
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(2): 3133–3149.
DOI: 10.3934/math.2022173
Received: 21 May 2021
Accepted: 21 November 2021
Published: 24 November 2021

Research article

Coefficient functionals for a class of bounded turning functions related to
modified sigmoid function

Muhammad Ghaffar Khan1, Nak Eun Cho2,∗, Timilehin Gideon Shaba3, Bakhtiar Ahmad4 and
Wali Khan Mashwani1

1 Institute of Numerical Sciences, Kohat university of science and technology, Kohat, Pakistan
2 Department of Applied Mathematics, Pukyong National University Busan 48513, Korea
3 Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
4 Govt. Degree College Mardan, Mardan 23200, Pakistan

* Correspondence: Email: necho@pknu.ac.kr.

Abstract: The main objective of the present article is to define the class of bounded turning functions
associated with modified sigmoid function. Also we investigate and determine sharp results for the
estimates of four initial coefficients, Fekete-Szegö functional, the second-order Hankel determinant,
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1. Introduction

Let A represent the collections of analytic functions defined in open unit disc D = {z ∈ C : |z| < 1}
whose normalization is of the form

f (z) = z +

∞∑
n=2

anzn (z ∈ D). (1.1)

Let S denote the subclass ofA comprising of functions of the form (1.1) which are also univalent in D.
Let P represent the class of all functions p that are analytic in D with<(p(z)) > 0 and has the series

representation

p(z) = 1 +

∞∑
n=1

cnzn (z ∈ D). (1.2)
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Next we recall the definition of subordination. For two functions h1, h2 ∈ A, we say that h1 is
subordinate to h2 and is symbolically written as h1 ≺ h2 if there exists an analytic function w with the
property |w (z)| ≤ |z| and w (0) = 0 such that h1 (z) = h2 (w (z)) for z ∈ D. Further, if h2 ∈ S, then the
condition becomes

h1 ≺ h2 ⇔ h1 (0) = h2 (0) and h1 (D) ⊂ h2 (D) .

Now we consider the following class S∗(ϕ) as follows:

S∗(ϕ) =

{
f ∈ A :

z f ′(z)
f (z)

≺ ϕ(z)
}
, (1.3)

where ϕ is an analytic univalent function with positive real part in D, ϕ(U) is symmetric about the real
axis and starlike with respect to ϕ(0) = 1 and ϕ′(0) > 0. The class S∗(ϕ) was introduced by Ma and
Minda [20]. In particular, if we take ϕ(z) = (1 + z)/(1 − z), then the class S∗(ϕ) is the well-known
class of starlike functions. If we vary the function ϕ on the right hand side of (1.3), then we obtain
some several subclasses of S whose image domains have some interesting geometrical configurations
as follows:

(1) The class S∗(ϕ) with ϕ(z) = 1 + sin z is introduced and studied by Cho et al. [6].
(2) The class S∗(ϕ) with ϕ(z) = 1 + z − 1

3z3, which is a nephroid shaped domain, was introduced and
investigated by Wani and Swaminathan [39].

(3) The class S∗(ϕ) with ϕ(z) =
√

1 + z, which is bounded by lemniscate of Bernoulli in right half
plan, was developed by Sokól and Stankiewicz [30].

(4) The class S∗(ϕ) with ϕ(z) = 1 + 4
3z + 2

3z2 was introduced by Sharma et al. [29].
(5) The class S∗(ϕ) with ϕ(z) = ez was introduced and studied by Mendiratta et al. [21].
(6) The class S∗(ϕ) with ϕ(z) = z+

√
1 + z2, which maps D to crescent shaped region, was introduced

by Raina and Sokól [26].

Also we note that lately many subclasses of starlike functions are introduced see [7,9,12] by choosing
some particular functions such as functions associated with Bell numbers, shell-like curve connected
with Fibonacci numbers, functions connected with conic domains and rational functions instead of ϕ
in (1.3).

