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Abstract: In survival analysis, the cure rate model is widely adopted when a proportion of subjects 

have long-term survivors. The cure rate model is composed of two parts: the first part is the incident 

part which describes the probability of cure (infinity survival), and the second part is the latency part 

which describes the conditional survival of the uncured subjects (finite survival). In the standard cure 

rate model, there are no constraints on the relations between the coefficients in the two model parts. 

However, in practical applications, the two model parts are quite related. It is desirable that there 

may be some relations between the two sets of the coefficients corresponding to the same covariates. 

Existing works have considered incorporating a joint distribution or structural effect, which is too 

restrictive. In this paper, we consider a more flexible model that allows the two sets of covariates can 

be in different distributions and magnitudes. In many practical cases, it is hard to interpret the results 

when the two sets of the coefficients of the same covariates have conflicting signs. Therefore, we 

proposed a sign consistency cure rate model with a sign-based penalty to improve interpretability. To 

accommodate high-dimensional data, we adopt a group lasso penalty for variable selection. 

Simulations and a real data analysis demonstrate that the proposed method has competitive 

performance compared with alternative methods. 
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1. Introduction  

Survival analysis is a method to analyze time to event of interest assuming that all subjects will 

eventually experience the event [1]. It has been widely applied in many fields such as medicine, 

engineering, credit scoring, etc. [2–4]. However, in practice, a proportion of subjects may not 
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experience the event of interest. They are considered ‘cured’, or in other words, the long-term 

survivors. For instance, in medical practice, there may be a fraction of patients cured of their disease. 

Therefore, the cure rate model, an extension of survival analysis, is introduced to modeling data with 

long-term survivors [5].  

Let ix  be the covariate vector of subject i , and ( | )i iS t x  be the survival probability in time 

t . The cure rate model can be written as 

( ) ( ) ( )( ) ( )| 1 | 1, = + − =i i i i i i i i iS t S t Ux x x x , (1.1)  

where iU  is the random binary variable which indicates the cure status of subject i . The cure 

status 0iU =  denotes subject i  is cured and will not experience the event, and 1iU =  otherwise. 

Here ( ) i ix  is the probability function of being cured with the vector of regression coefficients  , 

and ( | 1, )=i i iS t U x  is the survival function with the vector of regression coefficients  . 

As shown in (1.1), the cure rate model is composed of two parts. The first part is the incident 

part, which predicts the probability of being cured. The second part is the latency part, which 

describes the conditional survival of the uncured subjects. Since the cure rate model can predict 

whether subjects are cured and the time to event of the uncured subjects, it is commonly adopted 

when a proportion of subjects have long-term survivors [6].  

There are numerous studies in the literature regarding many extensions of the cure rate model. 

Cooner et al. [7] proposed a flexible hierarchical cure rate model to distinguish among underlying 

mechanisms that lead to cure. Rodrigues et al. [8] assumed the number of risk factors to follow the 

Conway–Maxwell Poisson distribution and proposed a Conway–Maxwell Poisson cure rate model to 

unify some cure rate models. Li et al. [9] considered a mixture of linear dependent tail-free processes 

as the prior for the distribution of the cure rate parameter to develop a latent promotion time cure rate 

model. Results showed that the cure rate model incorporated penalized spline has better performance 

in prediction [10]. Georgiana proposed a Bayesian spatial cure rate model with Weibull lifetime to 

model spatial variability in the censoring mechanism [11]. Pal et al. [12] proposed a projected 

non-linear conjugate gradient algorithm for the cure rate model under a competing risks scenario. 

Besides, many works have developed semi-parametric and nonparametric methods to investigate the 

effects of covariates on the outcome. For instance, Li et al. [13] proposed a semi-parametric additive 

predictor consisting of a sum of linear and nonparametric terms in the incident part. Chen et al. [14] 

modeled the covariate effects by a nonparametric form. 

However, many existing works tend to pay much less attention to the relations between the 

vector of regression coefficients   and   in the two model parts. Generally, they assume that 

there are no direct constraints on the relation of the vector of regression coefficients   and   

corresponding to the same covariates [15,16]. In other words, these works assume that the 

probability of being cured and the time to event are independent, and there are no direct constraints 

between the coefficients   and  . 

Notably, in practical applications, the two model parts are quite related. The incident part 

describes the probability of cure (infinity survival), and the latency part describes the conditional 

survival of the uncured subjects (finite survival). It is desirable that there may be some connections 

between the vector of regression coefficients   and   corresponding to the same covariates. 

Theoretical derivations and case studies also suggest that relaxing the assumption of no direct 
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constraints on regression coefficients can improve the performance of the model [17,18]. Liu et 

al. [19] relax the assumption of no direct constraints by establishing a joint distribution of the 

covariates and the logarithm of the hazard rate. Fan et al. [20] incorporate structural effects of   

and   in the cure rate model to improve the estimation accuracy and interpretability. A joint 

distribution or structural effects of   and   are crude yet effective way to impose the relations 

between the coefficients. However, the two parts of the model still describe two different aspects. 

The assumption of a joint distribution or structural effects are too restrictive constraints and might 

not work well. So we consider a more flexible model that allows the coefficients   and   can be 

in different distributions and magnitudes. Sign consistency penalty is proposed to promote the 

similarity in sign to get more interpretable results by Zhang [21]. In many practical cases, it is hard to 

interpret the results when coefficients   and   corresponding to the same covariates have 

conflicting signs. In this paper, we consider a sign consistency cure rate model with a sign-based 

penalty. In addition, the models may suffer from bad performance due to the high dimension of the 

data, and grouping structure arises naturally in many practical cases. A group lasso penalty is also 

imposed for group variable selection. 

In this paper, we propose a cure rate model with group selection and sign consistency (CRGS), 

which can select important groups of covariates and promote similarity in the sign of coefficients. 

The proposed method can promote the similarity in the signs of coefficients   and   to improve 

interpretability. Compared to the individual variable selection approaches such as the sign 

consistency method in [22], the proposed method with the group selection approach takes into 

consideration the grouping structure and can lead to better prediction. Compared with previously 

employed approaches such as joint distribution or structural effects of coefficients, the CRGS 

method can avoid too strict constraints between the coefficients and lead to more consistency and 

hence more interpretable results. 

