

D)=0

1

b̃ j j − rS̃
j (B+

D)
=

1

1 − d j + d jb j j + d jrS̃
j (B+

D)

≤ max
j∈S̄ :rS

j (B+
D)=0

 1

b j j − rS̄
j (B+)

, 1

 . (3.5)

(4) If rS̄
i (B+

D) , 0, there exist b̃i j , 0 for some j ∈ S̄ , we derive ‖(B+
D)−1‖∞ as follow:

‖(B+
D)−1‖∞ ≤ max

i∈S , j∈S̄ :b̃i j,0
f S
i j (B

+
D)

= max
i∈S , j∈S̄ :b̃i j,0

b̃ j j − rS̄
j (B+

D) + rS̄
i (B+

D)

[b̃ii − rS
i (B+

D)][b̃ j j − rS̄
j (B+

D)] − rS̄
i (B+

D)rS
j (B+

D)

= max
i∈S , j∈S̄ :bi j,0

1
min{(bii−rS

i (B+
D),1} +

rS̄
i (B+

D)

(bii−rS
i (B+

D)) min{(b j j−rS̄
j ,1}

1 −
rS̄

i (B+
D)rS

j (B+
D)

(bii−rS
i (B+

D))(b j j−rS̄
j (B+

D))

≤ max
i∈S , j∈S̄ :bi j,0

1
min{(bii−rS

i (B+),1} +
rS̄

i (B+)

(bii−rS
i (B+))min{(b j j−rS̄

j ,1}

1 −
rS̄

i (B+)rS
j (B+)

(bii−rS
i (B+))(b j j−rS̄

j (B+))

= µS
i j(B

+). (3.6)

(5) If rS
j (B+

D) , 0, there exist b̃ ji , 0 for some i ∈ S , we arrive at the inequality

‖(B+
D)−1‖∞ ≤ max

i∈S , j∈S̄ :b̃ ji,0
f S
i j (B

+
D) ≤ µS̄

ji(B
+). (3.7)

Consequently, (3.1) holds. The proof is completed. �

The bound in (3.1) also holds for B-matrix, because B-matrix is a subclass of S -S DDS -B-matrix.
Next, we will indicate that the bound in Theorem 3.1 is better than that in Lemma 2.3 in some
conditions.

Theorem 3.2. If A = (ai j) ∈ Rn×n is an S-SDDS-B matrix which can be written as A = B+ + C, where
B+ = (bi j) and C are as (2.2). For all i ∈ S , j ∈ S̄ , if bii − rS

i (B+) < 1, b j j − rS̄
j (B+) < 1, then

max{µi(B+), µ j(B+), µS
i j(B

+), µS̄
ji(B

+)} ≤
1

min{β, 1}
. (3.8)
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Proof. From Lemma 2.3, β = mini∈N{βi} and βi = bii −
∑

j∈N, j,i bi j, when bii − rS
i (B+) < 1 and b j j −

rS̄
j (B+) < 1, it is obvious that

µi(B+) = max
i∈S :rS̄

i (B+)=0
{

1
bii − rS

i (B+)
, 1} =

1
bii − rS

i (B+)
≤

1
min{β, 1}

.

In the same way, we get

µ j(B+) = max
j∈S̄ :rS

j (B+)=0
{

1

b j j − rS̄
j (B+)

, 1} =
1

b j j − rS
j (B+)

≤
1

min{β, 1}
.

When bii − rS
i (B+) < 1 and b j j − rS̄

j (B+) < 1, it holds that

µS
i j(B

+) ≤ max
i∈S , j∈S̄ :ai j,0

b j j − rS̄
j (B+) + rS̄

i (B+)

(bii − rS
i (B+))(b j j − rS̄

j (B+)) − rS̄
i (B+)rS

j (B+)
.

When b j j − r j(B+) > bii − ri(B+) = bii − rS
i (B+) − rS̄

i (B+), for any i ∈ S , j ∈ S̄ , we can multiply rS̄
i (B+)

on two sides and plus (bii − rS
i (B+))(b j j − rS̄

j (B+)), then

(bii − rS
i (B+))(b j j − rS̄

j (B+)) − rS̄
i (B+)rS

j (B+) > (b j j − rS̄
j (B+) + rS̄

i (B+))(bii − ri(B+)),

we have

b j j − rS̄
j (B+) + rS̄

i (B+)

(bii − rS
i (B+))(b j j − rS̄

j (B+)) − rS̄
i (B+)rS

j (B+)
<

1
bii − ri(B+)

≤
1

min{β, 1}
.