Pommerenke [24, 25] introduced the Hankel determinant Hq,n ( f ) for function f ∈ S of the
form (1.1), where the parameters q, n ∈ N = {1, 2, 3, · · · } as follows:

Hq,n ( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ . (1.4)

The Hankel determinants for different orders are obtained for different values of q and n. When q = 2
and n = 1, the determinant is

∣∣∣H2,1 ( f )
∣∣∣ =

∣∣∣∣∣∣ a1 a2

a2 a3

∣∣∣∣∣∣ =
∣∣∣a3 − a2

2

∣∣∣ , where a1 = 1.
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Note that H2,1 ( f ) = a3 − a2
2, is the classical Fekete-Szegö functional. For various subclasses ofA, the

best possible value of the upper bound for
∣∣∣H2,1 ( f )

∣∣∣ was investigated by different authors (see [13–15]
for details). Furthermore, when q = 2 and n = 2, the second Hankel determinant is

H2,2 ( f ) =

∣∣∣∣∣∣ a2 a3

a3 a4

∣∣∣∣∣∣ = a2a4 − a2
3.

The upper bound of
∣∣∣H2,2 ( f )

∣∣∣ has been studied by several authors in the last few decades. For
instance, the readers may refer to the works of Hayman [11], the Noonan and Thomas [22], Ohran
et al. [23] and Shi et al. [34]. Moreover, Babalola [3] studied the Hankel determinant H3,1 ( f ) for
some subclasses of analytic functions. For some recent works on third order Hankel determinant we
may refer the interested reader to such more recent works as (for example) [28, 32, 38]. The bound of
the fourth Hankel determinant for a class of analytic functions with bounded turning associated with
cardoid domain was approximated by Srivastava et al. in [37]. It should be remarked that a wide
variety of applications of Hankel systems arise in linear filtering theory, discrete inverse scattering,
and discretization of certain integral equations arising in mathematical physics [40].

Evaluating these Hankel determinants for various new subclasses has been an attracting area lately.
One such field of interest is the Quantum Calculus (q-calculus), which is a generalization of classical
calculus by replacing the limit by a parameter q. For the basics and preliminaries, the readers are
advised to see the works and expositions in [31, 35, 37]. It is important to mention here the work on a
q-differential operator by Srivastava et al. [33], in which they determined the upper bound of second
Hankel determinant for a subclass of bi-univalent functions in q-analogue. Recently, the upper bound
estimate for q-analogue of a subclass of starlike functions in connection with exponential function were
evaluated in [36].

Recently, a class of starlike functions associated with Modified sigmoid function was defined by
Goel and Kumar [10], i.e,

S∗
SG

=

{
f ∈ S :

z f ′(z)
f (z)

≺
2

1 + e−z

}
(z ∈ D).

Motivated by all the works mentioned above and [4], in this article we introduce and investigate the
class RSG , which is defined as follows:

RSG =

{
f ∈ S : f ′ (z) ≺

2
1 + e−z

}
(z ∈ D). (1.5)

We also establish some sharp results such as coefficient bounds, Fekete-Szegö inequality, second-order
determinant, Zalcman conjecture and Krushkal inequality for functions belonging to the class RSG .
Moreover, we estimate bounds of the third and forth-order Hankel determinants for this class RSG and
for the 2-fold and 3-fold symmetric functions.

2. A set of lemmas

For the proofs of our main findings, we need the following lemmas.
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Lemma 1. Let p ∈ P have the series expansion of the form (1.2). Then, for x andσwith |x| ≤ 1, |σ| ≤ 1,
such that

2c2 = c2
1 + x(4 − c2

1), (2.1)

4c3 = c3
1 + 2(4 − c2

1)lc1x − c1(4 − c2
1)x2 + 2(4 − c2

1)(1 − |x|2)σ. (2.2)

We note that (2.1) and (2.2) are taken from [18].

Lemma 2. If p ∈ P and has the series of the form (1.2), then

|cn+k − µcnck| ≤ 2, 0 ≤ µ ≤ 1, (2.3)

|cn| ≤ 2 for n ≥ 1, (2.4)

|c2 − ζc2
1| ≤ 2 max {1, |2ζ − 1|} , ζ ∈ C. (2.5)

We note that the inequalities (2.3), (2.4) and (2.6) in the above can be found in [2, 25] and (2.5) is
given by [13].