The paper is organized as follows. In section 2, the sign consistency cure rate model with 

Weibull lifetime and the algorithm is introduced. Simulation is presented in section 3. Section 4 

displays a real data application. Finally, section 5 discusses the conclusions. 

2. Methods 

2.1. Sign consistency cure rate model with Weibull lifetime 

Consider data with n  subjects and p  covariates. Denote iY  as the time to event of subject 

i , that is, the time until the event of interest is observed to occur. Let iC  be the time of right 

censoring, and ( )= i i iY C    be the censoring indicator of subject i , where = 0i  for censored 

and = 1i  for uncensored. Denote ( )min ,i i iy T C= . Note that the censored subjects include the 

cured subjects and the uncured subjects for whom the event has not occurred at censoring time. So 

the cure status iU  is unobservable. The observable data is ( ) , , , 1, ,xi i iy i n = . 

Denote x  as the covariate vector with grouping structure. Let 1( , , )J

  =x x x  be the 

covariate vector with J  nonoverlapping subgroups. 1( , , )
jj j jpx x =x  is the j -th subgroup of 

covariate vector，with 
1

J

jj
p p

=
= . Grouping structure arises naturally in many practical cases. 

Examples include the expression of a multi-level factor by a group of dummy covariates and the 

expression of an addictive model by several basis functions [23]. In addition, grouping structure can 
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also be introduced into a model by taking advantage of prior knowledge [24]. For example, genes 

belong to the same biological pathway [25].  

In the incident part of the cure rate model, we adopted logistic regression, a generalized linear 

model, to describe the probability of cure ( ) ( )( )01 1 expi i i  = + +x x  . Here 1( , , )J

  =    

is the vector of regression coefficients, 1( , , )
jj j jp  =  is the j -th subgroup of the coefficient 

vector, and 0  is the intercept. 

In the latency part, let i  be the link function. The survival function is the chance an 

individual survives to time t  given the individual will eventually experience the event of interest, 

while i  is the probability of an individual experiencing the event in the next instant of time t .  

We assume the time to event t  follow the Weibull distribution. Weibull distribution is a 

considerable flexibility distribution to model lifetime data [26]. It had been justified to be a valid 

lifetime distribution within the broad family of generalized gamma models [27,28]. Referring to 

[1,29], the survival function for the uncured subjects following the Weibull distribution can be 

written as  

( ) ( )( )| 1 exp = = −
r

i i iS t U t ,  (2.1)  

with the probability density function ( ) ( )( ) ( )( )| 1 exp .
r r

i i if t U r t t t = = −  Here 0r   is the 

shape parameter (more discussions below). The link function can be written as  

( )0exp  = +i ix  , (2.2)  

where 0  is the intercept, 1( , , )J

  =   is the vector of regression coefficients, and the j -th 

subgroup of the coefficient vector is 1( , , )
jj j jp

=   . 

For observable data ( ) , , , 1, ,xi i iy i n = , the log-likelihood function is 

( ) ( ) ( ) ( ) ( ) ( )( )( )

( )( )( )( )

0 0

1

1

L , , , = log 1 log log log

(1 ) log (1 )exp .

n
r

i i i i i i

i

n
r

i i i i i

i

r t r y y

y

     

   

=

=

− + − + −

+ − − − +





 

 (2.3)  

For promoting sign consistency and variable selection, we propose the following objective 

function 

( ) ( ) ( ) ( )0 0 0 0 1 2Q , , , = L , , , +P , +P ,   −        . (2.4)  

Here 1P ( , )   is the group variable selection penalty function, and 2P ( , )   is the sign 

consistency penalty function as follows. 
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22
2

1 1

P ( , ) (sign( ) sign( ))
2


 

= =

= −
jpJ

jk jk

j k

  , ( )1 1

1

P ( , ) 
=

= +
J

j j j

j

p    , (2.5)  

where •  is the 2l  norm, sign( )•  is the sign function, 1 0   and 2 0   are tuning 

parameters. 1  and 2  control the degree of penalty. 

The first penalty
 1P ( , )   is a group lasso penalty, which can conduct group variable selection 

and generate more accurate estimation. Group lasso has the advantage in group variable selection 

performance and is commonly used in literature. It has been justified that the group lasso is more 

robust to noise compared with lasso when the underlying signal is strongly group-sparse [30]. In 

addition, different from methods in some existing works [20,22], group lasso can consider grouping 

structures and it has better performance compared with the group LARS and the group non-negative 

garrotte [31]. The second penalty 2P ( , )   promotes the similarity in signs of coefficients   and 

 , which can lead to more interpretable results. The proposed method is more flexible than the 

methods with structural effect in [20] or joint distribution in [19] of coefficients.  

2.2. EGCD algorithm 

In this section, we propose the Expectation Group Coordinate Descent (EGCD) algorithm to 

optimize the objective function. In the E-step, we introduce a latent unobserved iU  to obtain a 

complete log-likelihood function. In the GCD-step, group coordinate descent is adopted to iteratively 

update a subgroup of parameters with the remaining parameters fixed at their most recent values. 

Since the sign function sign( )•  is not differentiable and continuous, and it is hard to optimize. So 

we introduce the following approximation for computational feasibility [21,22]. 

2

2(sign( ) sign( ))
| | | |

jk jk

jk jk

jk jk

 
 

   

 
−  −  + + 

, (2.6)  

with

 



 

is a small positive constant. 

The EGCD algorithm iteratively updates 0 ,  , 0 , and   in the m –th iteration. 

