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1. Introduction

The fuzzy arithmetic operations and concept of fuzzy numbers were firstly discussed and introduced
by Dubois and Prade [8], Nahmias [17], and Zadeh [6, 23]. In [14], Mazandarani et al.introduced the
concepts of granular difference, granular metric, continuous fuzzy functions, granular derivative and
four basic operations. Based on the result of [14], Abbasi and Jalali in [1] introduced a novel approach
for solving fully fuzzy linear systems and their duality. Fuzzy systems are used to a variety of problems
ranging from fuzzy tracking control to fuzzy linear dynamical systems [2], fuzzy linear systems [9],
fuzzy matrix discrete dynamical systems [19] and so on. In [7], Dong et al. introduced a novel approach
of solving fuzzy matrix games through a ranking value function.

Fuzzy linear system plays an important role in various fields, such as optimization, physics, statis-
tics, engineering, economics, information acquisition, and even social science. In [9], Friedman et al.
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introduced a general model for solving fuzzy linear system (FLS), whose right-hand side column is
an arbitrary fuzzy number vector and the coefficient matrix is crisp, by the embedded method. In [3],
Asady et al. considered the full row rank system, using its similarity method to solve the m × n order
fuzzy linear system for m 6 n. Later, Wang and Zheng [22, 24] studied the m × n order consistent and
inconsistent fuzzy linear system by using generalized inverses of the coefficient matrix. In [13], Gong
and Guo proposed a general model for solving inconsistent general fuzzy matrix equation (GFME),
whose right-hand is an arbitrary fuzzy matrix and the coefficient matrix is crisp. However, by using
aforementioned methods, the general strong solutions of the FLS can not be obtained. Mihailović,
et al. in [15, 16] proposed two similarity methods for obtaining all solutions of the FLS by using
the Moore-Penrose inverse and Group inverse. Based on the method of [9, 15], Jiang ang wang [12]
proposed an algorithm for obtaining all solutions of the FLS by using Core inverse, and showed the
importance of the Core-EP inverse of the coefficient matrix in solving GFME.

A matrix X satisfying the only equality PXP = P is called an inner inverse of P; and a matrix
X satisfying the only equality XPX = X is called an outer inverse of P. As we all know, when the
coefficient matrix belong to inner inverse, we can give the general strong solution of FLS, see [15, 16].
However, we know that the Core-EP inverse does not belong to inner inverse but it belong to outer
inverse, see [10, 11]. The natural question arose: how can we give the general strong solutions to
GFME through Core-EP inverse? For further investigations, there are more generalized inverses for
different purposes [21]. Baksalary et al. [5] introduced the Core inverse and studied the properties of
Core inverse and one special partial order. In [18], Prasad and Mohana proposed the Core-EP inverse,
where the Core-EP inverse is a generalization of the Core inverse. Next, Wang H. [20] gave the Core-
EP decomposition for studying the Core-EP inverse and its applications. In addition, if inconsistent
or consistent matrix equation satisfies X ∈ R(S k), the unique solution or unique least squares solution
of consistent or inconsistent matrix equation are given by Core-EP inverse. Therefore, our current
purpose is to carefully study the square GFME and the unique Core-EP inverse block structure.
Inspired by the discussion above, in this paper, a numerical method is given for finding the general
strong solution of GFME based on the Core-EP inverse calculation. Firstly, the effect of Core-EP
inverse is extended and in solving singular consistent or inconsistent model matrix equation is studied.
Secondly, we study the relationship between the Core-EP inverse of the coefficient matrix in GFME and
the Core-EP inverse of the coefficient matrix in model GFME. Moreover, we discuss the nonnegativity
of the Core-EP inverse of the coefficient matrix in model GFME. Finally, this paper presents a practical
algorithm for solving consistent GFME and some examples are presented to illustrate the algorithm.

This paper is divided into five parts. In Section 2, we introduce some characteristics of generalized
inverses and fuzzy numbers. In Section 3, a method for finding a strong fuzzy solution of the GFME
based on Core-EP inverse calculation, is given when the coefficient matrix of model GFME is real
2n × 2n matrix. In Section 4, another method for finding the general strong fuzzy matrix solutions of
the GFME based on Core-EP inverse calculation, is given when the coefficient matrix of the GFME is
real matrix. Next, the algorithm for solving the consistent GFME is derived, and we use some examples
to explain the new algorithm. In Section 5, we give a summary of this work.

AIMS Mathematics Volume 7, Issue 2, 3221–3238.



3223

2. Preliminary

This section mainly contains two aspects. On one hand, we introduce generalized inverses and some
common symbols. On the other hand, we review the definition of fuzzy numbers, fuzzy sets, and the
symbols commonly used in GFME.

2.1. The block representation of the Core-EP inverse

In this part, we review the characteristics of the Core-EP inverse and the Schur decomposition. The
symbols Rn×n, In, P∗, R (A), and rk (P) denote the set of m× n real matrices, the identity matrix of rank
n, the conjugate transpose, range, and rank, respectively of P ∈ Rn×n. For a n × n matrix P, the index
of A is the smallest nonnegative integer k, denoted Ind(P) as follow:

RCM
n = {P ∈ Rn,n : rk(Pk+1) = rk(Pk)}.

