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1. Introduction

Middle East Respiratory Syndrome (MERS) is an acute respiratory disease caused by MERS-CoV,
which was first reported in Saudi Arabia in 2012 [1]. Its main clinical features are fever, cough,
dyspnea, shortness of breath, abdominal pain, nausea and diarrhea, etc [2, 3]. Since the clinical
symptoms may be non-specific, it is not always possible to identify patients with MERS-CoV in
a timely manner. MERS-CoV probably originated in bats, and the intermediate host is dromedary
camels [4]. It is a zoonotic virus, which means that it can be transmitted between animals and humans.
Since its outbreak in 2012, cases have been reported in 27 countries (mostly in the Middle East), and
more than 850 people are known to have died from the infection and related complications, with a case
fatality rate of about 35% [5]. To date, no specific antiviral therapy has been approved for MERS-CoV
infection, so treatment is primarily supportive and based on the patient’s clinical condition; potential
vaccines are in the early stages of development [4–6].

Usually, viruses can only invade a host by binding to specific receptors in the host body. Raj et al. [7]
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reported for the first time that dipeptidyl peptidase-4 (DPP4, also known as CD26) is a functional
receptor for MERS-CoV. Studies have shown that DPP4 is mainly expressed in bronchial epithelial
cells and lung tissue cells, and can also be expressed in MERS-CoV sensitive cells (such as Vero and
Huh-7 cells) [7]. The binding of the MERS-CoV spike protein to DPP4 mediates the attachment of
the virus to host cells and the virus-cell fusion, thus triggering infection [8]. Therefore, DPP4 plays
an important role in MERS-CoV infection, which provides valuable input into the development of
potential receptor-targeted vaccines and drugs. In recent decades, the dynamic model of viral infection
has become an effective tool for people to understand the replication and clearance of various viruses
(such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV))
in host [9–11].

Recently, in order to describe the interactions among uninfected cells, infected cells, MERS-CoV
and DPP4, the authors in [12] proposed the following novel four dimensional autonomous ordinary
differential equation model: 

Ṫ (t) =λ − βD(t)v(t)T (t) − dT (t),
İ(t) =βD(t)v(t)T (t) − d1I(t),
v̇(t) =d1MI(t) − cv(t),

Ḋ(t) =λ1 − β1βD(t)v(t)T (t) − γD(t),

(1.1)

where T (t), I(t), v(t) and D(t) represent the concentrations of uninfected cells, infected cells, free virus
and DPP4 on the surface of uninfected cells at time t, respectively. λ, β, d, d1, M, c, λ1, β1 and γ are
positive constants. λ is the rate at which uninfected cells are produced. β is the rate at which uninfected
cells are infected by the free virus (i.e., infected cells are increased at a mount of βD(t)v(t)T (t), because
uninfected cells are infected by the free virus). d and d1 represent the death rates of uninfected cells
and infected cells, respectively. M represents the number of the free viruses released by lysis of each
infected cell after death. c represents the death rate of the free viruses. λ1 represents the rate at which
DPP4 is produced on the surface of uninfected cells. β1 represents the rate at which DPP4 is decreased
(i.e., DPP4 is decreased at a mount of β1βD(t)v(t)T (t), because uninfected cells are infected by the
free virus). γ represents the natural decay rate of DPP4. More detailed biological explanations can be
found in literature [12].

The basic reproductive number of model (1.1) is given by R0 = (λβMλ1)/(dcγ). By constructing
the appropriate Lyapunov functions and combining with the Lyapunov-LaSalle invariance principle,
the authors in [12] obtained that, if R0 < 1, then the infection-free equilibrium of model (1.1) is
globally asymptotically stable; if R0 > 1 and some additional conditions hold, then the infected
equilibrium is also globally asymptotically stable. The results suggest that MERS-CoV infection can
also be controlled by reducing the expression rate (λ1) of DPP4. In addition, In [13], the authors
applied the modeling idea of model (1.1) to the modeling of SARS-CoV-2 infection, and also took into
consideration the effects of CTL immune response and pulsed administration therapy. It is shown that
proper dosing intervals and drug dosages are both important in the eradication of viral infections.

