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1. Introduction and preliminaries

Theory of inequalities play pivotal role in almost all branches of pure and applied mathematics.
Theory of convex functions has played vital role in the development of theory of inequalities. In
modern analysis many inequalities are direct consequences of the applications of convexity property
of the functions. One of the most extensively as well as intensively studied inequality pertaining
to convexity property of the functions is Hermite—Hadamard’s inequality. This inequality provides


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022177

3204

necessary and sufficient condition for a function to be convex. It reads as: Let ® : I = [b;,b,] C R —» R
be a convex function on closed interval [by, b,], then

by
o)« L [ocr s 2200
by — by

2 2

b

In recent years several successful attempts have been made in obtaining novel improvements and
generalizations of Hermite—-Hadamard’s inequality, see [1-4]. Dragomir and Pearce [5] have written
a very informative monograph on Hermite—Hadamard’s inequality and its applications. Interested
readers can find very useful details pertaining to these inequalities. Another remarkable inequality
which has played significant role in theory of inequalities is Jensen’s inequality, see [6]. It reads as:
Let @ be a convex function on [by, b,], then for all x; € [b,b,] and u; € [0, 1], where i = 1,2,...,n, we
have

D

i #ixi] < i 1iP(x;).
i=1 i=1

Following inequality is known as Jensen—Mercer’s inequality in the literature:
@ (bl +by — Z,Uixi) < O(by) + O(by) - Zﬂiq)(xi)a
i=1 i=1

for u; € [0, 1], where @ is a convex function. For more details, see [7].

Pavi¢ [8] presented the generalized version of Jensen—Mercer’s inequality as: Assume that @ :
[b1,b2] — R be a convex function, where x; € [by, b,] are n—points. Let a,8,u; € [0,1],y € [-1,1] be
coefficients of sums @ + 8+ 7y = >\, i; = 1, then

U [abl + B +y Zﬂm) < a®(b)) +BO(h) +y ) pi(x). (L.1)

i=1 i=1
Remark 1.1. Note that

1) If wetake =1 =B andy = —1in (1.1), then we get Jensen—Mercer inequality.
2) If we choose « =0 =B andy = 1in(1.1), then we obtain the well-known Jensen inequality.

For some recent studies regarding Hermite-Hadamard-Mercer type inequalities, see [9, 10].

Fractional calculus is the branch of mathematics which deals with integrals and derivatives of any
arbitrary real or complex order. The history of fractional calculus is old but in recent years it has
received significant popularity and importance. This can be attributed mainly due to its great many
applications in various fields of science and engineering. It provides many useful tools for solving
differential equations, integral equations, and problems involving special functions of mathematical
physics. Among several known forms of fractional integrals, the Riemann-Liouville fractional integral
has been investigated extensively, which is defined as follows:
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Definition 1.1 ( [11]). Let ® € L;[by, b,] (the set of all integrable functions on [by,b,]). The Riemann—
Liouville integrals JV1+(D and Jl‘)’z_CI) of order v > 0 are defined by

X1
1
T ®(x) = o f (x1 -0 'O()dr, x> by,
by
and X
2
1
T -®(x) = o f (t—x)"'d(D)dr, x; < by,
X1

Mubeen and Habibullah [12] introduced the notion of k-Riemann-Liouville fractional integrals as:
Let® e L, [b], bz], then

X1

V,K _ %_1

Jb1+(1)(x1) T L) . (x1 =D O(n)dr,  x1 > by,
b2 )

I o(x) = (r—x)< ' O(n)dr,  x; < by,

kL (v) Jy,

where I',(v) = fooo TV“e%dT, R(v) > 0, k € R* is the k—gamma function which was introduced and
studied in [13].

Sarikaya et al. [14] were the first to derive fractional analogue of Hermite-Hadamard’s inequality.
Since then blend of techniques both from fractional calculus and convex analysis have been used in
obtaining various fractional analogues of classical inequalities. For more details, see [15-22].

Having inspiration from the ongoing research, we will establish some new Hermite—Hadamard—
Mercer type of inequalities by using k—Riemann—Liouville fractional integrals. Moreover, we will
derive two new integral identities as auxiliary results. Applying two identities as auxiliary results, we
will obtain some new variants of Hermite—-Hadamard—Mercer type via k—Riemann—Liouville fractional
integrals. Several special cases will be deduce in details and some know results will be recaptured as
well. In order to illustrate the efficiency of our main results, some applications regarding special means
of positive real numbers and error estimations for trapezoidal quadrature formula will be provide as
well.