2.2.1. E-step 

In the E-step of the m –th iteration, let the observation of the latent iU  be [ ]m

iU . Consider the 

complete data  [ ]( , , , ), 1, ,x
m

i i i iy U i n =  with the latent [ ]m

iU . The complete log-likelihood is 

( ) ( )( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1

[ ] [ ]

1 2

(1 ) log( ) log(1 ) exp

: ,

n n
r

m m m m m m m m

i i i i i i i i i

i i

m m

L U U U y

L L

    
= =

= − + − + −

= +

 
 (2.7)  

where  
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[ ]

[ ] [ ]

0

1

1 exp( )x

m

i m m

i


 

=
+ + 

, (2.8)  

[ ] [ ] [ ]

0exp( )x
m m m

i i  = +  . (2.9)  

Regarding the expectation of iU , there are three possible situations of subjects. (a) =0i  and 

0iU = : censored and cured, indicates long-term survivors; (b) =0i  
and 1iU = : censored and 

uncured, indicates subjects who will eventually experience the event, and the event have not 

occurred in censoring time iC ; (c) =1i  
and 1iU = : uncensored and uncured, indicates subjects 

who have experienced the event. Therefore, the expectation of iU  is 1 when uncensored ( 1i = ). 

When censored ( 0i = ), the expectation of iU  is related to the probability of cure and the 

proportion that uncured subjects for whom the event has not occurred at time t . Denote the 

expectation of [ ]m

iU  as [ ]m

iu , 

( ) ( ) ( )( )
( ) ( )( )

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ]

1 1

1 expE
0.

1 exp



 


  

=

 − −= = 

=
+ − −



i

r
m m

m m
i i i

i i

ir
m m m

i i i i

yu U

y

 (2.10)  

Given the complete data  [ ]( , , , ), 1, ,x
m

i i i iy U i n = , we take the expectation of 
[ ]mL  in (2.7) 

with respect to [ ]m

iu  

[ ] [ ] [ ]

1 2E( )m m mL l l= + , (2.11)  

where 

( ) ( ) ( ) ( )( )[ ] [ ] [ ] [ ] [ ] [ ]

1 1

1

E 1 log log 1 
=

= = − + −
n

m m m m m m

i i i i

i

l L u u , (2.12)  

( ) ( ) ( )( )( )[ ] [ ] [ ] [ ] [ ] [ ] [ ]

2 2 0 0

1

E exp   

=

= = + − +
n r

m m m m m m m

i i i i i

i

l L u yx x  . (2.13)  

The objective function can be written as 

( ) ( )
2

2
1 2 1

1 1 1

+
2 | | | |

jpJ J
jk jk

j j j

j j k jk jk

l l p
 


   = = =

 
− + + + −  + + 

   . (2.14)  

2.2.2. GCD-step 

In the GCD-step, group coordinate descent is adopted to iteratively update 0 ,  , 0 , and 

 . Group coordinate descent algorithms optimize the objective function with respect to a group of 



3192 
 

AIMS Mathematics  Volume 7, Issue 2, 3186–3202. 

parameters at a time, and iteratively cycles through the parameter groups until convergence [25]. The 

intercept [ 1]

0

m +  is updated by 

( )

1
2 [ ] [ ]

1 1[ 1] [ ]

0 0 2 [ ][ ]
00

m m

m m

mm

l l
 



−

+

  
 = −
  
 

, (2.15)  

where ( )[ ] [ ] [ ] [ ]

1 0 1
= 1 

=
  + −

nm m m m

i ii
l u  , and ( ) ( )

2
2 [ ] [ ] [ ] [ ]

1 0 1
1  

=
  = −

nm m m m

i ii
l . 

For [ 1] jpm

j R+  , we can obtain Taylor’s quadratic expansion of the objective function in (2.14) 

respect to [ 1]m

j

+ . Referring to the fast unified algorithm for group lasso [32], the upper bound of the 

objective function can be written as  

[ ][ ]

11 [ 1] [ ] [ 1] [ ] [ 1] [ ] [ ] [ 1]

2 1 1[ ]
( ) ( ) ( )

2

mm

j m m m m m m m m

j j j j j j j j jm

j

lM
p +  + +  +

 
− − − − + +   

V      


, (2.16)  

where ( )[ ] [ ] [ ] [ ]

1 1
= 1

nm m m m

j i i jki
l u x

=
  + − . Here [ ]

1

m

jV
 
is jp -length vector, and [ ]

1

m

jM
 
is a 

constant as follows. 

[ ] [ ]

[ ]

1 [ ] [ ] [ ]

1

1

| | | | | |
j

m m

jk jkm

j m m m

jk jk jk
k p

 

     
 

  
= −    + + +  

V , 

1
1 2

2
2 [ ]

1[ ]

1 2[ ] [ ] [ ]

2
1 ,

1
max

| |
j

m

m

j km m m

jk jk jk
k k p

l
M  

   
 

      
   = − +          +     

, 

(2.17)  

where ( )
1

2 [ ] [ ] [ ] [ ] [ ] 2

1 2 1
1

nm m m m m

jk jk i i jki
l x   

=
   = − , and ( )  is the maximum eigenvalue function. 

By minimizing (2.16), we obtain [ 1]m

j

+ : 

[ ] [ ] [ ] [ ] [ ]
11 1 2 1[ 1]

[ ] [ ] [ ] [ ] [ ] [ ]
1 1 1 2 1

1

m m m m m
jj j j jm

j m m m m m m
j j j j j

pM l

M M l

 


 

+

+

 +   +
 = −
 +   +
 

V

V




, (2.19)  

where ( )  max ,0a a
+
= .  

Similarly, the intercept [ 1]

0

m +  is updated by 

( )

1

2 [ ] [ ]
[ 1] [ ] 2 2
0 0 2 [ ][ ]

00

m m
m m

mm

l l
 



−

+

 
  = −

  
 

, (2.20)  

where ( )( )[ ] [ ] [ ] [ ]

2 0 1
=

rnm m m m

i i i ii
l u r y  

=
  − , and ( ) ( )( )2

2 [ ] [ ] [ ] 2 [ ]

2 0 1
=

rnm m m m

i i ii
l u r y 

=
  − .  