Lemma 3. [2] If p ∈ P and has the series of the form (1.2), then

|Jc3
1 − Kc1c2 + Lc3| ≤ 2|J| + 2|K − 2J| + 2|J − K + L|, (2.6)

where J,K and L are real numbers.

Lemma 4. [27] Let m, n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1 and

8r (1 − r)
[
(mn − 2l)2 + (m (r + m) − n)2

]
+ m (1 − m) (n − 2rm)2

≤ 4m2 (1 − m)2 r (1 − r) .

If p ∈ P and has power series (1.2), then∣∣∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3
2

nc2
1c2 − c4

∣∣∣∣∣ ≤ 2.

3. Bounds of
∣∣∣H3,1 ( f )

∣∣∣ for the class RSG

Theorem 1. Let f ∈ RSG and be of the form (1.1). Then

|a2| ≤
1
4
, (3.1)

|a3| ≤
1
6
, (3.2)

|a4| ≤
1
8

, (3.3)

|a5| ≤
1

10
, (3.4)

|a6| ≤
355
288

, (3.5)

|a7| ≤
381 377
282 0

. (3.6)
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The first four inequalities are sharp for the functions defined below respectively

fn(z) =

∫ z

0

(
2

1 + e−tn

)
dt = z +

1
2 (n + 1)

zn+1 + · · · , where n = 1, 2, 3, 4. (3.7)

Proof. Let f ∈ RSG . Then, (1.5) can be put in the form of Schwarz function w (z) as

f ′(z) =
2

1 + e−w(z) (z ∈ D). (3.8)

Also, if p ∈ P, then it may be written in terms of the Schwarz function w as

p(z) = 1 + c1z + c2z2 + c3z3 · · · =
1 + w(z)
1 − w(z)

,

or equivalently,

w(z) =
p(z) − 1
p(z) + 1

=
1
2

c1z +

(
1
2

c2 −
1
4

c2
1

)
z2 +

(
1
8

c3
1 −

1
2

c2c1 +
1
2

c3

)
z3 + · · · . (3.9)

Now
f ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · , (3.10)

By a simplification and using the series expansion (3.9), we have

2
1 + e−w(z) = 1 +

c1

4
z +

(
c2

4
−

c2
1

8

)
z2 +

(
11c3

1

192
−

c2c1

4
+

c3

4

)
z3

+

(
−

3
128

c4
1 +

11
64

c2
1c2 −

1
4

c3c1 −
1
8

c2
2 +

1
4

c4

)
z4 + · · · . (3.11)

Comparing (3.10) and (3.11), we get

a2 =
1
8

c1, (3.12)

a3 =
1
3

(
1
4

c2 −
1
8

c2
1

)
, (3.13)

a4 =
1
4

(
11

192
c3

1 −
1
4

c1c2 +
1
4

c3

)
(3.14)

a5 = −
1
20

(
3

32
c4

1 −
11
16

c2
1c2 + c3c1 +

1
2

c2
2 − c4

)
. (3.15)

a6 =
1

18432

(
−5c6

1 + 122c4
1c2 − 288c3

1c3 − 432c2
1c2

2 + 528c4c2
1 + 1056c1c2c3

−768c5c1 + 176c3
2 − 768c4c2 − 384c2

3 + 768c6

)
(3.16)

and

a7 =
1

36 126 720


−2537c7

1 − 50 400c5
1c2 + 204 960c4

1c3 + 409 920c3
1c2

2 − 483 840c4c3
1

−1451 520c2
1c2c3 + 887 040c5c2

1 − 483 840c1c3
2 + 1774 080c4c1c2 + 887 040c1c2

3

−1290 240c6c1 + 887 040c2
2c3 − 1290 240c5c2 − 1290 240c4c3 + 1290 240c7

 . (3.17)
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For a2, putting (2.4) in (3.12), we have

|a2| ≤
1
4
.

For a3, simplifying (3.13), we get

a3 =
1

12

(
c2 −

c2
1

2

)
and applying (2.3), we have

|a3| ≤
1
6
.