Let P = (p1, p2 · · · , pn), where p j = (p1 j, p2 j, · · · , pm j)∗, 1 ≤ j ≤ n. According to [21], we know that
‖.‖F is the F-norm of P as follow:

‖P‖F =

 m∑
i=1

n∑
j=1

pi j


1
2

= [
n∑

j=1

(p j)∗p j]
1
2 , i = 1, 2 · · ·m,

such as

‖P‖2F =

∥∥∥∥∥∥
[
3 0
0 4

]∥∥∥∥∥∥2

F

= 25. (2.1)

According to [20], each matrix has the following form of decomposition (called the Schur decom-
position): For any real n × n matrix P of index k, there exists an n × n unitary matrix U such that

P = U
[
T G
0 N

]
U∗, (2.2)

and

P †O = U
[
T−1 0
0 0

]
U∗, (2.3)

where T ∈ Rk×k is invertible, G ∈ Rk×(n−k), N ∈ R(n−k)×(n−k) is nilpotent, and Nk = 0 .
Some matrices equations for a matrix P ∈ Rm×n will be reviewed as follows:

PXP = P (1), XPX = X (2), (PX)∗ = PX (3),
(XP)∗ = XP (4), PX2 = X (2)′, XPk+1 = Pk (5).

DEFINITION 2.1 ([10, 21]). For any P ∈ Rm×n, let T{i, j, . . . h} be the set of X ∈ Rm×n fulfilling equations
(i), ( j), . . . , (h) in the equations (1)-(5) and (2)′. A matrix X ∈ T{i, j, . . . h} is said to be an {i, j, . . . h}-
inverse of P and we denote it by P{i, j,...h}.
(i) If X ∈ Rm×n satisfies (1)–(4), then it is said to be the Moore-Penrose inverse of P ∈ Rm×n. It is
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denoted by P† or P{1,2,3,4}.
(ii) If X ∈ Rn×n satisfies (3), (2)′ and (5), then it is said to be Core-EP inverse of P ∈ RCM

n . It is denoted
by P †O or P{3,2

′,5}.
(iii) If X ∈ Rn×n satisfies (1), (2)′ and (3), then it is said to be Core inverse of Ind(P) = 1. It is denoted
by P #O or P{1,2

′,3}.
For the given P = [pi j], P ∈ Rm×n, we denote |P| = [|pi j|], |P| ∈ Rm×n. P is said to be non-negative if
pi j ≥ 0, for each i and j.

Table 1. Common mathematical symbols.

Notation Symbolic meaning
Rm×n m × n real matrices.
RCM

n The set of matrices of the index are one or zero.
P{i, j,...h} An {i, j, . . . h}-inverse of P
P∗ Transposition of P
P† Moore-Penrose inverse of P
P †O Core-EP inverse of P
P−1 Inverse of P
P] Group inverse of P
R(P) Range space of P
‖.‖F F-norm of P

THEOREM 2.1 ([20]). Let P ∈ Rn×n with Ind(P)=k. Then

P †O = {PPk(Pk)†}†. (2.4)

Algorithm 1. Computing Core − EP inverse of matrix P ∈ Rn×n using MATLAB
1. Input P is the n − by − n matrix.

2. Input k is the index o f matrix P.

3. J = pinv(mpower(P, k)).
4. L = mtimes(mpower(P, k + 1), J).
5. P †O = pinv(L).

The MATLAB software incorporates built in functions pinv and mpower for computing the Moore-
Penrose inverse and the matrix power respectively.

2.2. The concept of the GFME

An arbitrary fuzzy number is represented, in parametric form, by an ordered pair of functions
[z̃]α = [z

¯
(α), z̄(α)], which satisfy the following requirements (see [15]). Meanwhile, A fuzzy set of

z̃ with a membership function z̃ → [0, 1] satisfying the following three conditions is called a fuzzy

AIMS Mathematics Volume 7, Issue 2, 3221–3238.



3225

number.
1. z̃(x) = 0 outside of interval [a, b].
2. z̃ is the upper semi-consistent continuous function.
3. There exists constants c and d such that a ≤ c ≤ d ≤ b.
3.1. z̃(x) is monotonic increasing on [a, c],
3.2. z̃(x) is monotonic decreasing on [d, b],
3.3. z̃(x) = 1, c ≤ x ≤ d.

Denote ξ by the sets of all fuzzy numbers. The α − cut of a fuzzy number is the crisp set, a
bounded closed interval for each α ∈ [0, 1], denoted with [z̃]α, such that [z̃]α = [z

¯
(α), z̄(α)], where

z̄(α) = sup{x ∈ R : z̃(x) ≥ α} and z
¯
(α) = in f {x ∈ R : z̃(x) ≥ α} . Using the lower and upper branches, z

¯and z̄, a fuzzy number z̃ can be equivalently defined as a pair of function (z
¯
, z̄) where z

¯
: [0, 1] → R is

a non-increasing left-continuous function, z̄ : [0, 1] → R is a non-decreasing left-continuous function
and z

¯
(α) ≤ z̄(α) for each α ∈ (0, 1].

DEFINITION 2.2 ([16, Definition3]). Let z̃ = (z
¯

(α), z̄(α)), ũ = (u
¯

(α), ū(α)) be two arbitrary fuzzy numbers
and t be a real number, we define the scalar multiplication and the addition of fuzzy numbers.