For [ 1] jpm

j R+  , consider the optimization function 
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[ ] [ ]
2 [ 1] [ ] [ 1] [ ] [ 1] [ ] [ ] [ 1]2

2 2 1[ ]
( ) ( ) ( )

2

m m
j m m m m m m m m

j j j j j j j j jm

j

M l
p +  + +  +

 
− − − − + +   

V      


, (2.21)  

where ( )( )[ ] [ ] [ ] [ ]

2 1

rnm m m m

j i jk i jk i ii
l x u rx y 

=
  = − . 

Here [ ]

2

m

jV
 
is jp -length vector, and [ ]

2

m

jM
 
is a constant as follows. 

[ ] [ ]

[ ]

2 [ ] [ ] [ ]

1

1

| | | | | |
j

m m

jk jkm

j m m m

jk jk jk
k p

 

     
 

  
= −    + + +  

V , 

1 2
1 2

2
2 [ ]

[ ] 2
2 2[ ] [ ] [ ]

1 ,

1
max

| |
j

m
m

j km m m

jk jk jk
k k p

l
M  

   
 

         = − +          +     

, 

(2.22)  

where ( ) ( )
1 2

2
2 [ ] [ ] [ ] [ ] [ ]

2 1
=

rnm m m m m

jk jk i jk i ii
l u rx y  

=
   − . 

By minimizing (2.21), we obtain [ 1]m

j

+ : 

[ ] [ ] [ ] [ ] [ ]
12 2 2 2[ 1]

[ ] [ ] [ ] [ ] [ ] [ ]
2 2 2 2 2

1

m m m m m
jj j j jm

j m m m m m m
j j j j j

pM l

M M l





+

+

 +   +
 = −
 +   +
 

V

V

 


 
. (2.23)  

Regarding the parameters 1 , 2 , and r , Wang et al [33] had demonstrated that the tuning 

parameters selected by the Bayesian information criterion (BIC) type criterion can identify the true 

model consistently as long as the covariate dimension is fixed. So the parameters, 1 , 2 , and r , 

are selected by Bayesian information criterion (BIC). The EGCD algorithm is shown in Table 1. 

Table 1. EGCD algorithm. 

Expectation Group Coordinate Descent Algorithm 

1. Initialize 0m = , [ ] [ ]

0 0= 0m m  = ，and 
[ ] [ ]= 0m m

J p=  ; 

2. Repeat the following updates: 

2.1 E-step:  

Update [ ]m

i  and from (2.8), [ ]m

i  from (2.9), and 
[ ]m

iu  from (2.10); 

2.2 GCD-step: 

Update [ 1]

0

m +  from (2.15); 

For 1, ,j p= , update [ 1]m

j

+  from (2.19); 

Update [ 1]

0

m +  from (2.20); 

For 1, ,j p= , update [ 1]m

j

+  from (2.23); 

1m m= +  

Until 
        1 1 3max , 5 10

+ + −− −  
m m m m

j j j j    . 
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3. Simulation 

In this section, we perform a numerical study to evaluate our method, in terms of both variable 

selection and estimation performance. The variable selection is assessed in terms of the (1) true 

positive rate (TPR), and (2) false positive rate (FPR) of variable selection. Estimation is evaluated in 

terms of mean square error (MSE) of coefficient estimates. 

3.1. Design and assessment 

In Scenario 1, the covariates jkx , 1,...,j J= , 1,..., jk p= , are generated from a multivariate 

normal distribution. The correlation coefficient of covariates 
mjkx and 

njkx in the same group is 

| |
 = 0.1 m nk k −

, whereas  = 0  when in different groups. We consider the case with discrete 

covariates in Scenario 2. In Scenario 2, jkx  is defined as follows. 

3

I( 0) 3.

jk

jk

jk

x j J
x

x j J


= 

 
 (3.1)  

The sample size is 500.n =  We consider low-dimension data with 40,p =  and 

high-dimension data with 200p = . The censoring time is generated from a Weibull distribution 

with the shape parameter 𝑟 = {0.25, 2.5}. We compare the proposed method (CRGS) with three 

alternative methods. The alternatives are the standard cure rate model without sign consistency and 

variable selection penalty (CR), the cure rate model with sign consistency (CRS), and the cure rate 

model with group lasso penalty (CRG), respectively. For comparison, we also consider the 

alternatives with the logistic regression in the incident part and the Weibull distribution in the latency 

part. The grouping structure and coefficients of the 2 scenarios are generated as listed in Table 2.  

Table 2. Grouping structure and coefficients in Scenarios 1 and 2. 

 Scenario 1 Scenario 2 

Non-zero 

subgroups ( ) 5 5 5 5

0.5, ,0.5,0.5, ,0.5,0.5, ,0.5, 0.4, , 0.4− −  

15 5

0.5, ,0.5, 0.4, , 0.4− −  

Non-zero 

subgroups (  ) 5 5 5 5

0.1, ,0.1,0.1, ,0.1,0.1, ,0.1, 0.3, , 0.3− −  

15 5

0.1, ,0.1, 0.3, , 0.3− −  

Covariates Continuous Discrete and continuous 

Let { , }    , and ̂  be the estimation of  . We evaluate variable selection performance in 

terms of ( )TPR   and ( )FPR  : 

( )
TP

TPR
TP FN

=
+

 , ( )
FP

FPR
TN FP

=
+

 , (3.2)  

where 

1

ˆI( 0 0)
p

j j

j

TP
=

=      , 
1

I( 0)
p

j

j

TP FN
=

+ =   ,  (3.3)  
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1

ˆI( 0 0)
p

j j

j

FP
=

= =     , 
1

I( 0)
p

j

j

TN FP
=

+ = =  . 

Estimates are evaluated by ( )MSE  : 

( )

2

1

2

1

ˆ( )

=

( )

p

j j

j

p

j

j

MSE
=

=

−



 





. (3.4)  

3.2. Results 

Tables 3 and 4 summarize the mean and standard deviation in parentheses of the MSEs, TPRs, 

and FPRs for Scenarios 1 and 2. Both the scenarios are repeated 100 times.  