For a4, using (3.14), we obtain

|a4| =
1
4

∣∣∣∣∣ 11
192

c3
1 −

1
4

c1c2 +
1
4

c3

∣∣∣∣∣ . (3.18)

By applying Lemma 3 to (3.18), we get

|a4| ≤
1
4

[
2
∣∣∣∣∣ 11
192

∣∣∣∣∣ + 2

∣∣∣∣∣∣14 − 2
(

11
192

)∣∣∣∣∣∣ +

∣∣∣∣∣ 11
192
−

1
4

+
1
4

∣∣∣∣∣] =
1
8
.

For a5, applying Lemma 4 to (3.15), we get

|a5| ≤
1

10
.

For a6, re-arranging (3.16) and applying the triangle inequality, we get

|a6| ≤
1

18432

[
122 |c1|

4
∣∣∣c2 −

5
122c2

1

∣∣∣ + 1056 |c1| |c3|
∣∣∣c2 −

3
11c2

1

∣∣∣ + 528 |c1|
2
∣∣∣c4 −

9
11c2

2

∣∣∣
+768 |c6 − c1c5| + 768 |c2|

∣∣∣c4 −
88
89c2

2

∣∣∣ + 384 |c3|
2

]
.

By applying (2.3) and (2.4) to the above, we get

|a6| ≤
355
288

.

For a7, re-arranging (3.17) and applying the triangle inequality, we get

|a7| ≤
1

36 126 720


204960 |c1|

4
∣∣∣c3 −

105
427 c1c2

∣∣∣ + 483840 |c1|
3
∣∣∣c4 −

61
72 c2

1

∣∣∣ + 1290240 |c1|
∣∣∣c6 −

11
16 c1c5

∣∣∣
+1774080 |c1| |c2|

∣∣∣c4 −
9

11 c1c3
∣∣∣ + 887040 |c2|

2
∣∣∣c3 −

6
11 c1c2

∣∣∣ + 1290240 |c7 − c2c5|

+1290240 |c3|
∣∣∣c4 −

11
16 c1c3

∣∣∣ + 2537 |c1|
7

 .
Also by using (2.3) and (2.4) to the above, we obtain

|a7| ≤
381 377
282 240

.

�

Next, we consider the Fekete-Szegö problem and the Hankel determinants for the class RSG .
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Theorem 2. If f of the form (1.1) belongs to RSG , then

∣∣∣a3 − ζa2
2

∣∣∣ ≤ 1
6

max
{

1,
3|ζ |
8

}
(ζ ∈ C). (3.19)

The result is sharp for the function f2 defined by (3.7) for |ζ | ≤ 8/3 and the functiom f1 defined by (3.7)
for |ζ | ≥ 8/3.

Proof. Using (3.12) and (3.13), we can write

|a3 − ζa2
2| =

∣∣∣∣∣∣ c2

12
−

c2
1

24
− ζ

c2
1

64

∣∣∣∣∣∣ .
By rearranging we have

|a3 − ζa2
2| =

1
12

∣∣∣∣∣∣c2 −

(
3ζ + 8

16

)
c2

1

∣∣∣∣∣∣ .
Applying (2.5) we get ∣∣∣a3 − ζa2

2

∣∣∣ ≤ 1
12

max
{

2, 2

∣∣∣∣∣∣2
(
3ζ + 8

16

)
− 1

∣∣∣∣∣∣
}
.

Then with simple calculations, we obtain∣∣∣a3 − ζa2
2

∣∣∣ ≤ 1
6

max
{

1,
3|ζ |
8

}
.

For the sharpness consider the function

f2 (z) = z +
1
6

z3 −
1

168
z7 + · · · , (3.20)

which gives equality in (3.19) when |ζ | ≤ 8
3 , namely

∣∣∣a3 − ζa2
2

∣∣∣ = |a3| =
1
6

=
1
6

max
{

1,
3|ζ |
8

}
.

For the case |ζ | ≥ 8
3 consider

f1 (z) = z +
1
4

z2 −
1

96
z4 + · · · ,

which gives ∣∣∣a3 − ζa2
2

∣∣∣ = |ζa2
2| =
|ζ |

16
.

