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1. Introduction

Let F be a field of characteristic not 2. Let A be an F-algebra. By A(+) we denote the Jordan algebra
induced by A in the usual manner:

a ◦ b =
1
2

(ab + ba).

We call A(+) the special Jordan algebra. There exist Jordan algebras that are not special, they are called
exceptional. Let S be a subset of A(+). By < S > we denote the subalgebra of A(+) generated by S . For
more detailed introduction of Jordan algebras we refer the reader a book of Jacobson [7].

Let X be a nonempty set. The free algebra on X over F will be denoted by F(X). Let F(X)(+) be the
Jordan algebra induced by F(X) in the usual manner. Let R be a nonempty subset of F(X)(+). By (R)
we denote the ideal of F(X)(+) generated by R. This forms the Jordan factor algebra F(X)(+)/(R). By
the universal property of F(X), a function f : X → A can be extended to an algebra homomorphism f̄
from F(X) into A. It is clear that f̄ induces an algebra homomorphism from F(X)(+) into A(+). Suppose
that f̄ (R) = 0. We note that there exists an algebra homomorphism f̂ from F(X)(+)/(R) into A(+).

Set X = {ξi | i ∈ I} and R = { f j = f j(ξi1 , . . . , ξin( j)) | j ∈ J}. Note that every element in R is a Jordan
polynomial. For example,

2ξ1 + ξ2 ◦ ξ3 − ξ
4
3.
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Denote the coset ξi + (R) in F(X)(+)/(R) by xi. Note that

f j(xi1 , . . . , xin( j)) = 0

for every j ∈ J. Following the case of algebras in [1, Section 6.2], we write F(X)(+)/(R) as L(X; R)(+).
We say that this Jordan algebra is defined by the generators xi and relations f j. We always hope that
the number of generators of L(X,R)(+) is the minimum. For more detailed introduction of generators
and relations of algebras we refer the reader to [1, Section 6.2].

As we know, both matrix algebras and Jordan matrix algebras are important algebras that we often
come across. We remand the reader to the papers [5–13] for a general theory of matrix Jordan
algebras and the papers [2–4] that focus on polynomial identities of Jordan matrix algebras. It is easy
to check that the minimun number of generators of matrix algebras over a field is 2 (see Proposition
2.1). However, it is not easy to determine the minimun number of generators of Jordan matrix
algebras over a field.

In the present paper we shall describe Jordan matrix algebras over a field by generators and relations
(see Theorem 2.1). We prove that the minimun number of generators of some special Jordan matrix
algebras over a field is 2.

2. Jordan matrix algebras defined by generators and relations

Let n ≥ 2 be an integer. By Mn(F) we denote the algebra of all n × n matrices over F. By ei j we
denote the standard matrix unit of Mn(F). By δi j we denote the symbol of Kronecker delta.

We begin with the following simple result.

Theorem 2.1. Let F be a field. Set
X = {ξ, η, ρ}.

Set
ξ11 = ξ, ξ12 = 2ξ11 ◦ η.

We set inductively
ξ1,i+1 = 2ξ1i ◦ η

for all i = 2, . . . , n − 1. Similarly, we set inductively

ξi+1,1 = 2ξi1 ◦ ρ

for all i = 1, . . . , n − 1. Furthemore, we set

ξi j = 2ξi1 ◦ ξ1 j − δi jξ11

for all i, j = 2, . . . , n. Let R be the following subset of L(X)(+):

ξ − ξ11; η −

n−1∑
i=1

ξi,i+1; ρ −

n−1∑
i=1

ξi+1,i;

2ξi j ◦ ξst − δ jsξit − δitξs j, i, j, s, t = 1, . . . , n;
n∑

i=1

ξii − 1.

We have that L(X,R)(+) � Mn(F)(+).
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Proof. Set

x = ξ + (R);
y = η + (R);
z = ρ + (R);

xi j = ξi j + (R), i, j = 1, . . . , n.

It follows from the elements in R that

x = x11; y =
n−1∑
i=1

xi,i+1; z =
n−1∑
i=1

xi+1,i;

2xi j ◦ xst = δ jsxit + δitxs j, i, j, s, t = 1, . . . , n;
n∑

i=1

xii = 1.

It follows from the relation above that every element of L(X; R)(+) is a linear combination of the
following set

T = {xi j | i, j = 1, 2, . . . , n}.

We claim that T is an independent subset of L(X,R)(+). Suppose that

n∑
i, j=1

λi jxi j = 0 (2.1)

for some λi j ∈ F. We define a function f : X → Mn(F)(+) as follows:

f (ξ) = e11, f (η) =
n−1∑
i=1

ei,i+1, f (ρ) =
n−1∑
j=1

e j+1, j.