As shown in Tables 3 and 4, the MSEs of methods with group lasso penalty (the proposed and 

CRG) are smaller than the CRS and CR methods. The estimates of CRS and CR methods have 

increasing MSEs with higher dimensions. The results indicate that higher dimension leads to less 

efficient estimation, and group lasso penalty can improve the estimation performance. Comparing the 

TPRs and FPRs of the proposed and CRG methods, the proposed method has better performance in 

terms of variable selection. Compared with alternatives, the proposed method has the lowest MSEs. 

Results of simulation reveal that compared with alternatives, the proposed method can improve the 

performance in terms of variable selection as well as estimation. 

Table 3. Results of Scenario 1.  

r  p  

     
 CR CRS CRG CRGS CR CRS CRG CRGS 

0.25 40 MSE 24.40 2.62 1.75 1.51 9.36 15.24 4.08 3.49 

   (17.50) (0.38) (0.18) (0.17) (4.01) (4.06) (4.36) (4.38) 

  TPR - - 0.98 0.96 - - 0.49 0.94 

   - - (0.09) (0.07) - - (0.22) (0.10) 

  FPR - - 0.08 0.06 - - 0.15 0.06 

   - - (0.11) (0.10) - - (0.15) (0.10) 

 200 ME 35.91 10.35 1.71 1.49 773.53 74.24 3.99 3.09 

   (37.71) (3.23) (0.11) (0.07) (1396.13) (22.85) (0.71) (0.47) 

  TPR - - 0.99 0.96 - - 0.44 0.94 

   - - (0.04) (0.06) - - (0.19) (0.09) 

  FPR - - 0.02 0.01 - - 0.09 0.01 

   - - (0.02) (0.01) - - (0.05) (0.01) 

2.5 40 ME 24.41 3.34 1.73 1.50 9.06 8.16 3.64 3.06 

   (17.48) (0.44) (0.13) (0.07) (2.18) (1.31) (0.70) (0.41) 

  TPR - - 0.98 0.96 - - 0.48 0.94 

   - - (0.09) (0.07) - - (0.21) (0.10) 

Continued on next page 
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  FPR - - 0.07 0.05 - - 0.14 0.05 

   - - (0.07) (0.02) - - (0.13) (0.02) 

 200 ME 50.98 3.66 24.71 1.54 48.03 14.03 5.17 3.92 

   (11.07) (0.51) (27.75) (0.06) (7.82) (2.23) (2.91) (0.52) 

  TPR - - 0.52 0.98 - - 0.65 0.98 

   - - (0.50) (0.06) - - (0.35) (0.06) 

  FPR - - 0.01 0.01 - - 0.06 0.01 

   - - (0.01) (0.00) - - (0.06) (0.00) 

Note: in each cell, mean (standard deviation). 

Table 4. Results of Scenario 2. 

r  p  

     
 CR CRS CRG CRGS CR CRS CRG CRGS 

0.25 40 MSE 6.01  2.17  1.57  1.42  67.18  19.26  9.83  6.70  

   (2.47) (0.85) (0.12) (0.09) (33.69) (16.42) (3.33) (2.36) 

  TPR - - 0.95  0.95  - - 0.95  0.94  

   - - (0.08) (0.06) - - (0.06) (0.07) 

  FPR - - 0.05  0.06  - - 0.35  0.19  

   - - (0.00) (0.06) - - (0.21) (0.15) 

 200 ME 58.02  9.78  1.37  1.26  187.33  74.62  8.96  6.12  

   (58.60) (12.42) (0.11) (0.08) (199.25) (99.61) (3.20) (2.19) 

  TPR - - 0.93  0.94  - - 0.87  0.90  

   - - (0.15) (0.07) - - (0.18) (0.08) 

  FPR - - 0.01  0.05  - - 0.25  0.24  

   - - (0.00) (0.02) - - (0.05) (0.05) 

2.5 40 ME 48.42 2.94 2.46 2.04 9.14 6.60 7.46 4.55 

   (24.54) (0.33) (0.14) (0.11) (2.63) (0.67) (0.31) (0.38) 

  TPR - - 1.00 0.99 - - 0.41 0.99 

   - - (0.02) (0.02) - - (0.17) (0.02) 

  FPR - - 0.50 0.11 - - 0.07 0.11 

   - - (0.16) (0.07) - - (0.08) (0.07) 

 200 ME 81.13 3.43 2.57 1.95 73.28 9.83 8.02 4.42 

   (18.85) (0.43) (0.17) (0.09) (12.06) (2.50) (0.37) (0.33) 

  TPR - - 1.00 0.99 - - 0.53 0.99 

   - - (0.02) (0.02) - - (0.14) (0.02) 

  FPR - - 0.54 0.13 - - 0.06 0.13 

   - - (0.04) (0.03) - - (0.03) (0.03) 

Note: in each cell, mean (standard deviation). 

4. Analysis of credit data in China 

In this section, we apply the proposed method to credit data. The data comes from a retail 

business of a commercial bank in China. It contains 16 covariates of 1213 customers in a personal 
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loan from 2014 to 2019. The primary interest is to assess the credit risk of a credit loan and find the 

important covariates to predict the time to default of the credit loan customers. The mean observed 

time is 1.38 years with a standard deviation of 0.69. Customers with missing data of annual 

household income are removed from our analysis. After preprocessing, the covariates and their 

descriptions are summarized in Table 5. By transforming the multi-level covariates, we have 24 

covariates in the credit model. Censoring time iC  is the interval between the value date and either 

default or the end of observation (June 1, 2019). Due to the different value dates of the loans, the 

censoring time vary from individual to individual. Customers whose time to event iY  is longer than 

the censoring time iC
 
are censored (𝛿𝑖 = 0). In this data, 1201 out of 1213 customers are censored. 

Table 5. Covariates and their descriptions. 