It is well known that, periodic phenomena, such as the changes in the host’s microenvironment
with day and night, are common features in viral infection models. For example, some scholars
have considered periodic drug therapy in viral infection models [14, 15]. Therefore, it may be more
reasonable to describe MERS-CoV infection using the model with periodic coefficients. Inspired by
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the research efforts above, in this paper, we will consider the following non-autonomous MERS-CoV
dynamic model with periodic coefficients:

Ṫ (t) =λ(t) − β(t)D(t)v(t)T (t) − d(t)T (t),
İ(t) =β(t)D(t)v(t)T (t) − d1(t)I(t),
v̇(t) =d1(t)M(t)I(t) − c(t)v(t),

Ḋ(t) =λ1(t) − β1(t)β(t)D(t)v(t)T (t) − γ(t)D(t).

(1.2)

In model (1.2), λ(t), β(t), d(t), d1(t), M(t), c(t), λ1(t), β1(t) and γ(t) are all assumed to be positive,
continuous and periodic functions with positive upper and lower bounds and share the same period ω >

0. All the parameters in model (1.2) have exactly the same biological significance with those in
model (1.1).

There are abundant research results on the existence of periodic solutions of nonlinear ordinary
differential equations. The main research methods mainly include fixed point theorems, Lyapunov’s
second method, coincidence degree theory and so on. Especially, in recent years, the continuation
theorem of the coincidence degree theory [16] has been successfully applied to the study of the
existence of periodic solutions of some classic biological models, such as the models in population
biology [17–20], the models in epidemiology [21, 22], and the models in microbiology [23, 24], etc.

The main purpose of this paper is to establish some sufficient conditions for the existence of positive
ω-periodic solutions of model (1.2) by using the continuation theorem in the coincidence degree theory.

The remaining part of this paper is organized as follows. In Section 2, some sufficient conditions are
given for the existence of positive ω-periodic solutions of model (1.2). In Section 3, the conclusions
and some numerical simulations are presented.

2. Existence of positive periodic solutions

For convenience, let us first introduce the following well-known the continuation theorem in the
coincidence degree theory [16].

Let X and Z be two Banach spaces, L : Dom L ⊂ X → Z be a linear mapping, N : X → Z be a
continuous mapping. The mapping L will be called a Fredholm mapping of index zero, if dim Ker L =

codim Im L < +∞ and Im L is closed in Z. If L is a Fredholm mapping of index zero and there exist
continuous projectors idempotent operator P : X → X and Q : Z → Z such that Im P = Ker L,
Im L = Ker Q = Im(I − Q), it follows that L | Dom L ∩ Ker P : (I − P)X → Im L is invertible. We
denote the generalized inverse of that map by KP. Let Ω be an open bounded subset of X. The mapping
N will be called L-compact on Ω, if QN(Ω) is bounded and KP(I −Q)N : Ω→ Im L is compact. Since
Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q→ Ker L.

Lemma 2.1. (Continuation theorem) [16] Assume that Ω ⊂ X be an open bounded set. Let L be a
Fredholm mapping of index zero and let N : Ω→ Z be L-compact on Ω. Assume

(i) for each µ ∈ (0, 1), x ∈ ∂Ω ∩ Dom L, Lx , µNx;
(ii) for each x ∈ ∂Ω ∩ Ker L, QNx , 0;
(iii) deg{JQN,Ω ∩ Ker L, 0} , 0.

Then the operator equation Lx = Nx has at least one solution in Dom L ∩Ω.
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For the sake of convenience in the presentation, for any continuous ω-periodic function f (t) defined
on R, we define the following notations,

f̂ =
1
ω

∫ ω

0
f (s)ds, f l = min

t∈[0,ω]
f (t), f u = max

t∈[0,ω]
f (t).