2. Main results

In this section, we discuss our main results.
Theorem 2.1. Assume that @ : [by,b,] — R be a convex function. Let a,fB,€ [0,1], v € (0,1] be
coefficients of sums a + S +vy =1 and v,k > 0, then

(D(abl + b, +7x1 —;xz)

(v +«) vk vk
- 2),{()62 — X)) [( (<¥b1+ﬁb2+)’X2)‘(D) (@by + by +yx1) + (J(f¥b1+ﬁbz+7m)+q)) (aby +fbs + ’}/Xz)]

D(x1) + D(x2)
2 b
holds for all x1, x; € [by, by] with x| < x,.

< a®(by) + BD(b,) +y
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Proof. Consider

®(ab1 + Bb, +7M) — q)(a’bl + by + yxiy +aby + by + ')’X21).

2 2

Using change of variable technique, for ab; + b, + yx1; = 7(ab; + by +yx1) + (1 — 7)(ab; + by +yx7)
and ab; + Bby + yxo; = (1 = 7)(ab; + Bby + yx1) + T(ab; + Bb, + yx,), we have

X1+ X

2

1
) < 3 [@(rab; + b+ y0) + (1= 1)@, + oz + y22)
+®(t(ab; + by + yx2) + (1 — T)(aby + Bby + yx1))] .

CD(abl +Bby +y

Multiplying both side of above inequality 7+~ and integrating with respect to 7 on [0, 1], we get

() (abl + Bby + yxl al xz)

2

14
< —

1
<o f T D(x(aby + by + yx1) + (1 = T)(@by + by + yxo))dr
0

1
+f T O(T(aby + By +yx2) + (1 = T)(aby + by + yxy))dr|.
0

After simplify, we obtain

(D(cybl + b, +yx1 ;xz)

FK + Clb] +,Bb2+)/x2 Y
< . Y K)V [f (aby + Bby + yx2 — u)< ' ®(u)du
2ky*(x2 = x1)x (V) | Jaby+8br+yx

(xb1+,3b2+yx2 )
+f (u — (aby + Bby + yxl))K_ICD(u)du] .

b1+Bba+yxi

Consequently, we have

CD(abl +,8b2 + ’)/X] hl xz)

< FK(V + K) [( VK

= 2’)/%()(2 _ xl)% (ab1+ﬁb2+yx2)*q)) (CL’bl +,8b2 + yxl) + (J(ézb|+ﬁb2+)/X|)+(D) (ab1 +ﬁb2 + ’}/XQ)] .

To prove second inequality, from convexity of ®, we have

O(r(ab; + Bby +yx1) + (1 = 7)(ab; + by + yx2))
< 1®(ab; + Bby + yx1) + (1 — )D(ab; + by + vx»), 2.1)

and

O(r(ab; + By + yxz) + (1 = 7)(ab; + by + yx1))
< T(D(a’bl +,8b2 + ’)/)C2) + (1 - T)(D(a’bl +ﬁb2 + yxl). (22)
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1

Adding inequalities (2.1) and (2.2), and then multiplying both side of above inequality by 7+, and

integrating with respect to 7 on [0, 1], we get
1 v
f T ®(t(ab; + by + yx1) + (1 — 7)(aby + Bby + yxp))dr
0

1
+ f T O(T(aby + By +yx2) + (1 = )(aby + by + yxp))dr
0

X1+ XxXo

< 2£ [aCD(bl) +BO(b,) + ¥

After simple calculation, we obtain second part of our result. This completes our proof. O
Corollary 2.1. If we choose @« =0 = S and y = 1 in Theorem 2.1, then

D(x)) + D(x2)
— 5

X1+ X2 FK(V + K) V,K V,K
@( > )s Te— (@) (x) + (125.0) (x)] <
holds for all x1, x; € [by, by] with x| < x,, see [23].

Theorem 2.2. Assume that @ : [b,b,] — R be a convex function. Let a,8 € [0,1], v € (0,1] be
coefficients of sums a + f+vy =1 and v,k > 0, then

(D(abl + Bby +y

C.(v+Kk)(w+ 1)x
< . : e o @ (@b + by + + | v D] (aby + by +
i — ) (aby Byt 205 (aby + by + yx2) (b Bty 215 (aby + By + yx1)

< a®(b,) + SO0y + yw,

X1 +X2)

holds for all xy, x; € [by, by] with x| < x, and w € N.