Covariates Descriptions 

Interest rate [0.037,0.087]  

Loan line ( )0,7000,000  

Loan term ( )0,+  

Business type 
consumer durables, housing decoration loans, and other personal consumption 

loans 

Entrusted payment yes, no 

Early repayment yes, no 

Age [20,70]   

Gender male, female 

Education master/doctor, bachelor, vocational education, high school and below  

Medical insurance yes, no 

Housing status 
self-purchasing (with a mortgage), self-purchasing (without a mortgage), 

others 

Annual household income (RMB) 200,000 , 200,000-400,000 , 400,000-600,000 , 600,000  

Employment  employed, others 

Type of workplace government organization/institution, firm, others 

Occupation managers, commercial and service workers, others  

Professional title advanced, intermediate, primary, no professional title 

The data are randomly divided into the training set and test set by 7:3. The training data is used 

for fitting the model and the test data is used to verify the performance of the fitted model. The 

parameters 1 , 2 , and r  are selected by BIC. Different from the simulations, the real coefficient 

is unknown for the real data. Therefore, in this section, we adopt the negative log-likelihood to 

evaluate the performance of the methods. The mean negative log-likelihood (standard error) of the 

proposed method is 25.91 (11.61), compared with 56.33 (258.73), 31.04 (27.34), and 26.17 (13.02) 

for the CR, CRS, and CRG method respectively. For stability, all the results are based on 100 

duplicates. The results indicate that the proposed method has competitive prediction performance 

than alternatives. 

The coefficients are estimated based on 100 duplicates. With the median estimates of 

coefficients, we can compute the probability of cure (non-default) ( ) i ix
 
for all the customers. We 

dichotomize ( ) i ix
 
at the median and get two different groups of customers. One group with lower 
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( ) i ix
 
is denoted as “high risk”, whereas another with higher ( ) i ix  is denoted as “low risk”. 

Figure 1 presents the Kaplan-Meier curves of the survival of the customers belonging to different 

groups. Kaplan-Meier curve describes the change of the survival probability over time. It is 

commonly used in survival analysis, see Rodrigues et al [8], and Pal [34]. As indicated in Figure 1, 

the “low risk” group has higher survival probability than the “high risk” group. 

 

Figure 1. Kaplan-Meier curves stratified by different groups. 

The median estimates of coefficients based on 100 duplicates are listed in Table 6. A positive 

coefficient   indicates that the covariate is positively related to the probability of default, and a 

positive coefficient   indicates that the covariate is negatively related to default time. Both the 

probability of default and default time are two quite relevant credit aspects. Customers with a higher 

probability of default are likely to default earlier. Compared with the alternative method, the signs of 

the   and   of the proposed method are promoted to be more consistent, whereas many 

covariates such as the housing status in the CR method have an opposite effect on the probability and 

time to default.  

The coefficient results of the proposed method reveal that loan line, early repayment, gender, 

housing status, annual household income, employment status, type of workplace, and occupation are 

important covariates for credit risk assessment. The impact of business type and education on credit 

is not clear.  

The loan line has a positive effect. One possible explanation is that customers with better credit 

status are more likely to obtain a higher loan line. Customers with housing loans are more likely to 

default. The increasing annual household income leads to better credit status. Employed customers 

are less likely to default. Compared with other employment groups such as self-employed, freelance, 

and unemployed, the employed group has a more stable income and is less likely to default. 

Customers who work in a government organization and institution have better credit status. 

Customers who are managers or commercial and service workers are less likely to default. 

Customers with early payment records tend to maintain good credit records and are less likely to 

default. Compared with women, men are more likely to default. This is consistent with the results 

of [35] and the personality characteristics of men’s risk preference [36]. 
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Table 6. Estimates of coefficients. 

  CR CRS CRG CRGS 

                  

0 0/   -0.73 -9.15 -0.95 -7.89 -2.40 -5.82 -2.40 -5.82 

Interest rate 0.00 4.68 0.00 0.00 0.00 0.00 0.00 0.00 

Loan line -0.33 -11.55 -1.45 -5.01 -1.47 -2.38 -1.47 -2.38 

Loan term 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Business type         

Consumer durables  0.00 4.44 1.22 1.07 0.91 0.57 0.91 0.57 

Housing decoration loans  -0.67 -5.12 -1.24 -2.77 -1.08 -1.27 -1.08 -1.27 

Entrusted payment (yes) 0.00 -2.91 -0.18 -0.25 0.00 0.00 0.00 0.00 

Early repayment (yes) 0.00 -28.92 -1.51 -7.29 -1.42 -3.78 -1.42 -3.78 

Age 0.00 -0.10 0.00 -0.05 0.00 -0.07 0.00 -0.07 

Gender (male) 0.71 9.50 1.16 6.04 0.98 4.96 0.98 4.96 

Education         

Master/Doctor -0.30 -3.13 -0.28 -0.37 0.00 0.00 0.00 0.00 

Bachelor  0.77 -0.71 0.08 0.01 0.05 0.05 0.05 0.05 

Vocational education  0.00 1.55 0.35 0.38 0.00 0.00 0.00 0.00 

Medical insurance (yes) 0.24 4.18 1.02 1.42 0.91 0.72 0.91 0.72 

Housing status         

Self-purchasing (with a 

mortgage) 
0.59 -0.02 0.33 0.29 0.24 0.19 0.24 0.19 

Self-purchasing (without a 

mortgage)  
-0.75 1.40 0.00 0.00 0.00 0.00 0.00 0.00 

Annual household income (RMB)         

200,000-400,000 0.47 -3.23 0.00 -0.75 0.00 0.00 0.00 0.00 

400,000-600,000 -0.85 -5.66 -0.95 -1.74 -0.61 -0.64 -0.61 -0.64 

600,000  -1.18 -4.12 -0.76 -1.66 -0.50 -0.60 -0.50 -0.60 

Employment (employed) 0.00 -2.03 -0.54 -0.70 -0.52 -0.44 -0.52 -0.44 

Type of workplace         

Government organization and 

institution 
-0.36 -7.53 -0.74 -2.61 -0.76 -0.84 -0.76 -0.84 

Firm  0.00 -0.39 0.00 0.00 0.00 0.00 0.00 0.00 

Occupation         

Managers  0.28 -3.69 -0.38 -0.83 -0.52 -0.41 -0.52 -0.41 

Commercial and service 

workers 
-0.36 -1.95 -0.95 -0.76 -0.76 -0.40 -0.76 -0.40 

Professional title         

Advanced  1.27 4.77 1.12 2.90 0.88 0.72 0.88 0.72 

Intermediate  0.63 5.03 1.31 2.42 0.97 1.02 0.97 1.02 

Primary  0.17 4.95 0.88 2.25 0.00 0.00 0.00 0.00 
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5. Conclusions 