�

If we put ζ = 1, then the above result becomes:

Corollary 1. If f of the form (1.1) belongs to RSG , then∣∣∣a3 − a2
2

∣∣∣ ≤ 1
6
. (3.21)
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Theorem 3. If f of the form (1.1) belongs to RSG , then

|a2a3 − a4| ≤
1
8
. (3.22)

The result is sharp for the function f3 defined by (3.7).

Proof. From (3.12)–(3.14), we get

|a2a3 − a4| =
1

16

∣∣∣∣∣ 5
16

c3
1 −

7
6

c2c1 + c3

∣∣∣∣∣ .
Using Lemma 3, we get the required result. �

Theorem 4. If f of the form (1.1) belongs to RSG , then

|H2,2( f )| =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
36
. (3.23)

The result is sharp for the function f2 defined by (3.7).

Proof. From (3.12)–(3.14), we have

H2,2( f ) =
1

18432
c4

1 −
1

1152
c2

1c2 +
1

128
c1c3 −

1
144

c2
2.

Applying (2.1) and (2.2) to express c2 and c3 in terms of c1 = c, with 0 ≤ c ≤ 2, we get

H2,2( f ) = − 1
6144c4 − 1

512c2(4 − c2)x2 − 1
576 (4 − c2)2x2 + 1

256c(4 − c2)(1 − |x|2)σ.

With the aid of the triangle inequality and replacing |σ| ≤ 1, |x| = b, with b ≤ 1, we obtain∣∣∣H2,2( f )
∣∣∣ ≤ 1

6144
c4 +

1
512

c2(4 − c2)b2 +
1

576
(4 − c2)2b2 +

1
256

c(4 − c2)(1 − b2) := φ(c, b).

It is a simple calculation to show that ∂φ(c,b)
∂b ≥ 0 on [0, 1], so that φ(c, b) ≤ φ(c, 1). Putting b = 1 gives

∣∣∣H2,2( f )
∣∣∣ ≤ 1

6144
c4 +

1
512

c2(4 − c2) +
1

576
(4 − c2)2 := φ(c, 1).

Also, φ′(c, 1) = 0, has only root c = 0 ∈ [0, 2] and so φ′′(0, 1) < 0. Thus, the maximum value at
c = 0 is ∣∣∣H2,2( f )

∣∣∣ ≤ 1
36
.

�

Theorem 5. If f ∈ A belongs to RSG , then

|a2a5 − a3a4| ≤
217

2880
. (3.24)
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Proof. From (3.12)–(3.15), we have

|a2a5 − a3a4| =

∣∣∣∣∣ 1
92 160

c5
1 +

23
46 080

c3
1c2 −

7
1920

c3c2
1 +

1
480

c1c2
2 +

1
160

c4c1 −
1

192
c3c2

∣∣∣∣∣ .
Rearranging the above term, we get

|a2a5 − a3a4| =

∣∣∣∣∣∣ 1
92 160

c5
1 −

7
1920

c2
1

(
c3 −

23
168

c1c2

)
−

1
192

c2

(
c3 −

2
5

c1c2

)
+

1
160

c1c4

∣∣∣∣∣∣
≤

1
92 160

|c1|
5 +

7
1920

|c1|
2
∣∣∣∣∣c3 −

23
168

c1c2

∣∣∣∣∣ +
1

192
|c2|

∣∣∣∣∣c3 −
2
5

c1c2

∣∣∣∣∣ +
1

160
|c1| |c4| .

Using (2.3) and (2.4), we get the required result. �

Theorem 6. If f ∈ A belongs to RSG , then

|a5 − a2a4| ≤
1

10
. (3.25)

The result is sharp for function f4 defined by (3.7).