Proof. Since @ is convex function, then

X1 +x 1
() (Olbl + by + 7%) < 3 [D(aby + Bby + yx1y) + P(ab; + by + yx21)].
Using change of variable technique for x;; = =x; + 2L, and xp; = 5% + —-x,, we have

d)(abl +,8b2+)/x1 ;x2) < l[@(abl +,8b2+7(wT X + w+l _sz))

2 +1 w+1
w+1l-71 T
0] .
+ (ozb1+,8b2+y( T x1+w+1x2))]

Multiplying both side of above inequality 7+~ and integrating with respect to 7 on [0, 1], we get

d)(abl +ﬁb2 +’)/x1 al xz)

fl o aby +Bby + L L | F
Tx (04 X X T
0 ! 2 o+ 1! w+l 7
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1
v +1-7 T
o ¢ d
+f0‘r aby + Bby +y 1 x1+w+1x2 T

I bi+Bba+yx2 )
_ e+ [f (aby + by + yxa — u)< ' O(u)du

- v )4 ) §
2y (X2 = X% [ Jaby+ppy+y e

wx]+xp

bl+ﬁb2+7T+1 )
+ f (u — (aby + Bby + yx1))« ' D(u)du

b1+Bb2+yx
T+ 8w+ 1)x

2y (xy — x1)*

[(JV’“ oy +<I>) (aby + By + yxy) + (JV’“ wrjoxy -CD) (aby + by + 7xl)] :

(ab1+,8b2+7 il (a/b1+ﬁb2+y il

The first inequality is proved. To prove second inequality, from convexity of property of ®, we have

d)(a/bl +ﬁb2+’y(wT X1 + w+l —sz))

+1 w+1

1 _
< a®(by) + D(D,) + y(ﬁ@(m + %@(@)), 2.3)
and
1 _
(I)(abl + b, +y(w;+ 7 Txl + w:— 1x2))
1 _
< ad(b,) + fD(by) + (ﬁ@(xz) + LHTq)(xl)) . (2.4)

Adding inequalities (2.3) and (2.4), multiplying both side by 7+~!, and then integrating with respect to
7 on [0, 1], we obtain second inequality. This completes the proof. O

Corollary 2.2. If we choose @ = 0 = S andy = 1 in Theorem 2.2, then

YRy PRHUA (AR [(J +<I>) (e2) + (J -‘D) (’“)]

2 B 2(X2 - X1)£ (W (T
< D(x1) + P(x7)
—_ 2 b

holds for all x1, x; € [by, by] with x| < x,, and w € N.
3. Further results

In this section, we derive two new auxiliary identities, which will be used in obtaining our further
results.

Lemma 3.1. Let @ : [by, b,] — R be a differentiable function on (by,b,) with by < b,. If ®" € Li[by, b,]
and a,B € [0, 1], ¥ € (0, 1] be coefficients of sums a + B+ 7y = 1 and v,k > 0, then

®d(ab; + Bby + yx1) + D(ab; + By + yx) _ I(v+«)
2 2y (xy = x1)*
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X [(Jz;ﬁﬁﬂbzﬂxz)‘q)) (abl +ﬁb2 + ')/Xl) + (J;lo,lgﬁﬁbzﬂfxl)*q)) (abl +’8b2 + ?/XZ)]
_ 1
= w U (1 = 1) (@by + Bba + y(tx; + (1 — D)xa))dr
0

2

1
- f =@ (aby + Bby + y(tx; + (1 — T)xy))d7
0

holds for all x1, x; € [by, by] with x| < x,.

Proof. Consider

_ v(x —

1
TI: 2 2 [f (1 = 7)< @ (ab; + fby + y(7x; + (1 — T)x2))dr
0

1
—f 7@ (ab, + Bby + y(rx; + (1 - T))Cz))dT:|
0

_ y(x2 — x1)

I, -1,],
> (L1 —1,]

where

1
I, := f (1 - 1)@ (aby + b + y(tx; + (1 — T)x2))d1
0
_ ad- ) ®(ab; + by + y(tx; + (1 = T)x2))|!
B v(x2 = x1) 0

1
__r f (1 = )i D(aby + By + y(tx; + (1 = D)x))dr
Ky(x2 = x1) Jo

_ DO(ab; + Bby +yx2) B I (v+k) (

y(x2 — x1) Yt (g — xp)**!

Jz;;(bﬁ,@bzﬂ’xz)'cp) (aby +’8b2 +yx1),

and

1
I, = f @ (ab; + by + y(tx; + (1 — T)xp))dr
0
_ T ®(aby + by +y(rx + (1= Dxy)) !
y(x2 — x1) 0
1
+ # f Tf_ICD(abl +,3b2 + ')’(Txl +(1- T)XZ))dT
ky(x2 — x1) Jo

__D(ab; +pby +yx1) L Lo+ (

Y(x2 = x1) Y = xp)x !

o (D) (Clb] +ﬁb2 + ’}/.Xz).

(aby+Bba+yx)*

Substituting the values of 7 and 7, in 7, we obtain our required result.