When b j j − r j(B+) = b j j − rS
j (B+) − rS̄

j (B+) ≤ bii − ri(B+), rS
j (B+), the following inequality can obtain

in the same way

bii − rS
i (B+) + rS

j (B+)

(bii − rS
i (B+))(b j j − rS̄

j (B+)) − rS̄
i (B+)rS

j (B+)
<

1
b j j − r j(B+)

≤
1

min{β, 1}
.

So the conclusion in (3.8) holds. �

4. An application

In this section, an example is given to show the advantage of the bound in Theorem 3.1.

Example 1. Consider the S -S DDS -B matrix

A =


0.6 0.1 0 0.1
0.1 0.5 0.1 0
0 0.1 0.6 0.1
0 0.1 0 0.4

 .
AIMS Mathematics Volume 7, Issue 2, 3239–3249.
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Matrix A can be split into A = B+ + C, where

B+ =


0.5 0 −0.1 0
0 0.4 0 −0.1
−0.1 0 0.5 0
−0.1 0 −0.1 0.3

 ,C =


0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1

 .
Since A is a B-matrix, by Lemma 2.3, then

max
d∈[0,1]4

‖(I − D + DA)−1‖∞ ≤ 30. (4.1)

Because A is a B-matrix, so it is an S -S DDS -B matrix. When S = (1, 2, 3), S̄ = (4), we also can
compute the complementarity error bound by Theorem 3.1 as follow:

max
d∈[0,1]4

‖(I − D + DA)−1‖∞ ≤ 18.00. (4.2)

The results in (4.1) and (4.2) indicate that Theorem 3.1 is better than Lemma 2.3.

It is shown by Figure 1, in which the first 1000 matrices are given by the following MATLAB codes,
that 18 is better than 30 for max ‖(I−D+DA)−1‖∞. Blue stars in Figure 1 represent the ‖(I−D+DA)−1‖∞

when matrices D come from 1000 different random matrices in [0,1].

0 200 400 600 800 1000
0

5

10

15

20

25

30

i

||
(I

−
D

+
D
M

)−
1
||
∞

 

 
The bound in Theorem 1
The bound in Lemma 3

Figure 1. ‖(I − D + DA)−1‖∞ for the first 1000 matrices D generated by diag(rand(5,1)).

MATLAB codes: For i = 1:1000; D=diag(rand(5,1)); end.
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Example 2.

A =



12 1 2 2 1 1 1
3 18 0 3 2 3 3
2 2 11 1 1 1 2
2 3 0 15 3 3 3
2 2 2 0 10 2 2
3 1 3 0 3 9 2
2 0 1 1 2 2 20


.

A can be split into A = B+ + C, where

B+ =



10 −1 0 0 −1 −1 −1
0 15 −3 0 −1 0 0
0 0 9 −1 −1 −1 0
−1 0 −3 12 0 0 0
0 0 0 −2 8 0 0
0 −2 0 −3 0 6 −1
0 −2 −1 −1 0 0 18


, C =



2 2 2 2 2 2 2
3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 3 3 3 3 3 3
2 2 2 2 2 2 2
3 3 3 3 3 3 3
2 2 2 2 2 2 2


.

Taking in account that B+ is not a a strictly diagonally dominant matrix and so A is not a B-matrix.
It is easy to check that when S = {1, 2, 3, 4} and S̄ = {5, 6, 7}, it fulfills Definition 2.2. Therefore, by
Theorem 1, we obtain

max
d∈[0,1]n

‖(I − D + DA)−1‖∞ ≤ 2.8002.

5. Conclusions

In this paper, we first give a new error bound for the LCP(M,q) with S -S DDS -B matrices, which
depends only on the matrix of M. Then, based on the new result, we compare it with the error bound
in [1]. From Figure 1, we can find that our result improves that in [1].
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