1. [ũ + z̃]α = [z
¯

(α) + u
¯

(α), z̄(α) + ū(α],

2. [kz̃]α =

{
[kz

¯
(α), kz̄(α)], k ≥ 0,

[kz̄(α), kz
¯

(α)], k < 0,
3. z̃ = ũ⇔ z

¯
(α) = u

¯
(α) and z̄(α) = ū(α).

DEFINITION 2.3 ([13, Definition2.4]). The fuzzy matrix system AX̃ = Ỹ is as follow:( a11 a12 ··· a1n
a21 a22 ··· a2n
··· ··· ··· ···
an1 an2 ··· ann

) ( x̃11 x̃12 ··· x̃1m
x̃21 x̃22 ··· x̃2m
··· ··· ··· ···
x̃n1 x̃n2 ··· x̃nm

)
=

( ỹ11 ỹ12 ··· ỹ1m
ỹ21 ỹ22 ··· ỹ2m
··· ··· ··· ···
ỹn1 ỹn2 ··· ỹnm

)
,

where the matrix A = [ai j] is a square matrix (ỹi j ∈ ξ, x̃i j ∈ ξ). Satisfying the above equations and
conditions is said to be general fuzzy matrix equation (GFME). Using matrix notation, we have

AX̃ = Ỹ (2.5)

A fuzzy number matrix, given by

X̃ = (x1, x2, · · · , xm),

where x j =
(
(x
¯ 1 j(α), x̃1 j(α)), (x

¯ 2 j(α), x̃2 j(α)), . . . , (x
¯ n j(α), x̃n j(α))

)∗
, 1 ≤ j ≤ m, 0 ≤ α ≤ 1, is called a

solution of the GFME (2.5). We have n∑
j=1

ai j x̃i j


α

= [ỹi j]α, i = 1, 2 · · · n.

Then,

n∑
j=1

a+
i jx¯ i j(α) −

n∑
j=1

a−i j x̄i j(α) = y
¯ i j

(α),
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n∑
j=1

a+
i j x̄i j(α) −

n∑
j=1

a−i jx¯ i j(α) = ȳi j(α),

where a+
i j = ai j ∨ 0 and a−i j = −ai j ∨ 0. Then, the form of model GFME is as follow:

 s11 s12 ··· s1n
s21 s22 ··· s2n
...

...
...

...
s2n1 s2n2 ··· s2n2n




x
¯ 11 x

¯ 12 ··· x
¯ 1mx

¯ 21 x
¯ 22 ··· x

¯ 2m
...

...
...

...x
¯ n1 x

¯ n2 ··· x
¯ nm

−x̄11 −x̄12 ··· −x̄1m
−x̄21 −x̄22 ··· −x̄2m
...

...
...

...
−x̄n1 −x̄n2 ··· −x̄nm


=



y
¯ 11

y
¯ 12

··· y
¯ 1my

¯ 21
y
¯ 22

··· y
¯ 2m

...
...
...

...y
¯ n1

y
¯ n2

··· y
¯ nm

−ȳ11 −ȳ12 ··· −ȳ1m
−ȳ21 −ȳ22 ··· −ȳ2m

...
...
...

...
−ȳn1 −ȳn2 ··· −ȳnm


.

Using the matrix notation, we obtain

S X(α) = Y(α), α ∈ [0, 1]. (2.6)

where

skp =

a+
i j k = i, p = j + n or k = i + n, p = j,

a−i j k = i, p = j + n or k = i + n, p = j,

The matrix S is as follows:

S =

[
D E
E D

]
, (2.7)

where D and E are n × n matrices, D = [a+
i j] and E = [a−i j]. The coefficient matrix of (2.6) is S .

According to [9], if S is non-negative and defines X0 = S −1Y(α) as a solution of (2.6), then X̃0 ∈ ξ is a
strong fuzzy solution of GFME (2.5).

LEMMA 2.2. Let S ∈ R2n×2n be the coefficient matrix of consistent (2.6). A matrix X is a solution of the
consistent (2.6) if and only if

S X = Y, Y ∈ R(S k).

Thus, a matrix solution is

X = S †OY.

Proof. The proof can be found in the proof of [21, Theorem 3.2.2]. �

LEMMA 2.3. Let S ∈ R2n×2n be the coefficient matrix of inconsistent (2.6). The matrix X is unique least
square solution of the inconsistent (2.6) if and only if

S X = Y, X ∈ R(S k).

Thus, the unique least squares matrix solution is

X = S †OY.
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Proof. From X ∈ R(S k), it follows that there exists b ∈ R2n×2n for which X = S kb. Let the decomposi-
tion of S be as in (2.2). We have

U∗Y =

(
y1

y2

)
,U∗b =

(
b1

b2

)
, and S †OY = U

(
T−1y1

0

)
. (2.8)

It follows that

‖S X − Y‖2F = ‖S S kb − Y‖2F =

∥∥∥∥∥∥U
(
T G
0 N

)
U∗U

(
T k V
0 0

)
U∗b − UU∗Y

∥∥∥∥∥∥2

F

=

∥∥∥∥∥∥U
(
T k+1 TV

0 0

) (
b1

b2

)
− U

(
y1

y2

)∥∥∥∥∥∥2

F

=

∥∥∥∥∥∥
(
T k+1b1 + TVb2 − y1

−y2

)∥∥∥∥∥∥2

F

,

= ‖T k+1b1 + TVb2 − y1‖
2
F + ‖y2‖

2
F .

where V = T k−1G + T k−2GN + T k−3GN2 · · · + GNk−1. Since T is invertible, we have min ‖T k+1b1 +

TVb2 − y1‖
2
F = 0, when

b1 = T−(k+1)y1 − T−kVb2.

