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1. Introduction

Mathematical models which depict dynamics of substrates have played an important role in
understanding multimolecule reaction problems. E. E. Sel’kov [21] proposed a kinetic model of an
open monosubstrate enzyme reaction with substrate inhibition and product activation. Its mechanism
can be simplified as

[Ā0]
k1
−→ A1, A1

k2
−→ 0(output),

pA1 + qA2
k3
−→ (p + q)A2, A2

k4
−→ 0(output),

to describe the evolution of reaction concentrations of the two reactants A1 and A2. Here, the
concentration of Ā0 is assumed to be constant in time (and space). By the law of mass action and the
law of mass conservation, the time evolution of reaction concentrations of A1 and A2 can be described

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022163


2957

by 
dxt

dt
= k1 x̄0 − k2xt − k3xp

t yq
t ,

dyt

dt
= k3xp

t yq
t − k4yt,

(1.1)

where x̄0 is the concentration of Ā0 and ki(i = 1, · · · , 4) are kinetic parameters. Herein, all parameters
involved in system (1.1) are assumed to be positive constants.

By taking the change of variables

X = k1/(p+q1)
3 x, Y = k1/(p+q−1)

3 y, α = k2, β = k4, δ = k1k1/(p+q−1)
3 x̄0,

and by rescaling with x̄ = δ(q−1)/pβ−q/pX, ȳ = δ−1βY and τ = δ1+(q−1)/pβ−q/pt, system (1.1) can be
simplified as 

dx̄t

dt
= 1 − ax̄t − x̄p

t ȳq
t ,

dȳt

dt
= b(x̄p

t ȳq
t − ȳt),

(1.2)

where a = αδ−1−(q−1)/pβq/p, b = δ−1−(q−1)/pβ1+q/p and t is used to replace τ in common practice. When
parameters a = 0, p = n, and q = 2, Zhang [27] proved that system (1.2) has a unique positive stable
solution and further verified that system (1.1) produced stable limit cycles from Hopf bifurcations as
n < b � (3 + 2

√
2)n. Furthermore, Tang and Zhang [23] verified that system (1.2) occurs

Bogdanov-Takens Bifurcation and obtains the corresponding universal unfolding. In addition, there
are a lot of works which studied the dynamics of multimolecule oscillatory reactions, a paradigm of
non-equilibrium dynamics [9, 10, 17, 22, 24].

Apparently, the above deterministic description of the chemical reaction model is insufficient since
stochastic fluctuations in the concentrations of reactive species are inevitable. Nicolis and
Prigogine [18] treated the chemical Brusselator as a Markov jump process, namely, the Markov jump
Brusselator, which takes the discrete particle structure of the physico-chemical processes involved
into account, but lump most of the microscopic information to “internal fluctuations”. Thus, they
obtained a mesoscopic model in terms of a Markov jump process (xt, yt) in state space R2

+, where
transition probabilities are described by the so-called master equation (or Kolmogorov’s second
equation). Interestingly, Nicolis and Prigogine showed that the Markovian process can be simplified
as a Poissonian one if the transition events follow an exponential distribution. There have also existed
studies on this non-Gaussian noise [4, 5, 13, 25]. Besides, Yang et al. [26] proposed a reasonable,
stochastic multimolecule reaction model driven by the Gaussian noise in the well-stirred case, they
further established the criterions of the end of the reaction and continuous reaction conditions.
Furthermore, Huang et al. [11] studied the permanence of the reaction and estimated the polynomial
convergence rate of the transition probability to an invariant probability measure of stochastic
system (1.1).

Given that deterministic system (1.1) has an oscillatory behavior, a natural issue is whether
oscillations still exist in the stochastic counterpart of this system (i.e., the deterministic multimolecule
reaction model is subjected to noise). Owing to the representative of the stochastic multimolecule
reaction model, its random attractors are of particular interesting. Meanwhile, Lyapunov exponents
play an important role since they can be used to detect the structure of the attractors [1, 2]. By the
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stochastic bifurcation theory, Arnold et al. [2] investigated Lyapunov exponents of the Brusselator
under Gaussian noise and its random attractors and bifurcation behavior using a numerical method.
Schenk-Hoppé [20] proved the existence of random attractors in the random Duffing-van der Pol
system and estimated the corresponding Lyapunov exponents.