Proof. From (3.12)–(3.15), we have

|a5 − a2a4| =
1
20

∣∣∣∣∣ 199
1536

c4
1 −

27
32

c2
1c2 +

37
32

c3c1 +
1
2

c2
2 − c4

∣∣∣∣∣ .
By applying of Lemma 4, we get the desired result. �

Theorem 7. If f ∈ A belongs to RSG , then∣∣∣a3a5 − a2
4

∣∣∣ ≤ 146 831
3087 360

. (3.26)

Proof. From (3.13)–(3.15), we have∣∣∣a3a5 − a2
4

∣∣∣ =

∣∣∣∣∣− 29
2949 120

c6
1 −

1
30 720

c4
1c2 +

3
10 240

c3
1c3 −

1
480

c4c2
1

+
7

1920
c1c2c3 −

1
480

c3
2 +

1
240

c4c2 −
1

256
c2

3

∣∣∣∣∣
≤

29
2949 120

|c1|
6 +

3
10240

|c1|
3
∣∣∣∣∣c3 −

1
9

c1c2

∣∣∣∣∣ +
1

240
|c4|

∣∣∣∣∣c2 −
1
2

c2
1

∣∣∣∣∣
+

1
256
|c3|

∣∣∣∣∣c3 −
14
15

c1c2

∣∣∣∣∣ +
1

480
|c2|

3 .

Now using (2.3)–(2.5), we get the required result. �

We will now determine the bound of the third Hankel determinant H3,1( f ) for f ∈ RSG .

Theorem 8. If f ∈ A belongs to RSG , then∣∣∣H3,1( f )
∣∣∣ ≤ 319

8640
. (3.27)
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Proof. We have the third Hankel determinant form as follows:

H3,1( f ) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2) (3.28)

where a1 = 1. This yields∣∣∣H3,1( f )
∣∣∣ ≤ |a3||a2a4 − a2

3| + |a4||a4 − a2a3| + |a5||a3 − a2
2|. (3.29)

By using (3.2)–(3.4) and (3.21)–(3.23), we obtain the desired result. �

4. Bounds of |H4,1( f )| for the class RSG

From (1.4), we can write H4,1( f ) as

H4,1( f ) = a7H3,1( f ) − a6δ1 + a5δ2 − a4δ3, (4.1)

where

δ1 = a3 (a2a5 − a3a4) − a4 (a5 − a2a4) + a6(a3 − a2
2), (4.2)

δ2 = a3

(
a3a5 − a2

4

)
− a5 (a5 − a2a4) + a6(a4 − a2a3), (4.3)

δ3 = a4

(
a3a5 − a2

4

)
− a5 (a2a5 − a3a4) + a6(a2a4 − a2

3). (4.4)

In recent years, researchers start to find the fourth-order Hankel determinant for different subclasses
of analytic functions. The trend of finding fourth-order Hankel determinant in geometric function
theory started in 2018, when Arif et al. [1] studied and successfully obtained the upper bound for
the class of bounded turning functions. Recently Khan et al. [16] obtained the third and fourth-order
Hankel determinant for the class of bounded turning functions associated with sine function. Also,
Zhang and Tang [41] studied the fouth-order Hankel determinat for class of starlike functions connected
with sine function. Inspired from the above works, we discuss here the fourth-order Hankel determiant
for the class RSG .

Theorem 9. If f ∈ A belongs to RSG , then∣∣∣H4,1( f )
∣∣∣ ≤ 2334 260 186 533

6535 323 648 000
' 0.357 1.

Proof. From (4.1), we have

H4,1( f ) = a7H3,1( f ) − a6δ1 + a5δ2 − a4δ3,

where δ1, δ2 and δ3 are defined as in (4.2)–(4.4). Now by using the triangle inequality, we have∣∣∣H4,1( f )
∣∣∣ ≤ |a7|

∣∣∣H3,1( f )
∣∣∣ + |a6| |δ1| + |a5| |δ2| + |a4| |δ3| , (4.5)

Since
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|δ1| =
∣∣∣a3 (a2a5 − a3a4) − a4 (a5 − a2a4) + a6(a3 − a2

2)
∣∣∣

≤ |a3| |a2a5 − a3a4| + |a4| |a5 − a2a4| + |a6|
∣∣∣a3 − a2

2

∣∣∣ ,
by using (3.2), (3.3) , (3.5) , (3.21), (3.24) and (3.25), we get

|δ1| ≤
3983

17 280
. (4.6)