Therefore,

X = S kb = U
(
T k V
0 0

)
U∗b = U

(
T kb1 + Vb2

0

)
= U

(
T−1y1

0

)
= S †OY.

�

COROLLARY 2.4. Let S ∈ R2n×2n be the coefficient matrix of consistent (2.6). The matrix X is unique
solution of the consistent (2.6) if and only if

S X = Y, X ∈ R(S k), Y ∈ R(S k).

Thus, the unique solution is

X = S †OY.

Through the above Lemma and Corollary, we know that if the coefficient matrix S of consistent or
inconsistent (2.6) has a unique Core-EP inverse, we will systematically study this kind of GFME (2.5).

3. Properties of matrix S

In this part, a matrix block structure of Core-EP inverse of matrix S is extremely important for our
further study.
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THEOREM 3.1. Let S ∈ R2n×2n be the coefficient matrix of (2.7). The Core-EP inverse of matrix

S =

[
C D
D C

]
, (3.1)

is

S †O =

[
H I
I H

]
, (3.2)

where

H =
1
2

[(C + D) †O + (C − D) †O], I =
1
2

[(C + D) †O − (C − D) †O].

Proof. Let A be the matrix in (2.5) and S its associated matrix from (2.6). We have A = A+−A− = C−D
and |A| = A+ + A− = C + D.
Proof of necessity: we know S S †OS †O = S †O, therefore[

C D
D C

] [
H I
I H

] [
H I
I H

]
=

[
H I
I H

]
,

and get

(HC + ID)H + (IC + HD)I = H, (HC + ID)I + (IC + HD)H = I.

We have

(C + D)(H + I)(H + I) = (H + I), (C − D)(H − I)(H − I) = (H − I).

We know (S S †O)∗ = S S †O, hence [
H I
I H

]∗ [
C D
D C

]∗
=

[
C D
D C

] [
H I
I H

]
,

and get

(CH + DI)∗ = CH + DI, (CI + DH)∗ = CI + DH.

We have

[(C + D)(H + I)]∗ = (C + D)(H + I), [(C − D)(H − I)]∗ = (C − D)(H − I).

We know S †OS k+1 = S k, therefore [
H I
I H

] [
C D
D C

]k+1

=

[
C D
D C

]k

.

According to [16], we have

(H + I)(C + D)k1+1 = (C + D)k1 , (H − I)(C − D)k2+1 = (C − D)k2 ,

AIMS Mathematics Volume 7, Issue 2, 3221–3238.
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where, k1 = ind(A) and k2 = ind(|A|). Therefore, S †O have the structure given by (3.2). In order to
calculate H and I, we know

H + I = (C + D) †O, H − I = (C − D) †O,

and consequently we get,

H =
1
2

[(C + D) †O + (C − D) †O], I =
1
2

[(C + D) †O − (C − D) †O].

�

THEOREM 3.2. Let S be the coefficient matrix of consistent (2.6) with X ∈ S k. If S †O is a non-negative
matrix satisfying (3.2), then one of the consistent (2.6) represents the unique solution matrix X0 = S †OY,
then the correlated fuzzy linear matrix X̃0 is a strong solution of consistent GFME (2.5).

Proof. We know X0 = S †OY , then

X
¯

0 =
[
H I

]
Y, (3.3)

X̄0 =
[
−I −H

]
Y. (3.4)

Subtract the above two formulas, we get

X̄0 − X
¯

0 =
[
−H −I

]
Y −

[
H I

]
Y

=
[
−(I + H) −(Z + I)

]
Y

= (H + Z)(Ȳ − Y
¯

).

Then

X̄0 − X
¯

0 = (H + I)(Ȳ − Y
¯

). (3.5)

Because H + I is nonnegative and Ȳ ≥ Y
¯

. Since Ȳ is non-decreasing and Y
¯

is non-increasing, then
X0 = S †OY holds if X̄ and X

¯
are non-decreasing and non-increasing, respectively. The bounded left

continuity of X̄ and X
¯

are obvious since they are the linear combinations of Ȳ and Y
¯

, respectively. �

COROLLARY 3.3. Let S be the coefficient matrix of inconsistent (2.6) and X ∈ S k. If S †O is a non-negative
matrix satisfying (3.2), then one of the inconsistent (2.6) represents the unique least squares solution
matrix X0 = S †OY, then the correlated fuzzy linear matrix X̃0 is a least squares solution of inconsistent
GFME (2.5).

THEOREM 3.4. S †O ≥ 0 if and only if

S †O =

[
BC∗ BD∗

BD∗ BC∗

]
(3.6)

for some positive diagonal matrix B. Meanwhile, (C + D) †O = B(C + D)∗, (C − D) †O = B(C − D)∗.
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Proof. According to [4], it is clear that S †O ≥ 0 if and only if S †O = B•S ∗ for some positive diagonal

matrix B• =

[
B1 0
0 B2

]
. We have

[ 1
2 [(C + D) †O + (C − D) †O] 1

2 [(C + D) †O − (C − D) †O]
1
2 [(C + D) †O − (C − D) †O] 1

2 [(C + D) †O + (C − D) †O]

]
=

[
B1C∗ B1D∗

B2D∗ B2C∗

]
.