Furthermore, let us define the following parameters,

R∗ =

(
λ

d

)l (λ1

γ

)l (
β

c

)l

Ml, E∗ =

(
β

c

)l

Ml,

M1 = ln
 λ̂

d̂
+ 2̂λω

 , M2 = ln
 λ̂

d̂1

 + 2d̂1ω,

M3 = ln
 ̂(d1M)

ĉ

 + M2 + 2̂cω, M4 = ln
 λ̂1

γ̂
+ 2λ̂1ω

 .
The following two conditions will be used:

(H1) 2(d̂ + β̂ exp{M3 + M4})ω < 1;
(H2) 2(̂γ + (̂β1β) exp{M1 + M3})ω < 1.

Let us give the main result of this paper.

Theorem 2.1. If R∗ > 1 and conditions (H1) and (H2) hold, then model (1.2) has at least one
positive ω-periodic solution.

Proof. By using the following variable transformation,

T (t) = exp{x1(t)}, I(t) = exp{x2(t)}, v(t) = exp{x3(t)}, D(t) = exp{x4(t)},

model (1.2) can be rewrite as

ẋ1(t) =
λ(t)

exp{x1(t)}
− β(t) exp{x3(t) + x4(t)} − d(t),

ẋ2(t) =β(t)
exp{x1(t) + x3(t) + x4(t)}

exp{x2(t)}
− d1(t),

ẋ3(t) =d1(t)M(t)
exp{x2(t)}
exp{x3(t)}

− c(t),

ẋ4(t) =
λ1(t)

exp{x4(t)}
− β1(t)β(t) exp{x1(t) + x3(t)} − γ(t).

(2.1)

Obviously, if model (2.1) exists a ω-periodic solution, then model (1.2) exists a positive ω-periodic
solution. Therefore, we only need to study the existence of ω-periodic solutions of model (2.1).

We define

X = Z =
{
x = (x1(t), x2(t), x3(t), x4(t))T ∈ C(R,R4) | x(t) = x(t + ω)

}
with the norm

||x|| = max
t∈[0,ω]

|x1(t)| + max
t∈[0,ω]

|x2(t)| + max
t∈[0,ω]

|x3(t)| + max
t∈[0,ω]

|x4(t)|.
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It is easily to verify that X and Z are Banach spaces. Define

Nx =


λ(t)

exp{x1(t)} − β(t) exp{x3(t) + x4(t)} − d(t)
β(t) exp{x1(t)+x3(t)+x4(t)}

exp{x2(t)} − d1(t)
d1(t)M(t) exp{x2(t)}

exp{x3(t)} − c(t)
λ1(t)

exp{x4(t)} − β1(t)β(t) exp{x1(t) + x3(t)} − γ(t)

 :=


N1(t)
N2(t)
N3(t)
N4(t)

 (x ∈ X), (2.2)

Lx = ẋ (x ∈ Dom L), Px =
1
ω

∫ ω

0
x(t)dt (x ∈ X), Qx =

1
ω

∫ ω

0
x(t)dt (x ∈ Z),

where Dom L = {x ∈ X, ẋ ∈ X}. Then it follows that

Ker L =
{
x ∈ X | x ∈ R4

}
, Im L =

{
x ∈ Z

∣∣∣∣∣ ∫ ω

0
x(t)dt = 0

}
.

Obviously, Im L is closed in Z and dim Ker L = codim Im L = 4. Thus, L is a Fredholm mapping of
index zero. Furthermore, the generalized (to L) inverse KP : Im L → Dom L ∩ Ker P exists and is
given by

KPx =

∫ t

0
x(s)ds −

1
ω

∫ ω

0

∫ t

0
x(s)dsdt.