Since

|δ2| =
∣∣∣∣a3

(
a3a5 − a2

4

)
− a5 (a5 − a2a4) + a6(a4 − a2a3)

∣∣∣∣
≤ |a3|

∣∣∣a3a5 − a2
4

∣∣∣ + |a5| |a5 − a2a4| + |a6| |a4 − a2a3| ,

by using (3.2), (3.4) , (3.5), (3.22), (3.25) and (3.26), we get

|δ2| ≤
15 931 363
92 620 800

. (4.7)

Also, since

|δ3| =
∣∣∣∣a4

(
a3a5 − a2

4

)
− a5 (a2a5 − a3a4) + a6(a2a4 − a2

3)
∣∣∣∣

≤ |a4|
∣∣∣a3a5 − a2

4

∣∣∣ + |a5| |a2a5 − a3a4| + |a6|
∣∣∣a2a4 − a2

3

∣∣∣ ,
by using (3.3)–(3.5), (3.23), (3.24) and (3.26), we get

|δ3| ≤
53 037 859

1111 449 600
. (4.8)

Now by using the values of (4.6)–(4.8) along with (3.3)–(3.6) and (3.27) to (4.5), we get the desired
estimate. �

5. Bounds of |H4,1( f )| for the 2-fold and 3-fold symmetric functions

A function f is said to be m-fold symmetric if the following condition holds true for ε = exp
(

2πi
m

)
,

f (εz) = ε f (z) (z ∈ D).

The set of all m-fold symmetric functions belonging to the familiar class S of univalent functions is
denoted by S(m), represented by the following series expansion

f (z) = z +

∞∑
n=1

amn+1zmn+1 (z ∈ D) . (5.1)

An analytic function f of the form (5.1) belongs to the class R(m)
SG

if and only if

f ′ (z) =
2

1 + e−
( p(z)−1

p(z)+1

) (z ∈ D) , (5.2)
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where p (z) belong to the class P(m) which is defined as follows:

P
(m) =

p ∈ P : p (z) = 1 +

∞∑
n=1

cmnzmn

 . (5.3)

If a function f belongs to S(2), then its series representation is

f (z) = z + a3z3 + a5z5 + · · · ,

and
H4,1 ( f ) = a3a5a7 − a3

3a7 + a2
3a2

5 − a3
5. (5.4)

Further, if a function f belongs to S(3), then its series representation is

f (z) = z + a4z4 + a7z7 + · · · ,

and
H4,1 ( f ) = a2

4

(
a2

4 − a7

)
. (5.5)

Theorem 10. If f ∈ R(2)
SG
, then ∣∣∣H4,1 ( f )

∣∣∣ ≤ 299
108000

.

Proof. Let f ∈ R(2)
SG
. Then by the series (5.1)–(5.3) for m = 2, we have

f ′(z) = 1 + 3a3z2 + 5a5z4 + 7a7z6 + · · · ,

2

1 + e
−

(
c2z2+c4z4+···

2+c2z2+c4z4+···

) = 1 +
1
4

c2z2 +

(
1
4

c4 −
1
8

c2
2

)
z4 +

(
11
192

c3
2 −

1
4

c4c2 +
1
4

c6

)
z6 + · · · .

After comparing, we get

a3 =
1
12

c2,

a5 =
1
20

(
c4 −

1
2

c2
2

)
,

a7 =
11

1344
c3

2 −
1

28
c2c4 +

1
28

c6.

Then by substituting the above values to (5.4) , we get

H4,1 ( f ) = −
529

290 304 000
c6

2 +
437

192 000
c4

2c4 −
23

241 920
c6c3

2

+
113

2016 000
c2

2c2
4 +

1
6720

c6c2c4 −
1

8000
c3

4

and after rearranging, we get

H4,1 ( f ) =
437

24 192 000
c4

2

(
c4 −

23
228

c2
2

)
+

1
6720

c2c6

(
c4 −

23
36

c2
2

)
−

1
8000

c2
4

(
c4 −

113
252

c2
2

)
.