In reality, the chemical reactions are usually subject to the same random factors such as temperature,
humidity and other extrinsic influences [8]. Inspired by this fact, it is more plausible to introduce
random perturbations into system (1.1) by replacing the kinetic parameters k2 and k4 by

−k2dt → −k2dt + σdBt +

∫
U
γ1(u)Ñq(dt, du),

and −k4dt → −k4dt + σdBt +

∫
U
γ2(u)Ñq(dt, du)

where Ñq(dt, du) denotes a compensated Poisson random measure corresponding to a Poisson
measure Nq(dt, du) with characteristic measure dt ν(du) on the product space [0,∞) × U, and ν is a
finite characteristic measure, i.e., ν(U) < ∞, and further assume that Bt and Nq(dt, du) are
independent. Therefore, the following stochastic multimolecule oscillatory system (1.1) with Poisson
jumps as q = 1 and p = 2 is given by


dxt =

(
k1 x̄0 − k2xt − k3x2

t yt

)
dt + σxtdBt +

∫
U
γ1(u)xt−Ñq(dt, du),

dyt =
(
k3x2

t yt − k4yt

)
dt + σytdBt +

∫
U
γ2(u)yt−Ñq(dt, du),

(1.3)

where xt− = lim
s↑t

xs.

We point out that the abundant dynamics of the stochastic multimolecule reaction model with the
Gaussian noise have been revealed [2, 6, 7]. Meanwhile, note that we considered a stochastic low
concentration trimolecular oscillatory chemical system with jumps and established the existence of the
corresponded random attractors [25], but it is unknown whether random attractors are uniqueness in
the stochastic multimolecule oscillatory reaction model with Poisson jumps. Furthermore, if they are
unique, what is their structure? The present paper will address these questions and find new dynamical
phenomena.

First, we establish the existence-uniqueness theorem of the positive solution of the stochastic
multimolecule oscillatory reaction model with Poisson jumps. Then, we derive a sufficient set of
conditions that ensure the existence and uniqueness of general random attractors in system (1.3).
Moreover, we give the estimation of Lyapunov exponents, and obtain a singleton set random attractor
by the estimated Lyapunov exponents. Finally, we introduce some numerical simulations to support
the main results.

The rest of this paper is organized as follows. In Section 2, some preliminaries and definitions are
formulated. Moreover, the global positive solutions of the stochastic multimolecule oscillatory reaction
model with Poisson jumps are established. In Section 3, random attractors and Singleton sets for its
stochastic homeomorphism flow are investigated. In Section 4, Numerical simulations are given.
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2. Preliminaries and global positive solutions

In this section, we recall several basic concepts and definitions which will be needed throughout the
paper.

Consider the following d-dimensional stochastic differential equations with Poisson jumps

dzt = A(zt)dt + B(zt)dW(t) +

∫
U

C(zt−, u)Ñq(dt, du), (2.1)

with the initial condition z0 ∈ R
d. Assume that f ∈ C2(Rd), then the infinitesimal generator of the

process zt to (2.1) is

L f (z) =

d∑
i=1

Ai(z)
∂

∂zi
f (z) +

1
2

d∑
i, j=1

[BT (z)B(z)]i j
∂2

∂zi∂z j
f (x)

+

∫
U

 f (C̃(z, u)) − f (z) −
d∑

i=1

Ci(z, u)
∂

∂zi
f (z)

 ν(du),

where C̃(z, u) = z+C(z, u), T denotes transiposition, and denoteRd
+ = {x ∈ Rd : xi > 0, i = 1, 2, · · · , d}.