The cure rate model is commonly used when the data has long-term survivors. The model is 

composed of two parts. The incident part describes the probability of cure and the latency part 

describes the survival function of the uncured group. The drawback of the standard cure rate model is 

that it assumes that there are no direct constraints between the coefficients corresponding to the same 

covariates in the two parts of the model. This may lead to conflicting results of covariate effects on 

the probability of cure and conditional survival of the uncured group. In fact, the two parts of the 

model describe quite related aspects. It is desirable that there may be some connections between 

coefficients corresponding to the same covariates. Existing works have considered joint distribution 

or structural effect of the two sets of covariates, which is too strict.  

In this paper, we consider a more flexible cure rate model that allows the two sets of covariates 

can be in different distributions and magnitudes. In the proposed method, a sign consistency cure rate 

model is proposed to promote the similarity in the sign of coefficients in the two model parts to 

improve interpretability. In addition, we also impose a group lasso penalty for variable selection. 

Simulation results show that compared with alternatives, the proposed method has better 

performance in terms of variable selection and estimation. An analysis of credit data in China 

illustrates that the proposed method can improve prediction performance as well as interpretability. 

Acknowledgments 

We are grateful to the reviewers and the editor for their helpful comments and suggestions. This 

work was supported by the National Office for Philosophy and Social Sciences of China under Grant 

20&ZD137. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. J. P. Klein, M. L. Moeschberger, Survival analysis: techniques for censored and truncated data, 

2 Eds., New York: Springer-Verlag, 2003. doi: 10.1007/b97377. 

2. M. Stepanova, L. Thomas, Survival analysis methods for personal loan data, Oper. Res., 50 

(2002), 277–289. doi: 10.1287/opre.50.2.277.426. 

3. V. B. Djeundje, J. Crook, Dynamic survival models with varying coefficients for credit risks, 

Eur. J. Oper. Res., 275 (2019), 319–333. doi: 10.1016/j.ejor.2018.11.029. 

4. Q. Zhang, S. Zhang, J. Liu, J. Huang, S. Ma, Penalized integrative analysis under the 

accelerated failure time model, Stat. Sin., 26 (2016), 492‒508. doi: 10.5705/ss.2014.194. 

5. J. Berkson, R. P. Gage, Survival curve for cancer patients following treatment. J. Am. Stat. 

Assoc., 47 (1952), 501–515. doi: 10.1080/01621459.1952.10501187. 

6. J. Rodrigues, V. G. Cancho, M.D. Castro, F. Louzada-Neto, On the unification of long-term 

survival models, Stat. Probability Letters, 79 (2009), 753‒759. doi: 10.1016/j.spl.2008.10.029. 

7. F. Cooner, S. Banerjee, B. P. Carlin, D. Sinha, Flexible cure rate modeling under latent activation 

schemes, J. Am. Stat. Assoc., 102 (2007), 560‒572. doi: 10.1198/016214507000000112. 

https://doi.org/10.1007/b97377
https://doi.org/10.1287/opre.50.2.277.426
https://doi.org/10.1016/j.ejor.2018.11.029
https://doi.org/10.5705/ss.2014.194
https://doi.org/10.1080/01621459.1952.10501187
https://doi.org/10.1016/j.spl.2008.10.029
https://doi.org/10.1198/016214507000000112


3201 
 

AIMS Mathematics  Volume 7, Issue 2, 3186–3202. 

8. J. Rodrigues, M. Castro, V.G. Cancho, N. Balakrishnan, COM-Poisson cure rate survival models 

and an application to a cutaneous melanoma data, J. Stat. Plan. Infer., 139 (2009), 3605‒3611. 

doi: 10.1016/j.jspi.2009.04.014. 

9. L. Li, J. H. Lee, A latent promotion time cure rate model using dependent tail-free mixtures, J. R. 

Statist. Soc. A, 180 (2017), 891‒905. doi: 10.1111/rssa.12226. 

10. L. Dirick, G. Claeskens, B. Baesens, Time to default in credit scoring using survival analysis: a 

benchmark study, J. Oper. Res. Soc., 68 (2017), 652–665. doi: 10.1057/s41274-016-0128-9. 

11. O. Georgiana, A. B. Lawson, Bayesian cure-rate survival model with spatially structured 

censoring, Spatial Stat., 28 (2018), 352‒364. doi: 10.1016/j.spasta.2018.08.007. 

12. S. Pal, S. Roy, A new non-linear conjugate gradient algorithm for destructive cure rate model 

and a simulation study: illustration with negative binomial competing risks, Commun. 

Stat.-Simul. Comput., 2020. doi: 10.1080/03610918.2020.1819321. 

13. C. Li, J. M. G. Taylor, Smoothing covariate effects in cure models, Commun. Statist.- Theory 

Meth., 31 (2002), 477‒493. doi: 10.1081/STA-120002860. 

14. T. Chen, P. Du, Promotion time cure rate model with nonparametric form of covariate effects, 

Stat. Sin., 37 (2018): 1625‒1635. doi: 10.1002/sim.7597. 

15. E. N. C. Tong, C. Mues, L. C. Thomas, Mixture cure models in credit scoring: if and when 

borrowers default, Eur. J. Oper. Res., 218 (2012), 132–139. doi: 10.1016/j.ejor.2011.10.007. 

16. C. Jiang, Z. Wang, H. Zhao, A prediction-driven mixture cure model and its application in credit 

scoring, Eur. J. Oper. Res., 277 (2019), 20–31. doi: 10.1016/j.ejor.2019.01.072. 

17. C. Han, R. Kronmal, Two-part models for analysis of Agatston scores with possible 

proportionality constraints, Commun. Stat.-Theory Meth., 35 (2006), 99–111. doi: 

10.1080/03610920500438614. 