Thus

QNx =

[
1
ω

∫ ω

0
N1(s)ds,

1
ω

∫ ω

0
N2(s)ds,

1
ω

∫ ω

0
N3(s)ds,

1
ω

∫ ω

0
N4(s)ds

]T

,

and

KP(I − Q)Nx =



∫ ω

0
N1(s)ds − 1

ω

∫ ω

0

∫ t

0
N1(s)dsdt −

(
t
ω
− 1

2

) ∫ ω

0
N1(s)ds∫ ω

0
N2(s)ds − 1

ω

∫ ω

0

∫ t

0
N2(s)dsdt −

(
t
ω
− 1

2

) ∫ ω

0
N2(s)ds∫ ω

0
N3(s)ds − 1

ω

∫ ω

0

∫ t

0
N3(s)dsdt −

(
t
ω
− 1

2

) ∫ ω

0
N3(s)ds∫ ω

0
N4(s)ds − 1

ω

∫ ω

0

∫ t

0
N4(s)dsdt −

(
t
ω
− 1

2

) ∫ ω

0
N4(s)ds

 .
It is not difficult to show that QN and KP(I − Q)N are continuous. By using Arzela-Ascoli theorem,
we can also show that QN(Ω) and KP(I − Q)N(Ω) are compact for any open bounded set Ω in X.
Furthermore, it is obvious that QN(Ω) is bounded. Thus N is L-compact on Ω for any open bounded
set Ω in X.

Corresponding to the operator equation Lx = µNx, µ ∈ (0, 1), we have

ẋ1(t) =µ

[
λ(t)

exp{x1(t)}
− β(t) exp{x3(t) + x4(t)} − d(t)

]
,

ẋ2(t) =µ

[
β(t)

exp{x1(t) + x3(t) + x4(t)}
exp{x2(t)}

− d1(t)
]
,

ẋ3(t) =µ

[
d1(t)M(t)

exp{x2(t)}
exp{x3(t)}

− c(t)
]
,

ẋ4(t) =µ

[
λ1(t)

exp{x4(t)}
− β1(t)β(t) exp{x1(t) + x3(t)} − γ(t)

]
.

(2.3)
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Assume that x = (x1(t), x2(t), x3(t), x4(t))T ∈ X is an arbitrary solution of model (2.3) for the parameter
µ ∈ (0, 1). It is obvious that, (T (t), I(t), v(t),D(t))T := (exp{x1(t)}, exp{x2(t)}, exp{x3(t)}, exp{x4(t)})T is
a solution of the following model,

Ṫ (t) =µ[λ(t) − β(t)D(t)v(t)T (t) − d(t)T (t)],
İ(t) =µ[β(t)D(t)v(t)T (t) − d1(t)I(t)],
v̇(t) =µ[d1(t)M(t)I(t) − c(t)v(t)],

Ḋ(t) =µ[λ1(t) − β1(t)β(t)D(t)v(t)T (t) − γ(t)D(t)].

(2.4)

Integrating the left and right sides of (2.3) and (2.4) over the interval [0, ω], we have

∫ ω

0

[
λ(t)

exp{x1(t)}
− β(t) exp{x3(t) + x4(t)} − d(t)

]
dt = 0,∫ ω

0

[
β(t)

exp{x1(t) + x3(t) + x4(t)}
exp{x2(t)}

− d1(t)
]

dt = 0,∫ ω

0

[
d1(t)M(t)

exp{x2(t)}
exp{x3(t)}

− c(t)
]

dt = 0,∫ ω

0

[
λ1(t)

exp{x4(t)}
− β1(t)β(t) exp{x1(t) + x3(t)} − γ(t)

]
dt = 0,

(2.5)

and 

∫ ω

0
[λ(t) − β(t)D(t)v(t)T (t) − d(t)T (t)]dt = 0,∫ ω

0
[β(t)D(t)v(t)T (t) − d1(t)I(t)]dt = 0,∫ ω

0
[d1(t)M(t)I(t) − c(t)v(t)]dt = 0,∫ ω

0
[λ1(t) − β1(t)β(t)D(t)v(t)T (t) − γ(t)D(t)]dt = 0.

(2.6)

From (2.5) and the second and third equations of (2.3), we have∫ ω

0
|ẋ2(t)|dt ≤ µ

[∫ ω

0
β(t)

exp{x1(t) + x3(t) + x4(t)}
exp{x2(t)}

dt +

∫ ω

0
d1(t)dt

]
< 2d̂1ω,∫ ω

0
|ẋ3(t)|dt ≤ µ

[∫ ω

0
d1(t)M(t)

exp{x2(t)}
exp{x3(t)}

dt +

∫ ω

0
c(t)dt

]
< 2̂cω.