Let (Ω,F ,P) be a complete probability space. Define the shift operator

(θtω)(·) = ω(t + ·) − ω(t), f or any t ∈ R, ω ∈ Ω,

it is easy to verify that
θ0 = idΩ, θt ◦ θs = θt+s, s, t ∈ R,

and (t, ω) → θtω is B(R) ⊗ F /F -measurable. Therefore, {θt}t∈R is a group of measurable
transformations of (Ω,F ,P). Meanwhile, P is {θt}-invariant, i.e.,

P(θt
−1A) = P(A), f or any A ∈ F , t ∈ R.

Let {θt}t∈R be ergodic, then (Ω,F ,P, {θt}t∈R) is a metric dynamical system.

Definition 2.1. A function ϕ : R × Ω × Rd → Rd is called a measurable random dynamical system
over the metric dynamical system (Ω,F ,P, {θt}t∈R), if ϕ is B(R)⊗F ⊗B(Rn)/B(Rn)-measurable and if
ϕ(t, ω) is càdlàg in t and forms a càdlàg cocycle over θt, i.e., for any s, t ∈ R and ω ∈ Ω

ϕ(0, ω) = idRd , ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω). (2.2)

Remark 2.1. According to Arnold [1], a RDS induces a skew product flow of measurable maps

Θt : Ω × Rd → Ω × Rd, (ω, z)→ (θtω, ϕ(t, ω)z).

The flow property Θt+s = Θt ◦ Θs follows from (2.2).

Definition 2.2. A family random closed set A(ω)ω∈Ω map Ω into nonempty closed subsets of Rd such
that for any fixed x ∈ Rd, ω 7→ d(x, A(ω)) := inf{d(x, y)|y ∈ A(ω)} is F /B([0,∞])-measurable. Here
we make the convention d(x, ∅) = ∞.
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Definition 2.3. [19] Let ϕ be a càdlàg random dynamical system on Rd and D be an IC-system, the
set A ∈ D is called a random attractor with domain of attractionD if

(i) A is invariant and compact, i.e., ϕ(t, ω)A(ω) = A(θtω) for all t ∈ R;
(ii) A attracts set C ∈ D, i.e., lim

t→∞
d(ϕ(t, θ−tω)C(θ−tω)|A(ω)) = 0, where d(A|B) = sup

x∈A
inf
y∈B

d(x, y) is

the Hausdorff semimetric.

Next, the following theorem shows that the solutions of system (1.3) is positive and global.
Throughout this paper, we assume that the coefficient satisfies

(H0) : γi(u) > −1, i = 1, 2, f or u ∈ U.

(H1) : 2σ2 +

∫
U

[max(γ2
1(u), γ2

2(u)) − 2]ν(du) < 2 min{k2, k4}, f or u ∈ U.

Theorem 2.1. Let Assumptions (H0) and (H1) hold, then there exists a unique positive solution (xt, yt)
of system (1.3) for any initial value (x0, y0) ∈ R2

+, t ≥ 0 and the solution (xt, yt) ∈ R2
+ almost surely.

Proof. As the drift coefficient of system (1.3) is locally Lipschitz continuous, it follows from Mao [15]
that there exists a unique local solution (xt, yt) for any initial value (x0, y0) ∈ R2

+ and t ∈ [0, τe], where
τe is the explosion time. Now one shows that τe = ∞, a.s. Let n0 > 0 be so sufficiently large that
x0, y0 all lies within the interval

[
1
n0
, n0

]
which proves the solution is global. For each n ≥ n0, define a

stopping time

τn = inf
{
t ∈ [0, τe) : min{xt, yt} ≤

1
n

or max{xt, yt} ≥ n
}
,

clearly, τn is increasing as n ↑ ∞. Set τ∞ = lim
n→∞

τn, hence τ∞ ≤ τe, a.s. and it is sufficient to check that

τ∞ = ∞. Define a C2-function V : R2
+ → R+ ∪ {∞} by

V(x, y) = (x − 1 − log x) + (y − 1 − log y) + l1
(x + y)2

2
, l1 > 0,

and it is easy to know that V(x, y) ≥ 0 for any (x, y) ∈ R2
+. Let T > 0 be arbitrary, for any 0 < t < τn∧T

and (x, y) ∈ R2
+, applying Itô’s formula to system (1.3), one obtains

dV(x, y) =I1 + I2 + I3 + σ(x + y − 2)dBt, (2.3)

where

I1 =k1 x̄0 + k2 + k4 + σ2 −
k1 x̄0

x
+ (l1k1 x̄0 − k2)x + (l1k1 x̄0 − k4)y∫

U

[
γ1(u) + γ2(u) − log(1 + γ1(u)) − log(1 + γ2(u))