Therefore, B1C∗ = B2C∗ and B1D∗ = B2D∗. Let B1 = diag(b11, b12, . . . , b1n), B2 =

diag(b21, b22, . . . , b2n),

C =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

...

cn1 cn2 · · · cnn

 , D =


d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
...

...

dn1 dn2 · · · dnn

 .
We have

B1C∗ =


b11c11 b11c21 · · · b11cn1

b12c12 b12c22 · · · b12cn2
...

...
...

...

b1nc1n b1nc2n · · · b1ncnn

 =


b21c11 b21c21 · · · b21cn1

b22c12 b22c22 · · · b22cn2
...

...
...

...

b2nc1n b2nc2n · · · b2ncnn

 = B2C∗,

B1D∗ =


b11d11 b11d21 · · · b11dn1

b12d12 b12d22 · · · b12dn2
...

...
...

...

b1nd1n b1nd2n · · · b1ndnn

 =


b21d11 b21d21 · · · b21dn1

b22d12 b22d22 · · · b22dn2
...

...
...

...

b2nd1n b2nd2n · · · b2ndnn

 = B2D∗.

From the structure of the 2.7, of c1i, · · · , cni, d1i, · · · , dni (i = 1, ..., n), at least one is nonzero. Let
cni , 0, we know b1icni = b2icni, then c1i = c2i (i = 1, ..., n), etc. We know B1 = B2 = B. Since

S †O =

[1
2 [(C + D) †O + (C − D) †O] 1

2 [(C + D) †O − (C − D) †O]
1
2 [(C + D) †O − (C − D) †O] 1

2 [(C + D) †O + (C − D) †O]

]
=

[
BC∗ BD∗

BD∗ BC∗

]
,

it is easy to obtain (C + D) †O = B(C + D)∗, (C − D) †O = B(C − D)∗. �

4. The general strong fuzzy solutions of GFME

Now, we show the general solutions of the GFME (2.5). First, we seek a fuzzy number matrix X̃ı

which refers to general solutions set of GFME (2.5). Let F ∈ Cn×n, F = A †O and |F| = [| fi j|]. Let the
form of S F ∈ C2n×2n be as follows

S F =

[
F+ F−

F− F+

]
, (4.1)

where F+ = [ f +
i j ] and F− = [ f −i j ]. For any representative matrix Y , let Xı = S FY . Since F+, F− and S F

are non-negative, similar to the proof of Theorem 3.2, we can deduce that X̃ı is a fuzzy number matrix,
even if (2.5) has no solution.
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THEOREM 4.1. A ∈ RCM
n is a singular coefficient matrix of the consistent GFME (2.5), where Ỹ is a

column of fuzzy matrix as the GFME (2.5). If Xı = S FY, F = A †O, |F| = [| fi j|], where S F is in the form
(4.1). The following statements hold:
(i) A(X̄ı + X

¯
ı) = Ȳ + Y

¯
.

(ii) If |F| is one of Core-EP inverse of |A|, then |A|(X̄ı − X
¯
ı) = Ȳ − Y

¯
, and X̃ı is a solution of (2.5).

Proof. (i) Since Xı = S FY , we have

X
¯
ı =

[
F+ F−

]
Y, (4.2)

X̄ı =
[
−F− −F+

]
Y. (4.3)

Add (4.2) and (4.3) together to get the following form

X̄ı + X
¯
ı =

[
−F− −F+

]
Y +

[
F+ F−

]
Y

=
[
(F+ − F−) −(F+ − F−)

]
Y

=
[
F −F

]
Y.

Then

X̄ı + X
¯
ı = F(Ȳ + Y

¯
). (4.4)

Since the GFME (2.5) is consistent. Then, A(X̄ +X
¯

) = Ȳ +Y
¯

has solution (for α ∈ [0, 1]). Furthermore,
F = A †O, so it follows from (4.4) that

Ȳ + Y
¯

= A(X̄ı + X
¯
ı). (4.5)

(ii) Subtracting (4.2) and (4.3) together to get the following form:

X̄ı − X
¯
ı = |F|(Ȳ − Y

¯
). (4.6)

Since |F| is one of Core-EP inverse of |A|, we have |A| †O = |A †O| = |F| then

|A| †O = |F| = F+ + F−, A †O = F = F+ − F−.

According to the Theorem 3.2, we have H = F+, Z = F−. Then

H =
1
2

[|A| †O + A †O],

I =
1
2

[|A| †O − A †O].

Since S †O = S F , therefore Xı is a solution to GFME (2.5). Through (4.6) we have

Ȳ − Y
¯

= |A|(X̄ı − X
¯
ı). (4.7)

Any matrix A ∈ RCM
n has A+ = 1

2 (|A|+ A) and A− = 1
2 (|A|−A), and (4.5), (4.7) are added and subtracted.

We obtain

Ȳ = A+X̄ı − A−X
¯
ı =

[
−A− −A+

]
Xı,

Y
¯

= −A−X̄ı + A+X
¯
ı =

[
A+ A−

]
Xı.