(2.7)

In addition, from (2.6) and the first and fourth equations of (2.4), we have∫ ω

0
|Ṫ (t)|dt ≤ µ

[∫ ω

0
λ(t)dt +

∫ ω

0
(β(t)D(t)v(t)T (t) + d(t)T (t))dt

]
< 2̂λω,∫ ω

0
|Ḋ(t)|dt ≤ µ

[∫ ω

0
λ1(t)dt +

∫ ω

0
(β1(t)β(t)D(t)v(t)T (t) + γ(t)D(t))dt

]
< 2λ̂1ω.

(2.8)

For x ∈ X, there exist ξi, ηi ∈ [0, ω] (i = 1, 2, 3, 4) such that

xi(ξi) = min
t∈[0,ω]

xi(t), xi(ηi) = max
t∈[0,ω]

xi(t) (i = 1, 2, 3, 4).
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Obviously, it has ẋi(ξi) = 0, ẋi(ηi) = 0 (i = 1, 2, 3, 4).
From the first equation of (2.5), we have∫ ω

0

λ(t)
exp{x1(ξ1)}

dt ≥ d̂ω,

which, together with (2.4) and (2.8), imply that

T (t) ≤ T (ξ1) +

∫ ω

0
|Ṫ (t)|dt = exp{x1(ξ1)} +

∫ ω

0
|Ṫ (t)|dt ≤

λ̂

d̂
+ 2̂λω.

Hence, we have

x1(t) ≤ ln
 λ̂

d̂
+ 2̂λω

 = M1. (2.9)

Similarly, we can obtain

x4(t) ≤ ln
 λ̂1

γ̂
+ 2λ̂1ω

 = M4. (2.10)

Adding the first and the second equations of (2.6), we have

λ̂ω =

∫ ω

0
[d(t)T (t) + d1(t)I(t)]dt =

∫ ω

0
[d(t) exp{x1(t)} + d1(t) exp{x2(t)}]dt,

which implies that

λ̂ω ≥

∫ ω

0
[d1(t) exp{x2(ξ2)}]dt = exp{x2(ξ2)}d̂1ω. (2.11)

From (2.7) and (2.11), we have

x2(t) ≤ x2(ξ2) +

∫ ω

0
|ẋ2(t)|dt ≤ ln

 λ̂
d̂1

 + 2d̂1ω = M2. (2.12)

From the third equation of (2.5), we have

ĉω ≤
∫ ω

0
d1(t)M(t)

exp{M2}

exp{x3(ξ3)}
dt = ̂(d1M)

exp{M2}

exp{x3(ξ3)}
ω,

which implies that

x3(ξ3) ≤ ln
 ̂(d1M)

ĉ

 + M2.

Hence, from (2.7), we have

x3(t) ≤ x3(ξ3) +

∫ ω

0
|ẋ3(t)|dt ≤ ln

 ̂(d1M)
ĉ

 + M2 + 2̂cω = M3. (2.13)

In the following, let us further give lower bounds of xi(t) (i = 1, 2, 3, 4). It should be mentioned here
that, due to the particularity of mode (1.2), we will use a method different from that in the literature to
obtain the estimations of the lower bounds.
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From the first equation of (2.5), (2.10) and (2.13), we have∫ ω

0

[
λ(t)

exp{x1(η1)}
− β(t) exp{M3 + M4} − d(t)

]
dt ≤ 0,

which implies that

exp{x1(η1)} ≥
λ̂

d̂ + β̂ exp{M3 + M4}
.

Further, from condition (H1) and (2.8), we have

T (t) ≥T (η1) −
∫ ω

0
|Ṫ (t)|dt

= exp{x1(η1)} −
∫ ω

0
|Ṫ (t)|dt

≥
λ̂

d̂ + β̂ exp{M3 + M4}
− 2̂λω > 0,

which implies that

x1(t) ≥ ln
 λ̂

d̂ + β̂ exp{M3 + M4}
− 2̂λω

 := L1. (2.14)

Similarly, using condition (H2), we can obtain

x4(t) ≥ ln
 λ̂1

γ̂ + (̂β1β) exp{M1 + M3}
− 2λ̂1ω

 := L4.