]
ν(du), (2.4)

I2 =(k3 − l1k2 − l1k4)xy + (l1σ
2 − l1k2 − k3)x2 + (l1σ

2 − l1k4)y2

+
l1

2

∫
U

[
(γ1(u)x + γ2(u)y)2 − (x + y)2

]
ν(du) (2.5)
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and

I3 =

∫
U

[
γ1(u)x + γ2(u)x − log(1 + γ1(u)) − log(1 + γ2(u))

+l1(x + y)(γ1(u)x + γ2(u)y) +
l1

2
(γ1(u)x + γ2(u)y)2

]
Ñq(dt, du).

For (2.4), one gets

I1 ≤I4 + (l1k1 x̄0 − k2)x + (l1k1 x̄0 − k4)y, (2.6)

where I4 = k1 x̄0 + k2 + k4 + σ2 +
∫

U
[γ1(u) + γ2(u) − log(1 + γ1(u)) − log(1 + γ2(u))]ν(du) and there is

some positive constant l2 such that I4 ≤ l2.
For (2.5), one obtains

I2 =−

[
l1k2 + l1k4 − k3 − l1

∫
U

(γ1(u)γ2(u) − 2)ν(du)
]

xy

−

[
l1

(
k2 − σ

2 −
1
2

∫
U

(γ2
1(u) − 2)ν(du)

)
+ k3

]
x2

−l1

[
k4 − σ

2 −
1
2

∫
U

(γ2
2(u) − 2)ν(du)

]
y2. (2.7)

Moreover, by (H0) and (H1), one chooses some positive constant l1 such that the following inequality

l1k2 + l1k4 − l1

∫
U

(γ1(u)γ2(u) − 2)ν(du) > k3

hold. Therefore, according to (2.6) and (2.7) , there exists a positive constant l3 such that

I1 + I2 ≤ l3, f or any x, y ∈ R+, 0 < t < τn ∧ T. (2.8)

Integrating (2.3) from 0 to τn ∧ T and taking expectation on both sides give

EV(xτn∧T , yτn∧T ) ≤V(x0, y0) + E

∫ τn∧T

0
l3dt

≤V(x0, y0) + l3T . (2.9)

Meanwhile, note that

V(xτn∧T , yτn∧T ) ≥ 2 min
{

l1n2 + n − 1 − log n,
l1

n2 +
1
n
− 1 − log

1
n

}
:= 2l4. (2.10)

It then follows from (2.9) and (2.10) that

V(x0, y0) + l3T ≥ EV(xτn∧T , yτn∧T )
≥EV(xτn , yτn)I{τn≤T } ≥ 3l4P(τn ≤ T ), (2.11)

where I{τn≤T } is the indicator function of the set {τn ≤ T }. By the similar proof in [16], it gives

P(τ∞ = ∞) = 1.

Therefore, the stochastic flow (xt, yt) of system (1.3) is global to forward, and also implies that P{xt ≥

0, yt ≥ 0 f or any t ≥ 0} = 1.
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Remark 2.2. Note that Bt has independent increments, Ñq(dt, du) is a stationary compensated Poisson
random measure, and the coefficients of system (1.3) are independent of t, it is easy to know that (xt, yt)
is a homogeneous Markov process. Moreover, it follows from Arnold [1] that system (1.3) can generate
a stochastic dynamical system.

Remark 2.3. Define

Nq([t, 0), B) = ]{t ≤ s < 0, q(s) ∈ B}, f or any B ∈ B(U\{0}),

where ] denotes the cardinality of a set. Therefore, the compensated Poisson random measure on
(−∞, 0] × U can be expressed by

Ñq([t, 0), du) = Nq([t, 0), du) + ν(du)t, t ∈ (−∞, 0].