Corollary 3.1. If we choose a« = 0 = S andy = 1 in Lemma 3.1, then
(D()Cl) + (D()Cz) B I'\(v+«)
2 2023 = x1)

. 1
_ ; *) [f (1 =)@ (tx; + (1 = T)xz)dr — f @ (tx; + (1 = Dx)dr .
o 0

| @) e+ (1310) (x|

AIMS Mathematics Volume 7, Issue 2, 3203-3220.
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Lemma 3.2. Let ® : [by,b,] — R be a differentiable function on (by, b,) with by < by. If ®” € Li[by,b,]
and a, B € [0, 1], ¥ € (0, 1] be coefficients of sums a + B +7vy =1 and v,k > 0, then

(abl + by + y”’“”z) +® (abl + Bb, + y"'*‘“"z)

w+1

w+1

Le(v + + 1)<t
— (V ~ K)((l) V) JVK wWx+x; (a(bl +ﬂb2 + )’x1)
‘y; ()Cz - XI); ((Yb]+ﬁb2+y wl+1 2)

+ (JV’K , (D) (aby + by + sz)]

N
(aby+Bby+y 52 )+

— 1 J—
= —Y(xz x1) [f @ (abl + by + 7(0)(: ! Txl + il xg)) dr
0

(w+1)2 +1 w+1

1

v T w+1-1
- @' [aby + Bb, + + d
fOT (CY1 Bba 7(w+1xl T xz)) T

holds for all x1, x, € [by, by] with x| < x, and w € N.

Proof. Consider

b

— 1 —
= M [f e @’ (a/bl + b, +y(w+ ! Txl + T xz))dr
0

(w+ 1)? w+1 w+1
1
v T w+1l-1
- @’ d
ﬂr (a/b1+,8b2+7(w+1x1+ 1 xz)) T
y(x2 — x1)
=—"1J, - 1,1,
(a)+1)2[1 2]

where

1
y w+1-1 T
Ji = «@ |ab; + Bby + + d
1 fOT (01 B2 7( o+ 1 X1 w+1x2)) T

v ® (ozb1 + b, + y(“’“ Ix; + —xz))

1

— (a) n 1) w+1
y(x2 — x1) 0
(w+ 1)y ! vy w+1l-71 T
_—— K ®
G =) T aby + By +y T x1+w+1xQ dr
@ (ab; + ,Bbz + oy
=(w+1)
y(x2 — x1)

(u — (aby + Bby + yx1))* ' O(u)du

(w + 1! f“bﬁﬁbz”wif:fz
Ky« (o = xp) et

+ v
® (abs + 802 +y252) T+ 0w+ DF! (

v(x2 — x1) Yty — xp)x!

bi+Bba+yxy

=(w+1)

JVK wx ) )(a'bl +ﬁb2 +’)/.X1),

(abr+pba+y pArS|

and

J-—fl <@ (aby + by + LI A S | P
2 = OT anq ) yw+1x1 o+ 1 X T

AIMS Mathematics Volume 7, Issue 2, 3203-3220.
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q) a’bl +ﬁb2 + 'ym + 1 f“'ll—‘ +
- —wrn ! ), wr D (1 s e @) @by + B 4 y20),
y(x; — X1) ')/§+](x2 — xl)E"'l (@by+Bba+y =72
Substituting the values of J; and J, in J and multiplying both sides by %, we obtain our required
result. .

Now we derive some new results related to Hermite-Hadamard-Mercer type inequality using
Lemma 3.1 and Lemma 3.2.

Theorem 3.1. Under the assumptions of Lemma 3.1, if |®'| is a convex function, then

‘(D(abl +Bby + yx1) + ®labi + By +yx) (v +x)
2 2y (xy = x1)*

[Tk sy @) @1+ B2 4 730) 4 (T @) (b1 + 2+ 722)

- (2-(3)
- V+K

2

1\*
(al®" (bl + Bl (b)) + i [K - (—) ](Id)’(xl)l + |®’(Xz)|)] :
V+k 2

Proof. Using Lemma 3.1, property of modulus, and convexity property of |®’|, we have

'cb(ab1 +Bby + yx1) + ®(abi + B +yx)  T(v+x)
2 25 (x = x1)*

X [(J?C’Vgﬁﬂbzﬂfxz)’q)) (@b + by +yx1) + (meﬁbﬁw])*@) (@by + 0> + ’)’Xz)] ‘

1
< _’}/(Xzz— ) [f |(1 —T)f —Tx
0

< y(x2 — x1)
- 2

| (aby + by + y(rx1 + (1 = D)) dT]
foé[(l —1)r = 75] | (aby + By + y(rx; + (1 = T)xy))|dT
’ f (T8 = (1 =) ][0 (@by + by + y(ex + (1 = D)) dTl
< @ [ fo %[(1 — ) — ] [l (b)) + BID ()] + Yl ()] + (1 — DIV (x))] dr