In the following, to obtain lower bounds for x2(t) and x3(t), we need the
following two important claims.
Claim (i).

min
t∈[0,ω]

{exp{x1(t) + x4(t)}} ≤
1
E∗
.

If Claim (i) is not true, then it has min
t∈[0,ω]

{exp{x1(t) + x4(t)}} > 1
E∗ . We define

G(t) = Ml exp{x2(t)} + exp{x3(t)}.

Obviously, G(0) = G(ω). Calculating the derivative of G(t) along the solution of model (2.3) yields

Ġ(t) =Ml exp{x2(t)}ẋ2(t) + exp{x3(t)}ẋ3(t)

=µ
[
Mlβ(t) exp{x1(t) + x3(t) + x4(t)} − c(t) exp{x3(t)} + d1(t)(M(t) − Ml) exp{x2(t)}

]
≥µMlβ(t)

[
exp{x1(t) + x4(t)} −

c(t)
Mlβ(t)

]
exp{x3(t)}

≥µMlβ(t)
[

min
t∈[0,ω]

{exp{x1(t) + x4(t)}} −
1
E∗

]
exp{x3(t)}

>0,
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which implies that G(ω) > G(0). This is a contradiction. Thus, Claim (i) is true.
If R∗ > 1, then there exists a positive constant δ∗ > 0 such that(

λ

d + β exp{M4}δ∗

)l (
λ1

γ + ββ1 exp{M1}δ∗

)l

>
1
E∗
. (2.15)

Claim (ii). If R∗ > 1, then
max
t∈[0,ω]

{x3(t)} ≥ ln(δ∗).

If Claim (ii) is not true, then it has max
t∈[0,ω]

{x3(t)} < ln(δ∗), i.e. max
t∈[0,ω]

{exp{x3(t)}} < δ∗. From ẋ1(ξ1) =

0 and (2.10), we have

exp{x1(ξ1)} =
λ(ξ1)

d(ξ1) + β(ξ1) exp{x3(ξ1) + x4(ξ1)}

≥
λ(ξ1)

d(ξ1) + β(ξ1)δ∗ exp{M4}

≥

(
λ

d + βδ∗ exp{M4}

)l

.

(2.16)

Similarly, from ẋ4(ξ4) = 0 and (2.9), we can obtain

exp{x4(ξ4)} ≥
(

λ1

γ + ββ1 exp{M1}δ∗

)l

. (2.17)

From (2.15)–(2.17), we have

exp{x1(ξ1) + x4(ξ4)} ≥
(

λ

d + β exp{M4}δ∗

)l (
λ1

γ + ββ1 exp{M1}δ∗

)l

>
1
E∗
,

which implies that

min
t∈[0,ω]

{exp{x1(t) + x4(t)}} ≥
(

min
t∈[0,ω]

{exp{x1(t)}}
) (

min
t∈[0,ω]

{exp{x4(t)}}
)

= exp{x1(ξ1) + x4(ξ4)}

>
1
E∗
.

This contradicts with Claim (i). Thus Claim (ii) is proved.
From Claim (ii) and (2.7), we have

x3(t) ≥ x3(η3) −
∫ ω

0
|ẋ3(t)|dt ≥ ln (δ∗) − 2̂cω := L3.

From the second equation of (2.5), we have

d̂1ω ≥

∫ ω

0
β(t)

exp{L1 + L3 + L4}

exp{x2(η2)}
dt,

which implies that

x2(η2) ≥ ln
 β̂
d̂1

 + L1 + L3 + L4.
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Further, from (2.7), we have

x2(t) ≥ x2(η2) −
∫ ω

0
|ẋ2(t)|dt ≥ ln

 β̂
d̂1

 + L1 + L3 + L4 − 2d̂1ω := L2.