Now by using the triangle inequality along with (2.3) and (2.4), we get the required result. �
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Theorem 11. If f ∈ R(3)
SG
, then ∣∣∣H4,1 ( f )

∣∣∣ ≤ 1
896

.

Proof. Let f ∈ R(3)
SG
. Then by (5.1)–(5.3) for m = 3, we have

f ′(z) = 1 + 4a4z3 + 7a7z6 + · · · (5.6)
2

1 + e
−

(
c3z3+c6z6+···

2+c3z3+c6z6+···

) = 1 +
1
4

c3z3 +

(
1
4

c6 −
1
8

c2
3

)
z6 + · · · . (5.7)

After comparing (5.6) and (5.7), we get

a4 =
1

16
c3,

a7 =
1

28

(
c6 −

1
2

c2
3

)
.

Then by substituting the above values to (5.5), we get

H4,1 ( f ) = −
1

7168
c2

3

(
c6 −

39
64

c2
3

)
.

Now by using the (2.3) and (2.4), we get the required result. �

6. Zalcman functional

One of the main conjectures in Geometric function theory, suggested by Lawrence Zalcman in 1960,
is that the coefficients of class S satisfy the inequality,

|a2
n − a2n−1| ≤ (n − 1)2. (6.1)

Only the well-known Koebe function k(z) = z
(1−z)2 and its rotations have equality in the above form.

For the popular Fekete-Szego inequality, when n = 2, the equality holds. Many researchers have
researched Zalcman functional in the literature [5, 8, 19].

Theorem 12. Let f ∈ A belong to RSG . Then

|a2
3 − a5| ≤

1
10
. (6.2)

The result is sharp for the function f4 defined by (3.7).

Proof. We use the Eqs (3.13) and (3.15) to get the Zalcman functional, and then we get∣∣∣a2
3 − a5

∣∣∣ =
1

20

∣∣∣∣∣ 37
288

c4
1 −

119
144

c2
1c2 + c3c1 +

23
36

c2
2 − c4

∣∣∣∣∣ .
Using Lemma 4, we can get the necessary result for the last expression. �
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7. Krushkal inequality for the class RSG

In this section we will give a direct proof of the inequality∣∣∣ap
n − ap(n−1)

2

∣∣∣ ≤ 2p(n−1)
− np

over the class RSG for the choice of n = 4, p = 1, and for n = 5, p = 1. Krushkal introduced and
proved this inequality for the whole class of univalent functions in [17].

Theorem 13. Let f ∈ A belong to RSG . Then

∣∣∣a4 − a3
2

∣∣∣ ≤ 1
8
.

The result is sharp for the function f3 defined by (3.7).

Proof. From Eqs (3.12) and (3.14), we get∣∣∣a4 − a3
2

∣∣∣ =

∣∣∣∣∣ 19
1536

c3
1 −

1
16

c2c1 +
1

16
c3

∣∣∣∣∣ .
By applying (2.6) to the above,we get the required result. �

Theorem 14. Let f ∈ A belong to RSG . Then

∣∣∣a5 − a4
2

∣∣∣ ≤ 1
10
.

The result is sharp for the function f4 defined by (3.7).

Proof. From Eqs (3.12) and (3.14), we get∣∣∣a5 − a4
2

∣∣∣ =
1

20

∣∣∣∣∣ 101
1024

c4
1 −

11
16

c2
1c2 + c3c1 +

1
2

c2
2 − c4

∣∣∣∣∣ .
By using Lemma 4, we can get the necessary result for the last expression. �

8. Conclusions

In the present study, we have defined the class of bounded turning functions associated with
modified sigmoid function. Also we have determined the sharp results for some coefficient
functionals which play a very important role in the study of the geometric function theory.
Furthermore, we have evaluated bounds of the third and fourth-order Hankel determinants for the
2-fold and 3-fold symmetric functions.

Recently, the usages of the quantum (or q-) calculus happens to provide another popular direction
for researches in geometric function theory of complex analysis. This is evidenced by the recently-
published survey-cum-expository review article by Srivastava [31]. Therefore the quantum (or q-)
extensions of the results, which we have presented in this paper, are worthy of investigation.
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