1
+ f [75 — (1 = 7)< ] [l® (0))] + B (ba)] + (7D (x1)] + (1 = DD (x2)])] dr] :

2

After simple calculations, we obtain the required result. O

Corollary 3.2. Ifwe take @ = 0 = Band y = 1 in Theorem 3.1, then

‘(D()q) + O(xy) ~ r(v+ K)Z [(J;;K‘q)) (x) + (Jil'i(b) ()Cz)]

2 2()62 —Xl)K
< (XZ - Xl) K . — l ‘ (|d)'(x )| + |q)/(x )l)
=72 |vr« 2 : el

AIMS Mathematics Volume 7, Issue 2, 3203-3220.
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Corollary 3.3. If we choose v = 1 = k in Theorem 3.1, then

'CD(a/bl + By + yx1) + O(ab; + Bby + yx2) 1 abi+fba+y
— O(u)du
2 ZY(XZ - xl) aby+Bby+yx;
L Yn—x) [a’lq)/(bl)| + Bl (by) N YD’ (x| + |(D'(x2)|)]
= 2 2 4 '

Remark 3.1. Using Lemma 3.1, Holder’s inequality or power mean inequality, interested reader can
obtain new interesting integral inequalities. We omit here their proofs.

Theorem 3.2. Under the assumptions of Lemma 3.2, if |®’| is a convex function, then

(a/bl + by + y"”"”z) + @ (ab1 + by + yx‘“‘”‘z) (v + K)(w + 1)~
w+1 Y (X = xp)¥
)(Olbl + by + 7)62)]

D" (x| + |¢>’(Xz)|]
5 .

X [(J” vy )(ab1 + by +yxy) + (

(aby+pba+y ot1

< 2y(xy — x1)
(w+1)2

(@by+Bby+y L2 y+

(=) [a|<1>'<b1>| + B0 02)] +y

Proof. Using Lemma 3.2, property of modulus, and convexity property of |®’|, we have

| (ab1 + by + y“”"”z) + @ (ab1 + by + 7)“;"{‘2) v+ K)(w+ 1)

w+1 yi(x = x1)*
X [(J(abwﬁbzw“’x‘m) )(abl +Bo +yx) + ( (aby+Bby+y T2 )+ )(abl +Bbz + VXZ)]
v(x; — Xx1) v , w+l-1 T
D S —— K
ST lp T d)(ab1+ﬁb2+)/( T x1+w+1x2))
T w+l-1
o’ d
(a/b1+,8b2+)/(w+1x1+ 1 xz))] T
(X% — x1) b, , , w+l-17 T ,
< ﬁ 7@l ()] + BV (o)l +y | =10 ()l + —— |0 ()

+1-
+a|®'(b))] + SO’ (b)) + y(ﬁ@'(m + %@'(m) dr

D" (x)I + ICD’(Xz)I]
5 :

al®’'(by)| + BIP(b2)l + ¥

_ 27(X2—X1)( K )

(w+1)? \v+«

This completes the proof. O

Corollary 3.4. If we take v = w = k = 1 in Theorem 3.2, then

X1 +x2) 1 abi +6by+yxn

> O(u)du

|(D (abl +ﬁb2 +y

7(x2 - xl) abi+Bby+yx;
D’ (x1)] + ICD’(Xz)I]
> .

< Y(x2 — x1)

== al®'(by)| + IO (b2)l + ¥

AIMS Mathematics Volume 7, Issue 2, 3203-3220.



3213

Corollary 3.5. If we choose @« = 0 = S and y = 1 in Theorem 3.2, then

() 0(5E) ronwe ity
w+1 (x2 = x1)*

Ve, )00+ (T @) ()|

( w+1

< (Xz—xl)( K

T (w+ 12 \v+xk

Gl + 197G
Theorem 3.3. Under the assumptions of Lemma 3.2, if |®'|? is a convex function, then

® (b + by + yLE2) + @ (aby + By + ¥LEER) T (y 4 (w0 + )i
w+1 y5(xy = x1)*

x [(J . )(ab1 +Bby + yx1) +(

((lbl +,Bb2+y |

)(Gbl + by + sz)]

o 2w+ 1) -1 i
o 1)|‘D (xpl? + m@ (x2)|q))

T 2w+ -1, i
2o+ 1)|(D (x)l? + Z(w—+1)|(D (x1)|q)) ],

(@by+Bby+y L2 )+

<ﬂn—m% K y

T (w+1)? \vp+k

(a|q>’(b1)|q +BlO" ()l + 7(

+ (aICD’(bl)I" + Bl (b)) + 7(

where L + 1 =1 and q > 1.
P g

Proof. Using Lemma 3.2, property of modulus, Holder’s inequality and the convexity property of |®’|7,
we have