Obviously, Mi, Li (i = 1, 2, 3, 4) are independent of µ.
Let (x1, x2, x3, x4)T ∈ R4 satisfy the following algebraic equations

λ̂

exp{x1}
− β̂ exp{x3 + x4} − d̂ = 0,

β̂
exp{x1 + x3 + x4}

exp{x2}
− d̂1 = 0,

̂(d1M)
exp{x2}

exp{x3}
− ĉ = 0,

λ̂1

exp{x4}
− (̂β1β) exp{x1 + x3} − γ̂ = 0.

(2.18)

It is not difficult to show that if R∗ > 1, then it has

R0 :=
λ̂β̂̂(d1M)λ̂1

d̂d̂1̂ĉγ
> 1.

Completely similar to the results of the existence of positive equilibrium in [12], we can easily obtain
that if R0 > 1, then (2.18) has a unique solution (x∗1, x

∗
2, x

∗
3, x

∗
4)T ∈ R4 which satisfies

exp{x∗1} =
λ̂

d̂
−

ĉd̂1

̂(d1M)d̂
exp{x∗3} =

̂(d1M)(̂λ(̂ββ1) − λ̂1β̂) +
√

∆

2(̂β1β) ̂(d1M)d̂
> 0,

exp{x∗2} =
ĉ
̂(d1M)

exp{x∗3} > 0,

exp{x∗4} =
ĉd̂1

̂(d1M)̂β exp{x∗1}
> 0,

exp{x∗3} =
̂(d1M)(λ̂1β̂ + λ̂(̂β1β)) −

√
∆

2(̂β1β)̂cd̂1

=
2 ̂(d1M)d̂γ̂(R0 − 1)

̂(d1M)(λ̂1β̂ + λ̂(̂β1β)) +
√

∆
> 0,

(2.19)

where
∆ = ( ̂(d1M))2(λ̂1β̂ − λ̂(̂β1β))2 + 4 ̂(d1M)(̂β1β)̂cd̂γ̂d̂1 > 0.

We define the set Ω = {x ∈ X | ||x|| < U}, where

U = 1 +

4∑
i=1

(
max{|Mi|, |Li|} + |x∗i |

)
.

It is clear that Ω satisfies the condition(i) in Lemma 2.1. When x̃ = (x1, x2, x3, x4)T ∈ ∂Ω ∩ Ker L =

∂Ω∩R4, then x̃ is a constant vector in R4 with |x1|+ |x2|+ |x3|+ |x4| = U > |x∗1|+ |x
∗
2|+ |x

∗
3|+ |x

∗
4|. Then,
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we have

QN


x1

x2

x3

x4

 =


λ̂

exp{x1}
− β̂ exp{x3 + x4} − d̂
β̂ exp{x1+x3+x4}

exp{x2}
− d̂1

̂(d1M) exp{x2}

exp{x3}
− ĉ

λ̂1
exp{x4}

− (̂β1β) exp{x1 + x3} − γ̂

 ,


0
0
0
0

 .
This shows that Ω satisfies the condition (ii) in Lemma 2.1. Next, let us prove that the condition (iii)
in Lemma 2.1 is also satisfied. Let

e1 = exp{x∗1} > 0, e2 = exp{x∗2} > 0, e3 = exp{x∗3} > 0, e4 = exp{x∗4} > 0.

Note that J = I since Im Q = Ker L. Furthermore,by simple calculation, we have

deg
{
JQN, ∂Ω ∩ Ker L, (0, 0, 0, 0)T

}
=deg

{
QN, ∂Ω ∩ Ker L, (0, 0, 0, 0)T

}

=sign

∣∣∣∣∣∣∣∣∣∣∣∣∣
− λ̂

e1
0 −β̂e3e4 −β̂e3e4

β̂ e1e3e4
e2

−β̂ e1e3e4
e2

β̂ e1e3e4
e2

β̂ e1e3e4
e2

0 ̂(d1M) e2
e3
−̂(d1M) e2

e3
0

−(̂β1β)e1e3 0 −(̂β1β)e1e3 −
λ̂1
e4

∣∣∣∣∣∣∣∣∣∣∣∣∣
=sign

[̂
β̂(d1M)e1e3e4

(
(λ̂1β̂ + λ̂(̂β1β)) − 2β̂(̂β1β)e1e3e4

)]
=sign

 λ̂1β̂ + λ̂(̂β1β)