Therefore, the conclusion is proved. �
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We will study a form for correlated the general strong solutions to GFME (2.5) in the following
theorem.

THEOREM 4.2. A ∈ RCM
n is a singular coefficient matrix of the consistent GFME (2.5), an arbitrary

fuzzy matrix Ỹ, since Xı = S FY it have A(X̄ı + X
¯
ı) = Ȳ + Y

¯
. Let W =

 w11(α) ··· w1m(α)
...

...
wn1(α) ··· wnm(α)

, define

W = Y
¯
−

[
A+ A−

]
Xı where

[
A+ A−

]
is n × 2n order matrix. Define Λ =

 λ11(α) ··· λ1m(α)
...

...
λn1(α) ··· λnm(α)

 and

Θ =

 Θ11(α) ··· Θ1m(α)
...

...
Θn1(α) ··· Θnm(α)

, where Λ and Θ are solutions of AΛ = 0 and |A|Θ = W, respectively. We

have

X̃ = {X
¯
ı +

1
2

Λ + Θ, X̄ı +
1
2

Λ − Θ}.

Proof. The proof can be found in the proof of [[15, Theorem 8]]. �

Next we will present an algorithm to solve the GFME (2.5). The coefficient matrix of GFME (2.5)
is A = [ai j]. The matrix S F is given by the formula (4.1), and F is the Core-EP inverse of the matrix A.

Algorithm 2.
1. Calculate Xı = S FY, i f equation A(X̄ı + X

¯
ı) = Ȳ + Y

¯
is satis f ied,

proceed to the next step.

2. Let Λ =

 λ11(α) ··· λ1m(α)
...

...
λn1(α) ··· λnm(α)

 α ∈ [0, 1] satis f y the homogeneous equation AΛ = 0.

Then, X
¯
ıΛ = X

¯
ı +

1
2

Λ, X̄ıΛ = X̄ı +
1
2

Λ.

3. Calculate W =

 w11(α) ··· w1m(α)
...

...
wn1(α) ··· wnm(α)

 , α ∈ [0, 1], by using W = Y
¯
− S

¯
Xı,

where S
¯

= [A+ A−] is an n × 2n matrix.

4. I f the f amily o f classical systems |A|Θ = W, where W =

 w11(α) ··· w1m(α)
...

...
wn1(α) ··· wnm(α)

 , have

a solution Θ =

 Θ11(α) ··· Θ1m(α)
...

...
Θn1(α) ··· Θnm(α)

 , α ∈ [0, 1], then : X
¯

= X
¯
ıΛ + Θ, X̄ = X̄ıΛ − Θ.

5. From all determined Θ, Λ and f or each α ∈ [0, 1], we have θi j(α) ≤
x̄ıi j(α) − x

¯
ı
i j(α)

2
,

i = 1, . . . , n, j = 1, . . . ,m, where x
¯
ı
i j(α) +

1
2
λi j(α) + θi j(α) (x

¯
ı
i j(α) +

1
2
λi j(α) − θi j(α)) is

monotonic bounded non − decreasing (monotonic bounded non − increasing)
le f t continuous f unction.

We will explain our previous Theorems, Definitions and validity of Algorithm through some exam-
ples. Exampe 4.1 is a 2× 2 order inconsistent fuzzy matrix equation with X ∈ R(S ). In Example 4.1, A
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and |A| are singular, ind(A) = ind(|A|) = ind(S ) = 1, and S †O is nonnegative. We know that we can give
a least squares strong fuzzy solution of Exampe 4.1 through the unique least squares solution matrix
X0 = S †OY . Example 4.2 is a 4 × 4 order consistent fuzzy matrix equation. In Example 4.2, A and S
are singular, and |A| is reversible. Moreover, we know ind(A) = ind(S ) = 2, and ind(|A|) = 0. Next, we
will get the general strong fuzzy solution of Exampe 4.2 through above Algorithm. In Example 4.3,
we constrain Example 4.2 to satisfy X ∈ R(A2). Next, we will get a strong fuzzy solution of Exampe
4.1 by the unique least squares solution matrix X0 = S †OY .

EXAMPLE 4.1. It is a 2 × 2 order inconsistent fuzzy matrix equation with X ∈ R(A) as floown:(
−2 1
4 −2

) (
x̃11 x̃12

x̃21 x̃22

)
=

(
(−1 + α, 1 − α) (−2 + 2α, 2 − 2α)

(−2 + α, 2 − 3α) (−2 + 3α, 4 − 3α)

)
.

The model fuzzy matrix equation is as follows:
0 1 2 0
4 0 0 2
2 0 0 1
0 2 4 0




x
¯ 11 x

¯ 12

x
¯ 21 x

¯ 22

−x̄11 −x̄12

−x̄21 −x̄22

 =


−1 + α −2 + 2α
−2 + α −2 + 3α
−1 + α −2 + 2α
−2 + 3α −4 + 3α

 .
According to Algorithm 1, we have

S †O =


0 0.1000 0.05 0

0.1000 0 0 0.2000
0.0500 0 0 0.1000

0 0.2000 0.1000 0

 =

[
BC∗ BD∗

BD∗ BC∗

]
,

where

B =

[
0.025 0

0 0.1

]
.