By the universal property of F(X) we have that there exists an algebra homomorphism f̄ : F(X)(+) →

Mn(F)(+) such that

f̄ (ξ) = e11, f̄ (η) =
n−1∑
i=1

ei,i+1, f̄ (ρ) =
n−1∑
j=1

e j+1, j

and

f̄ (ξi j) = 2 f̄ (ξi1 ◦ ξ1 j) − δi j f̄ (ξ11 = 2 f̄ (ξi1) ◦ f̄ (ξ1 j) − δi j f̄ (ξ11) = 2ei1 ◦ e1 j − δi je11 = ei j

for all i, j = 1, . . . , n. Note that {ei j | i, j = 1, . . . , n} is a basis of Mn(F)(+). This implies that f̄ is
surjective. It is easy to check that f̄ (R) = 0. Hence there exists a surjective algebra homomorphism
f̂ : L(X; R)(+) → Mn(F)(+) such that

f̂ (x) = e11, f̂ (y) =
n−1∑
i=1

ei,i+1, f̂ (z) =
n−1∑
j=1

e j+1, j
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and
f̂ (xi j) = ei j

for all i, j = 1, . . . , n. We get from (2.1) that

n∑
i=1

λi jei j = 0.

It implies that λi j = 0 for all i, j = 1, . . . , n. Consequently, T is a basis of L(X,R)(+). In view of the
above relations we get that the Jordan operation table of T is the same as that of {ei j | i, j = 1, . . . , n}, a
standard basis of Mn(F)(+). Therefore L(X,R)(+) � Mn(F)(+). The proof of the result is complete. �

We remark that Theorem 2.1 implies the following result:

Corollary 2.1. Let F be a field. We have that

Mn(F)(+) =

〈
e11,

n−1∑
i=1

ei,i+1,

n−1∑
j=1

e j+1, j

〉
.

In view of Corollary 2.1 we see that every Jordan matrix algebra over a field can be generated by
three elements.

We remark that the minimun number of generators of matrix algebras over a field is 2. For example,
we easily prove the following result. We give its proof for completeness.

Proposition 2.1. Let F be a field. We have that

Mn(F) =
〈 n−1∑

i=1

ei,i+1,

n−1∑
j=1

e j+1, j

〉
.

Proof. Set

E =
n−1∑
i=1

ei,i+1, Q =
n−1∑
j=1

e j+1, j.

We have that
En−1Qn−1 = e11 ∈< E,Q > .

We get that < e11, E,Q >=< E,Q >. In view of Corollary 2.1 we note that Mn(F)(+) =< e11, E,Q >.
This implies that

Mn(F) =< e11, E,Q >=< E,Q > .

This proves the result. �

We now give the main result of the paper, which shows that some special Jordan matrix algebras
over a field can be generated by two elements.
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Theorem 2.2. Let F be a field. Let n ≥ 3 be an integer. Suppose that char(F) = 0 or char(F) > [ 3(n−1)
2 ],

the integer part of 3(n−1)
2 . Set

X = {ξ, η}.

We set
ai = i, i = 1, . . . , n − 2;

an−1 = [
3(n − 1)

2
];

an = n − 1

and 
λ1

λ2
...

λn

 =


a1, a2
1, . . . , a

n
1

a2, a2
2, . . . , a

n
2

...

an, a2
n, . . . , a

n
n


−1 

1
0
...

0

 (2.2)

Set
ξ11 = λ1ξ ◦ η + λ2(ξ ◦ η)2 + · · · + λn(ξ ◦ η)n.

We set
ξ12 = ξ11 ◦ ξ.

Furthermore, we set inductively

ξ1,i+1 = [
i + 1

2
]−1ξ1i ◦ ξ

for all i = 1, . . . , n − 2 and
ξ1n = (n − 1)−1ξ1,n−1 ◦ ξ.

Similarly, we set
ξ21 = 2ξ11 ◦ η.

We set inductively
ξi+1,1 = 2ξi1 ◦ η

for all i = 1, . . . , n − 1. Moreover, we set

ξi j = 2(ξi1 ◦ ξ1 j) − δi jξ11

for all i, j = 2, . . . , n. Let R be the following subset of L(X)(+):

ξ −

n−2∑
i=1

2[
i + 1

2
]ξi,i+1 − 2(n − 1)ξn−1,n;

η −

n−1∑
i=1

ξi+1,i;

2ξi j ◦ ξst − δ jsξit − δitξs j, i, j, s, t = 1, . . . , n;
n∑

i=1

ξii − 1.

We have that L(X,R)(+) � Mn(F)(+). Moreover, the minimun number of generators of Mn(F)(+) is 2.
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Proof. Set

x = ξ + (R);
y = η + (R);

xi j = ξi j + (R), i, j = 1, . . . , n.

It follows from the elements in R that

x =
n−2∑
i=1

2[
i + 1

2
]xi,i+1 + 2(n − 1)xn−1,n;

y =
n−1∑
i=1

xi+1,i;

2xi j ◦ xst = δ jsxit + δitxs j, i, j, s, t = 1, . . . , n;
n∑

i=1

xii = 1.