2β̂(̂β1β)e1e4

− e3

 .
In addition, from (2.19), we can obtain

e1e4 =
ĉd̂1

̂(d1M)̂β
, e3 <

̂(d1M)(λ̂1β̂ + λ̂(̂β1β))

2(̂β1β)̂cd̂1

=
λ̂1β̂ + λ̂(̂β1β)

2β̂(̂β1β)e1e4

:= ẽ3. (2.20)

Then, from (2.20), we have

deg
{
JQN, ∂Ω ∩ Ker L, (0, 0, 0, 0)T

}
= sign[ẽ3 − e3] = 1 , 0.

Thus, the condition (iii) in Lemma 2.1 is also satisfied. Therefore, from Lemma 2.1, we have that
model (2.1) has at least one ω-periodic solution. Thus, model (1.2) has at least one positive ω-periodic
solution. �

Remark 2.1. It should be mentioned here that, if all the periodic coefficients in model (1.2) are taken
as positive constants, then model (1.2) degenerates to model (1.1), and R∗ naturally becomes R0.
Furthermore, note that, for model (1.1), the conditions (H1) and (H2) are naturally satisfied, and
the condition R0 > 1 implies the existence of unique positive equilibrium. These show that, for the
existence of positive periodic solutions of model (1.2), the conditions (H1) and (H2) in Theorem 2.1
may be reasonable.
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3. Conclusions and simulations

In this paper, the existence of positive periodic solutions of a class of MERS-CoV infection dynamic
model (1.2) with periodic coefficients is studied by using the continuation theorem of the coincidence
degree theory. By estimating technically the upper and lower bounds of the prior solutions of the
corresponding operator equation (Lx = µNx), we obtain the sufficient conditions for the existence
of positive periodic solutions of model (1.2). If model (1.2) degenerates to an autonomous one, our
sufficient conditions become the basic reproductive number R0 > 1.

In model (1.2) ((1.1)), the interaction between DPP4 and virus infection is considered. From
the expression of the basic reproductive number R∗ (R0), it can be seen that adjusting the growth
rate λ1(t) (λ1) of DPP4 may be one of control strategies for the controlling of virus infection as
well as drug therapy. In addition, for model (1.2) ((1.1)) it may be interesting to introduce the
time lags in the process of virus infection and immune response in the bodies, which will be
discussed in another papers.

At the end of the paper, we present numerical simulations to illustrate our theoretical results. The
following parameters are taken

λ(t) = 0.2 + 0.1 sin(10t), β(t) = 0.001 + 0.0005 sin(10t), d(t) = 0.02 + 0.01 cos(10t),
d1(t) = 0.1 + 0.05 cos(10t), M(t) = 3, c(t) = 0.06 + 0.05 sin(10t),
λ1(t) = 0.5 + 0.3 sin(10t), β1(t) = 0.1 + 0.05 sin(10t), γ(t) = 0.01 + 0.005 cos(10t).

(3.1)

Obviously, ω = π/5. The calculation gives R∗ ≈ 3.43 > 1, M1 ≈ 2.327, M2 ≈ 0.819, M3 ≈ 2.504,
M4 ≈ 3.925,

2(d̂ + β̂ exp{M3 + M4})ω ≈ 0.803 < 1,

2(̂γ + (̂β1β) exp{M1 + M3})ω ≈ 0.0303 < 1.

Thus, conditions (H1) and (H2) hold. From Theorem 2.1, model (1.2) has at least one positive (π/5)-
periodic solution (see Figure 1).
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47.7
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Figure 1. The solution curves of model (1.2) with initial value (0.425, 1.91, 9.46, 47.6).
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