By formula X(α) = S †OY, we obtain the unique least squares matrix solution as follow:

X(α) =


−0.2500 + 0.1500α −0.3000 + 0.4000α
−0.5000 + 0.7000α −1.0000 + 0.8000α
−0.2500 + 0.3500α −0.5000 + 0.4000α
−0.5000 + 0.3000α −0.6000 + 0.8000α

 .
Then, we obtain a least squares strong fuzzy matrix solution

(
x̃11 x̃12
x̃21 x̃22

)
as follow:

x̃11 = (−0.2500 + 0.1500α, 0.2500 − 0.3500α),
x̃21 = (−0.5000 + 0.7000α, 0.5000 − 0.3000α),
x̃12 = (−0.3000 + 0.4000α, 0.5000 − 0.4000α),
x̃22 = (−1.0000 + 0.8000α, 0.6000 − 0.8000α).
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EXAMPLE 4.2. It is a 4 × 4 order consistent fuzzy matrix equation as follow:
−1 1 1 0
1 2 0 1
0 3 1 1
2 1 −1 1



x̃11 x̃12

x̃21 x̃22

x̃31 x̃32

x̃41 x̃42

 =


(−45 + 39α, 33 − 39α) (−23 + 29α, 35 − 29α)
(−57 + 48α, 39 − 48α) (−28 + 37α, 46 − 37α)
(−84 + 69α, 54 − 69α) (−37 + 52α, 67 − 52α)
(−66 + 63α, 60 − 63α) (−45 + 48α, 51 − 48α)

 .
According to Algorithm 1, we have

A †O =


0.0342 0.0513 0.0855 0.0171
0.0513 0.0769 0.1282 0.0256
0.0855 0.1282 0.2137 0.0427
0.0171 0.0256 0.0427 0.0085

 .
Then,

S F =



0.0342 0.0513 0.0855 0.0171 0 0 0 0
0.0513 0.0769 0.1282 0.0256 0 0 0 0
0.0855 0.1282 0.2137 0.0427 0 0 0 0
0.0171 0.0256 0.0427 0.0085 0 0 0 0

0 0 0 0 0.0342 0.0513 0.0855 0.0171
0 0 0 0 0.0513 0.0769 0.1282 0.0256
0 0 0 0 0.0855 0.1282 0.2137 0.0427
0 0 0 0 0.0171 0.0256 0.0427 0.0085


.

By formula Xı = S FY, we obtain matrix as follow:

Xı =



−12.7737 + 10.7730α −6.1560 + 8.1567α
−19.1502 + 16.1505α −9.2285 + 12.2282α
−31.9239 + 26.9235α −15.3845 + 20.3849α
−6.3765 + 5.3775α −3.0725 + 4.0715α
−8.7723 + 10.7730α −10.1574 + 8.1567α
−13.1508 + 16.1505α −15.2279 + 12.2282α
−21.9231 + 26.9235α −25.3853 + 20.3849α
−4.3785 + 5.3775α −5.0705 + 4.0715α


.

Then, we obtain a strong fuzzy matrix
( x̃11 x̃12

x̃21 x̃22
x̃31 x̃32
x̃41 x̃42

)
as follow:

X̃ı =


(−12.7737 + 10.7730α, 8.7723 − 10.7730α) (−6.1560 + 8.1567α, 10.1574 − 8.1567α)
(−19.1502 + 16.1505α, 13.1508 − 16.1505α) (−9.2285 + 12.2282α, 15.2279 − 12.2282α)
(−31.9239 + 26.9235α, 21.9231 − 26.9235α) (−15.3845 + 20.3849α, 25.3853 − 20.3849α)

(−6.3765 + 5.3775α, 4.3785 − 5.3775α) (−3.0725 + 4.0715α, 5.0705 − 4.0715α)

 .

The solution matrix for equation AΛ = 0 is
 2 f (α) 2 f (α)

f (α) f (α)
f (α) f (α)
−4 f (α) −4 f (α)

. Let f (α) ∈ F ı, where F ı (depends on X̃ı)

denotes the class of functions on the unite interval y = f (α), such that the adequate functions X̃ıΛ is
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monotonic and continuous:

X̃ıΛ =

 (−12.7737+10.7730α+ f (α), 8.7723−10.7730α+ f (α)) (−6.1560+8.1567α+ f (α), 10.1574−8.1567α+ f (α))
(−19.1502+16.1505α+ 1

2 f (α), 13.1508−16.1505α+ 1
2 f (α)) (−9.2285+12.2282α+ 1

2 f (α), 15.2279−12.2282α+ 1
2 f (α))

(−31.9239+26.9235α+ 1
2 f (α), 21.9231−26.9235α+ 1

2 f (α)) (−15.3845+20.3849α+ 1
2 f (α), 25.3853−20.3849α+ 1

2 f (α))
(−6.3765+5.3775α−2 f (α), 4.3785−5.3775α−2 f (α)) (−3.0725+4.0715α−2 f (α), 5.0705−4.0715α−2 f (α))

 .
By formula W = Y

¯
− S

¯
Xı for each Λ, we have

W =


14.8464 − 14.8470α 11.7704 − 11.7698α

0.4506 − 0.4515α −0.3145 + 0.3154α
11.7510 − 11.7525α 9.1425 − 9.1410α

6.9972 − 6.9975α 4.9983 − 4.9980α

 .
By formula |A|Θ = W, we have

Θ =


1.7730 − 1.7730α 1.1567 − 1.1567α
4.1499 − 4.1505α 3.2288 − 3.2282α
8.9235 − 8.9235α 7.3849 − 7.3849α
−9.6222 + 9.6225α −7.9288 + 7.9285α