It follows from the relation above that every element of L(X; R)(+) is a linear combination of the
following set

T = {xi j | i, j = 1, 2, . . . , n}.

We claim that T is an independent subset of L(X,R)(+). Suppose that
n∑

i, j=1

λi jxi j = 0 (2.3)

for some λi j ∈ F. We define a function f : X → Mn(F)(+) as follows:

f (ξ) = 2

 n−2∑
i=1

[
i + 1

2
]ei,i+1 + (n − 1)en−1,n

 , f (η) =
n−1∑
j=1

e j+1, j.

By the universal property of F(X) we have that there exists an algebra homomorphism f̄ : F(X)(+) →

Mn(F)(+) such that

f̄ (ξ) = 2

 n−2∑
i=1

[
i + 1

2
]ei,i+1 + (n − 1)en−1,n

 , f̄ (η) =
n−1∑
j=1

e j+1, j

and

f̄ (ξ ◦ η) = f̄ (ξ) ◦ f̄ (η)

= 2

 n−2∑
i=1

[
i + 1

2
]ei,i+1 + (n − 1)en−1,n

 ◦
 n−1∑

j=1

e j+1, j


=

n−1∑
i=1

ieii + [
3(n − 1)

2
]en−1,n−1 + (n − 1)enn

=

n∑
i=1

aieii.
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We get from (2.2) that

f̄ (ξ11) = f̄ (λ1ξ ◦ η + λ2(ξ ◦ η)2 + · · · + λn(ξ ◦ η)n)
= λ1 f̄ (ξ ◦ η) + λ2 f̄ (ξ ◦ η)2 + · · · + λn f̄ (ξ ◦ η)n

= λ1

 n∑
i=1

aieii

 + λ2

 n∑
i=1

aieii

2
+ · · · + λn

 n∑
i=1

aieii

n
= (λ1a1 + λ2a2

1 + · · · + λnan
1)e11 + · · ·+

(λ1an + λ2a2
n + · · · + λnan

n)enn

= e11.

We have that

f̄ (ξ12) = f̄ (ξ11 ◦ ξ)
= f̄ (ξ11) ◦ f̄ (ξ)

= e11 ◦

 n−2∑
i=1

2[
i + 1

2
]ei,i+1 + 2(n − 1)en−1,n


= e12

and
f̄ (ξ1,i+1) = [

i + 1
2

]−1 f̄ (ξ1i ◦ ξ) = e1,i+1

for all i = 1, . . . , n − 2. Moreover, we have that

f̄ (ξ1n) = (n − 1)−1 f̄ (ξ1,n−1 ◦ ξ) = e1n.

Similarly, we have that
f̄ (ξi1) = ei1

for all i = 2, . . . , n − 1. Moreover, we have that

f̄ (ξi j) = 2 f̄ (ξi1 ◦ ξ1 j) − δi j f̄ (ξ11) = 2ei1 ◦ e1 j − δi je11 = ei j

for all i, j = 2, . . . , n. Note that {ei j | i, j = 1, . . . , n} is a basis of Mn(F)(+). This implies that f̄ is
surjective. It is easy to check that f̄ (R) = 0. Hence there exists a surjective algebra homomorphism
f̂ : L(X; R)(+) → Mn(F)(+) such that

f̂ (x) =
n−2∑
i=1

2[
i + 1

2
]ei,i+1 + 2(n − 1)en−1,n, f̂ (y) =

n−1∑
j=1

e j+1, j.

Moreover, we have that
f̂ (x1 j) = e1 j, f̂ (xi1) = ei1
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for all i, j = 1, . . . , n and so
f̂ (xi j) = ei j

for all i, j = 1, . . . , n. It follows from (2.3) that

n∑
i, j=1

λi jei j = 0.

This implies that λi j = 0 for all i, j = 1, . . . , n. Consequently, T is a basis of L(X,R)(+). In view of the
above relations we see that the Jordan operation table of T is the same as that of {ei j | i, j = 1, 2, . . . , n},
a standard basis of Mn(F)(+). Therefore L(X,R)(+) � Mn(F)(+).

Suppose that Mn(F)(+) =< A > for some A ∈ Mn(F)(+). It is clear that Mn(F) =< A >. This implies
that Mn(F) is commutative, a contradiction. We get that the minimun number of generators of Mn(F)(+)

is 2. The proof of the result is complete. �

We remark that Theorem 2.2 implies the following result:

Corollary 2.2. Let F be a field. Let n ≥ 3 be an integer. Suppose that char(F) = 0 or char(F) >
[ 3(n−1)

2 ]. We have that

Mn(F)(+) =

〈 n−2∑
i=1

2[
i + 1

2
]ei,i+1 + 2(n − 1)en−1,n,

n−1∑
j=1

e j+1, j

〉
.

3. Conclusions

The main conclusion of the paper is to show that the minimun number of generators of Mn(F)(+)

(where n ≥ 3 and char(F) = 0 or char(F) > [ 3(n−1)
2 ]) is 2.
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