‘ (aby +Bby + y2L52) + @ (aby + By + yLEez) L+ Q)+ D!

w+1 yr(xy = xp)*

X [(J” vy )(a’bl + by +yxp) + ( fwg )(Clbl + by + 7362)]

(aby+Bb2+y— (aby+Bby+y
1 1
y(x2 — x1) AT fl / w+l-1 T Y
L « ()]
< TP (‘fOT dT) [(0 aby + Bby +y 1 x1+w+1xz dr

[

< 7(X2—X1)( K )’l’

T (w+1)? \vp+xk

, T w+l-71
() Q’b1+ﬂb2+’y o X + X

+1 w+1

g dT):,]

1
1 —
( f [a@'(bl)rf + B ()l + y(ulcb’(xl)w "
0 w+1

Q=

)

| ;
+ ( f [a@'(bow + Bl ()| + y(L@'(xl)rf + LH@'(W)] dr) }
0 w+1 w+1

Y —x) [« v , , 1 ) 2Aw+1) -1, :
T w+ 1) (Vp+/<) (alfb bl + p|® (bz)l"+7(z(w+ 1)|® (el + f et |<D( 2)|q))
1 2w+ 1 ;
+(al®'(b1)|" + Bl (b2 +7(2(w+ 1)|<I>’(Xz)|" %@( 1)|")) ]
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This completes the proof. O
Corollary 3.6. If we take v = w = k = 1 in Theorem 3.3, then

1 (Ybl +ﬁb2+’yXQ

|c1> (abl T By +y 2 ; xz) - O(u)du

7(x2 - xl) ab1+ﬂb2+yx1
1
< Yoo —x) [ 1 |7
4 p+1

1 3 a
+ (alq)'(bl)lq + BlD (b)) + V(Zlq)'(xz)lq + Zlq)/(xl)|q)) ] .

1 3 9
(a@'(bl)lq + Bl ()l +y (Zlqy(xl)lq + Z|<D’(X2)Iq))

Corollary 3.7. If we choose @« = 0 = S andy = 1 in Theorem 3.3, then

O(2) + O (22) [y 4 9+ DI (72,00 @)+ (7
)

w + 1 (x2 _ x1)£ (m¥1+x2

w+1

JV):(IHU)Q ) ) (XZ)]

< (—x) [ « ’
T (w+ D)2 \vp+k
2w + 1)

1 ’ - 1 ’ %
+ (m@ ()| + W@ (X1)|q)

, 2w+ -1 \i
(Z(w n 1)|‘D (xp)l? + WVD (x2)|q)

Theorem 3.4. Under the assumptions of Lemma 3.2, if |®’|? is a convex function for q > 1, then

(abl +,8b2 + y“’x‘+x2) + (D(Clbl +ﬁb2 + ,yx1+wx2) FK(V + K)(w + 1)%—1

w+1 yi(xy = x1)*

X [(JVK v )(abl + By + yxy) + (JVK BTSN )(a’bl + b + 7X2)]

(abr+pba+y =7 (@by+Bba+y =5

< y(x2 — x1) ( K )l‘q Kar KB kw(w + 2k) + K2
T (w+1)? \v+k v+ K
KB

DI+ L1 by + y( ()
VYV + K
|<1>'<x2>|‘f)) " (—"“ (b + —L 0 (b
YV + K YV + K

(w+ D(v+ )y + 2k)

e+ D+ 20

2 i
+y( K + eV F 20 H K |<D'<xz>|‘f)) ]

(w+ D(v + 2) (w+ D(v+ )+ 2k)

Proof. Using Lemma 3.2, property of modulus, power mean inequality and the convexity property of
|D’|7, we have

© (aby + by + yLLE2) + @ (aby + by +yHLE22) L+ 0w+ D!

w+1 fyx(xz—xl)x

X [(J” vt )(ab1 + By + yxp) + ( )(a/bl +pby + yx2)]

(@b +Bbr+y— (aby+Bbr+y == 4 +M2 )
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1=-1

-

T w+1-1
@I
(Q’bl +,8b2+’)/(w+ 1)61 + ot )Cz))

y(x2 — x1) ! v
S—(w+1)2 (jo‘rdr)
1
+(f T+
0

<)’(X2—X1)( K )l-é

T (w+1)? \v+k

, w+l-71 T
() (a/b1+,8b2+y( — x1+w+1x2))