 .
Then, we obtain the general strong fuzzy matrix solutions as follow:

X̃ =

 (−11.0007+9.0000α+ f (α), 6.9993−9.0000α+ f (α)) (−4.9993+7.0000α+ f (α), 9.0007−7.0000+ f (α))
(−15.0003+12.0000α+ 1

2 f (α), 9.0009−12.0000α+ 1
2 f (α)) (−5.9997+9.0000α+ 1

2 f (α), 11.9991−9.0000α+ 1
2 f (α))

(−23.0004+18.0000α+ 1
2 f (α), 12.9996−18.0000α+ 1

2 f (α)) (−7.9996+13.0000α+ 1
2 f (α), 18.0004−13.0000α+ 1

2 f (α))
(−15.9987+15.0000α−2 f (α), 14.0007−15.0000α−2 f (α)) (−11.0013+12.0000α−2 f (α), 12.9993−12.0000α−2 f (α))

 .
EXAMPLE 4.3. It is a 4 × 4 order consistent fuzzy matrix equation with X ∈ R(A2) as follow:

−1 1 1 0
1 2 0 1
0 3 1 1
2 1 −1 1



x̃11 x̃12

x̃21 x̃22

x̃31 x̃32

x̃41 x̃42

 =


(−45 + 39α, 33 − 39α) (−23 + 29α, 35 − 29α)
(−57 + 48α, 39 − 48α) (−28 + 37α, 46 − 37α)
(−84 + 69α, 54 − 69α) (−37 + 52α, 67 − 52α)
(−66 + 63α, 60 − 63α) (−45 + 48α, 51 − 48α)

 .
The model fuzzy matrix equation is as follows:

0 1 1 0 1 0 0 0
1 2 0 1 0 0 0 0
0 3 1 1 0 0 0 0
2 1 0 1 0 0 1 0
1 0 0 0 0 1 1 0
0 0 0 0 1 2 0 1
0 0 0 0 0 3 1 1
0 0 1 0 2 1 0 1





x
¯ 11 x

¯ 12

x
¯ 21 x

¯ 22

x
¯ 31 x

¯ 32

x
¯ 31 x

¯ 42

−x̄11 −x̄12

−x̄21 −x̄22

−x̄31 −x̄32

−x̄41 −x̄42


=



−45 + 39α −23 + 29α
−57 + 48α −28 + 37α
−84 + 69α −37 + 52α
−66 + 63α −45 + 48α
−33 + 39α −35 + 29α
−39 + 48α −46 + 37α
−54 + 69α −67 + 52α
−60 + 63α −51 + 48α


.

According to Algorithm 1, we have

S †O =



0.2671 0.2756 −0.2073 0.0085 0.2329 0.2244 −0.2927 −0.0085
0.2756 0.2885 0.0641 −0.2372 0.2244 0.2115 −0.0641 −0.2628
0.0427 −0.4359 0.3568 0.2714 −0.0427 −0.5641 0.1432 0.2286
−0.7415 −0.2372 0.2714 0.5043 −0.7585 −0.2628 0.2286 0.4957
0.2329 0.2244 −0.2927 −0.0085 0.2671 0.2756 −0.2073 0.0085
0.2244 0.2115 −0.0641 −0.2628 0.2756 0.2885 0.0641 −0.2372
−0.0427 −0.5641 0.1432 0.2286 0.0427 −0.4359 0.3568 0.2714
−0.7585 −0.2628 0.2286 0.4957 −0.7415 −0.2372 0.2714 0.5043


.
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By formula X = S †OY, we obtain the unique matrix solution as follow:

X(α) =



−11 + 9α −5 + 7α
−15 + 12α −6 + 9α
−23 + 18α −8 + 13α
−16 + 15α −11 + 12α
−7 + 9α −9 + 7α
−9 + 12α −12 + 9α
−13 + 18α −18 + 13α
−14 + 15α −13 + 12α


.

Then, we obtain a strong fuzzy matrix solution
( x̃11 x̃12

x̃21 x̃22
x̃31 x̃32
x̃41 x̃42

)
as follow:

X̃ =


(−11 + 9α, 7 − 9α) (−5 + 7α, 9 − 7α)

(−15 + 12α, 9 − 12α) (−6 + 9α, 12 − 9α)
(−23 + 18α, 13 − 18α) (−8 + 13α, 18 − 13α)
(−16 + 15α, 14 − 15α) (−11 + 12α, 13 − 12α)

 .
5. Conclusions

In this paper, the Algorithm 2 is proposed to solve the GFME (2.5) whose the coefficient matrix is
a real matrix. We build the Algorithm 1 for getting the Core-EP inverse, and the numerical Algorithm
2 for finding an arbitrary solution of the GFME (2.5). The method is also connected to the original
Gong and Guo. approach from [13]. Moreover, If inconsistent (2.6) satisfies X ∈ R(S k), the unique
least squares solution of inconsistent general fuzzy matrix equation are given by Core-EP inverse. For
future work, we try to solve “inconsistent GFME (2.5)” and discuss about their general least squares
solution sets.
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