18. K. Fang, X. Wang, B.C. Shia, S. Ma, Identification of proportionality structure with two-part 

models using penalization, Comput. Stat. Data Anal, 99 (2016), 12–24. doi: 

10.1016/j.csda.2016.01.002. 

19. F. Liu, Z. Hua, A. Lim, Identifying future defaulters: a hierarchical Bayesian method, Eur. J. 

Oper. Res., 241 (2015), 202‒211. doi: 10.1016/j.ejor.2014.08.008. 

20. X. Fan, M. Liu, K. Fang, Y. Huang, S. Ma, Promoting structural effects of covariates in the cure 

rate model with penalization, Stat. Methods Med. Res., 26 (2017), 2078–2092. doi: 

10.1177/0962280217708684. 

21. Q. Zhang, S. Ma, Y. Huang, Promote sign consistency in the joint estimation of precision 

matrices, Comput. Stat. Data Anal., 159 (2021), 107210. doi: 10.1016/j.csda.2021.107210. 

22. X. Shi, S. Ma, and Y. Huang, Promoting sign consistency in the cure model estimation and 

selection, Stat. Methods Med. Res., 29 (2020), 15–28. doi: 10.1177/0962280218820356. 

23. M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables, J. R. 

Statist. Soc. B, 68 (2006), 49‒67. doi: 10.1111/j.1467-9868.2005.00532.x. 

24. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction, 2 Eds., New York: Springer, 2009. doi: 10.1007/978-0-387-84858-7. 

25. J. Huang, P. Breheny, S. Ma, A selective review of group selection in high-dimensional 

models, Stat. Sci., 27 (2012), 481‒499. doi: 10.1214/12-STS392. 

26. N. Balakrishnan, S. Pal, Expectation maximization-based likelihood inference for flexible cure 

rate models with Weibull lifetimes, Stat. Methods Med. Res., 25 (2016), 1535‒1563. doi: 

10.1177/0962280213491641. 

https://doi.org/10.1016/j.jspi.2009.04.014
https://doi.org/10.1111/rssa.12226
https://doi.org/10.1057/s41274-016-0128-9
https://doi.org/10.1016/j.spasta.2018.08.007
https://doi.org/10.1081/STA-120002860
https://doi.org/10.1002/sim.7597
https://doi.org/10.1016/j.ejor.2011.10.007
https://doi.org/10.1016/j.ejor.2019.01.072
https://doi.org/10.1080/03610920500438614
https://doi.org/10.1080/03610920500438614
https://doi.org/10.1016/j.csda.2016.01.002
https://doi.org/10.1016/j.csda.2016.01.002
https://doi.org/10.1016/j.ejor.2014.08.008
https://doi.org/10.1177/0962280217708684
https://doi.org/10.1177/0962280217708684
https://doi.org/10.1016/j.csda.2021.107210
https://doi.org/10.1177/0962280218820356
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1214/12-STS392
https://doi.org/10.1177/0962280213491641
https://doi.org/10.1177/0962280213491641


3202 
 

AIMS Mathematics  Volume 7, Issue 2, 3186–3202. 

27. M. Omer, M. Bakar, M. B. Adam, M. S. Mustafa, Cure models with exponentiated Weibull 

exponential distribution for the analysis of melanoma patients, Mathematics, 8 (2021), 1926. doi: 

10.3390/math8111926. 

28. S. Pal, N. Balakrishnan, Likelihood inference based on EM algorithm for the destructive 

length-biased Poisson cure rate model with Weibull lifetime, Commun. Stat. Simulation 

Computation, 47 (2018), 644‒660. doi: 10.1080/03610918.2015.1053918. 

29. X. Li, Y. Tang, A. Xu, Objective Bayesian analysis of Weibull mixture cure model, Qual. Eng., 

32 (2020), 449‒464. doi: 10.1080/08982112.2020.1757706. 

30. J. Huang, T. Zhang, The benefit of group sparsity, Ann. Stat., 38 (2010), 1978‒2004. doi: 

10.1214/09-AOS778. 

31. L. Meier, S. V. D. Geer, P. Bhlmann, E. T. H. Zrich, The group lasso for logistic regression, J. R. 

Statist. Soc. B, 70 (2008), 53‒71. doi: 10.1111/j.1467-9868.2007.00627.x. 

32. Y. Yang, H. Zou, A fast unified algorithm for solving group-lasso penalize learning problems, 

Stat. and Comput., 25 (2015), 1129‒1141. doi: 10.1007/s11222-014-9498-5. 

33. H. Wang, B. Li, C. Leng, Shrinkage tuning parameter selection with a diverging number of 

parameters, J. R. Statist. Soc. B, 71 (2009), 671‒683. doi: 10.1111/j.1467-9868.2008.00693.x. 

34. S. Pal, A simplified stochastic EM algorithm for cure rate model with negative binomial 

competing risks: an application to breast cancer data, Stat. Med., 2021. doi: 10.1002/sim.9189. 

35. Y. Li, Y. Li, Y. Li, What factors are influencing credit card customer's default behavior in China? 

A study based on survival analysis, Physica A, 526 (2019), Article ID 120861. doi: 

10.1016/j.physa.2019.04.097. 

36. Y. Shu, Q. Y. Yang, Research on auto loan default prediction based on large sample data model, 

Manage. Rev., 29 (2017), 59–71. 

©2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

 

 

https://doi.org/10.3390/math8111926
https://doi.org/10.3390/math8111926
https://doi.org/10.1080/03610918.2015.1053918
https://doi.org/10.1080/08982112.2020.1757706
https://doi.org/10.1214/09-AOS778
https://doi.org/10.1214/09-AOS778
https://doi.org/10.1111/j.1467-9868.2007.00627.x
https://doi.org/10.1007/s11222-014-9498-5
https://doi.org/10.1111/j.1467-9868.2008.00693.x
https://doi.org/10.1016/j.physa.2019.04.097
https://doi.org/10.1016/j.physa.2019.04.097