4 \g
dT)
1 _
( f Tt [a@'(bl)w + Bl (by)|7 + y(L”@'(xl)w +— |<1>'(x2)|‘J)] dr)
0 w+1 w+1

df)j

kw(w + 2k) + K2
(w+ D+ )+ 2k)

1

+1

1 _
¥ ( fo 7 [ald)'(ln)lq + IO ()l + y(ﬁ@'m)w " %@'(MJ)

( K o)l + P (b)) +y(
V+K

V+K

D’ (1)

_y(xz—xl)( K )1—31

T o (w+ 1?2 \v+k

|‘D’(x2)|q))q (L@ O+ oo

o+ D+ 20

K 7’
+7((w o0 N e T o+ 20

bty + 20 + |c1>'<xz>|q))q} |

This completes the proof. O

Corollary 3.8. Ifwe take v = w = k = 1 in Theorem 3.4, then

x + x 1 ab1+,8b2+7x2
! 2) - D(u)du

2

‘CD (ozbl +ﬁb2 +y

¥ —x) (1)
2

y(xz - xl) ab1 +ﬁb2+yx1

1 1 7
< 1 (%@'(blﬂq + §|(D’(b2)|q + ’)’(§|(D’(X1)|q + 8|(D,(x2)|q))

" (%@'(bl)w + Lot + (é@'(xl)r' " §|<D'<x2>|f'))q] .

Corollary 3.9. If we choose @« =0 = S and y = 1 in Theorem 3.4, then

o) 1 0(8) ooy

: T d>) +(JV’5+M cb) ]
w+1 (X2 — x;)% ey @O+ Uy ) O02)

( w+1 )"

=

<(x2—x1)( K )l_fll

T (w+ D2 \v+k

kw(w + 2K) + k* , X /
((w P om0 I G20 T N

O (x| +

K kw(v + 2k) + &2 ]
- (w+ D(v+2k) (w+ D+ )+ 2k) '

ICD'(Xz)I")

4. Applications

In this section, we will discuss some applications regarding our results for special means and error
estimations.
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4.1. Applications to special means
Let recall the following two special means:

e The arithmetic mean is defined as

X1+ X2

2

ﬂ(-xla x2) =

e The generalized log—mean is given by

n+l _ n+l
X X

(n+ D(xz = x1)

L,(x1,x) 1= ]n, neZ\{-1,0},

where 0 < x; < x, are real numbers.
Using above special means we can establish some new inequalities as follows:
Proposition 4.1. Let x;,x, € [by,by] with 0 < by < by and a,B,€ [0,1], v € (0, 1] be coefficients of

sums @ + 3+ vy =1, then for n > 1, we have

n+2 n+2 1
'ﬂ ((Qb] +ﬁb2 + yxl) s (CYb] +ﬁb2 + ’}/XQ) ) - = Z:% (ab1 +ﬁb2 + yxl,abl +ﬁb2 + ’}/XQ)

2
Y(n + 2)()('2 - .X']) n n Y
< 5 [ﬂ(abl B + Eﬂ(x';“,xg“)]. 4.1)
Proof. The proof directly follows from Theorem 3.1 applying for ®(x) = x"*? and v = 1 = «. O

Proposition 4.2. Let x;,x, € [by,by] with 0 < by < by and a,B,€ [0,1], v € (0, 1] be coefficients of
sums a + B+ vy =1, then for n > 1, we have

QA (aby,Bby) + yA (1, xz))n+2 — LI73 (aby + By + yxi, aby + Bbs + yx,)

Y+ 2)(x — x1) n+l n+l Y n+l  _n+l
< > [ﬂ(abl by ) + Eﬂ(x1 X )] (4.2)

Proof. The proof directly follows from Theorem 3.2 applying for ®(x) = x"?andv=w=«k=1. 0O

Proposition 4.3. Let x;,x, € [by,by] with 0 < by < by and a,,€ [0,1], v € (0, 1] be coefficients of
sums @ + B+ vy =1, then forn > 1 withé+ é =1l and g > 1, we have

‘(25‘1 (@b, B02) + YA (x1, 1)) — L3 (aby + Bby + yxy, aby + Bby + )’Xz)‘

yn+2)n—x) [ 1 z (n+1) a1y Y (n+1) o _gn+1) ]
< T | (21 (ab1 70 s ) 4 2 (g, 34

4 2

4 (23( (ablqm“),ﬁbzq(”“)) N %ﬂ (3x(11(n+1), xg(n+1)))q ] 43)

Proof. The proof directly follows from Theorem 3.3 applying for ®(x) = x*""?andv=w=«k=1. O
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Proposition 4.4. Let x;,x, € [by,by] with 0 < by < by and a,B,€ [0,1], v € (0, 1] be coefficients of
sums @ + B +vy =1, then forn > 1 and g > 1, we have

@A (@1, B02) + ¥ A (1, 12) = L3 (@b + By + yx1, by + s +y10)

y(n +2)(x2 — x1) 11_5 (n+1) (n+1) q(n+1) q(n+1)
= 4 (5 [(ﬂ( b1t ) S (2 ))

Q=

Q=

" (&Zl (@b, B ) 2 A (", 2xg<"”>)) ] (4.4)

Proof. The proof directly follows from Theorem 3.4 applying for ®(x) = x"?andv=w=«k=1. O

Remark 4.1. For suitable choices of function ®, many other interesting inequalities regarding new
special means can be derived. We omit here their proofs and the details are left to the interested
reader.

4.2. Trapezoidal quadrature formula

Let consider some applications of the integral inequalities obtained above, to find new error bounds
for the trapezoidal quadrature formula. First, we fix three parameters «, 3, € [0, 1], y € (0, 1] such that
a+pB+y=1

Forb, > by > 0,let U : by = xo < x1 < ... < Xu1 < Xau = by be a partition of [by,b,] and
Xi1,Xi2 € L\/i’)(iﬂ] foralli=0,1,2,...,n—1.

We denote, respectively,

n—1
S(U. @) —yZ@(axl + B +7

1=

Xi 1 + Xlz)h,‘,
2

and

abi+Bby+yx
f O(u)du := S(U, D) + R(U, D),
ab1+,8b2+yx1
where R(U, @) is the remainder term and 7; = yiy1 — xi-
Using above notations, we are in position to prove the following error estimations.

Proposition 4.5. Under the assumptions of Theorem 3.2, if we take v = w = k = 1, then the following
inequality holds:

R(U, D)| <

n—1
Z hlz [al(l)'(,yi)l +,3|q)/()(i+l)| + Y

i=0

I

D’ (x;1)| + |‘D'(Xi,2)|]
5 .

Proof. Using the Theorem 3.2 on subinterval [y;, x;.1] of closed interval [b;,b,] and choosing v = w =
k=1,foralli=0,1,2,...,n— 1, we have

X1+ X axitBYi+1+YXi2
|7(D (CYXi +Bxis1 + YQ)E - f O (u)du

2 axi+Bxir1+yxil

4.5)
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D" (x; )| + D" (xi2)]

<
2

h,Z a|® (x| + BIO (yir )l + ¥

I

Summing inequality (4.5) over i from 0 to n — 1 and using the properties of the modulus, we obtain the
desired inequality. O

Proposition 4.6. Under the assumptions of Theorem 3.3, if we take v = w = k = 1, then the following
inequality holds:

1

Ly
v 1 \» )
R D) < = -

1 3
(CY|(D’(/\,/i)|q + B0 (i) +y (Z|Q)’(xi’1)|‘7 + Z|(D'(Xi,2)|q))

1 3 q
+ (CY|®/(X1‘)|'] + Bl (yir ) + V(Zlq),(-xil)lq + Z|®'(Xi,1)|q))

Proof. Applying the same technique as in Proposition 4.5 but using Theorem 3.3 and choosing v =
w=k=1. O

Proposition 4.7. Under the assumptions of Theorem 3.4, if we take v = w = k = 1, then the following
inequality holds:

1-1 -1
Y1\ * 2 B
)] == ; —
REU, D) < 4( ) ;:0 i >

1
’ 1 ’ 1 ’ 5
) |D (Xi+l)|q + 7(§|(D (Xi,1)|q + 6|‘D (xi,2)|q))

a ’
(5@ )l? +

1 1 a
§|(D’(Xi+1)|q + 7(8|(D/(xi,1)|q + §|‘D'(Xi,2)|q)) .

a ’
+ (5@ (l? +

Proof. Applying the same technique as in Proposition 4.5 but using Theorem 3.4 and choosing v =
w=k=1. a

5. Conclusions

In this paper, we have established some new Hermite—-Hadamard—Mercer type of inequalities by
using k—Riemann-Liouville fractional integrals. Moreover, we have derived two new integral identities
as auxiliary results. From the applied identities as auxiliary results, we have obtained some new
variants of Hermite—Hadamard—Mercer type via k—Riemann—Liouville fractional integrals. Several
special cases are deduced in details and some know results are recaptured as well. In order to illustrate
the efficiency of our main results, some applications regarding special means of positive real numbers
and error estimations for trapezoidal quadrature formula are provided as well. To the best of our
knowledge these results are new in the literature. Since the class of convex functions have large
applications in many mathematical areas, they can be applied to obtain several results in convex
analysis, special functions, quantum mechanics, related optimization theory, mathematical inequalities
and may stimulate further research in different areas of pure and applied sciences.
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