From Qiao [19] and Kager [12], it follows that {q(t), t < 0} is a stationary {F 0
t }t≤0−adapted Poisson

point process with values in U\{0}. Moreover, it follows from Arnold [1] that the solution zt to system
(1.3) is Ft-measurable for any t ∈ R.

3. Random attractors

In this section, we show mainly the existence and uniqueness of tempered random attractors of
system (1.3). First, we state some essential lemma which will be crucial for our analysis in the
following content. Consider the following stochastic differential equationsdzt =(a1zt + a2)dt + b1ztdBt +

∫
U

(c1(u)zt− + c2(u))Ñq(dt, du),

zt =z0, as t = 0,
(3.1)

where c1(u) and c2(u) be bounded functions with c1(u) > −1.

Lemma 3.1. There exists a θt-invariant set Ω̃ ∈ F of Ω of full P measure such that for any ω ∈ Ω̃ and∫
U

[log(1 + c1(u)) − c1(u)]ν(du) < 1
2b2

1 − a1,
(i) the random variable |z(ω)| is tempered.
(ii) the mapping

(t, ω)→ z̄t(ω) =

∫ t

−∞

H(t, s)
(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

ds

+

∫ t

−∞

∫
U

H(t, s)c2(u)
1 + c1(u)

Ñq(ds, du)

is a stationary solution of system (3.1) with continuous trajectories and

H(t, s) = exp
[(

a1 −
1
2

b2
1 +

∫
U

[log(1 + c1(u)) − c1(u)]ν(du)
)

(t − s)

−b1(Bs − Bt) −
∫ s

t

∫
U

log(1 + c1(u))Ñq(ds, du)
]
. (3.2)
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Proof. (i) By the variation of constant formula [4], the solution of system (3.1) is explicitly expressed
by

ϕ(t, ω)z0 = Φ(t)
[
z0 +

∫ t

0
Φ−1(s)

(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

ds

+

∫ t

0

∫
U

Φ−1(s)c2(u)
1 + c1(u)

Ñq(ds, du)
]
, (3.3)

where

Φ(t) = exp
[(

a1 −
1
2

b2
1 +

∫
U

[log(1 + c1(u)) − c1(u)]ν(du)
)

t + b1Bt

+

∫ t

0

∫
U

log(1 + c1(u))Ñq(ds, du)
]
. (3.4)

Denote

I5 =

∫ t

0

∫
U

log(1 + c1(u))Ñq(ds, du), I6 =

∫ t

0

∫
U

c2(u)
1 + c1(u)

Ñq(ds, du).

Note that

〈I5〉 (t) =

∫ t

0

∫
U

log2(1 + c1(u))ν(du)ds ≤ l5t,

〈I6〉 (t) =

∫ t

0

∫
U

(
c2(u)

1 + c1(u)

)2

ν(du)ds ≤ l6t,

where l5 and l6 are positive constants.
According to the strong law of large numbers [14], one obtains

lim
t→∞

1
t

∫ t

0

∫
U

log(1 + c1(u))Ñq(ds, du) = lim
t→∞

1
t

∫ t

0

∫
U

c2(u)
1 + c1(u)

Ñq(ds, du) = 0, a.s.

Since lim
t→∞

Bt
t = 0, a.s. and a1−

1
2b2

1 +
∫

U
[log(1+c1(u))−c1(u)]ν(du) < 0, one has the following integrals:

∫ 0

−∞

Φ−1(t)
(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

dt < ∞, a.s.,

∫ 0

−∞

∫
U

Φ−1(t)
c2(u)

1 + c1(u)
Ñq(dt, du) < ∞, a.s.

Meanwhile, (3.1) is affine with stable linear part. Thus (3.3) and Arnold [1] imply that for any z0 ∈ R,
the unique invariant measure µ of (3.1) is the Dirac measure supported by

z(ω) =lim
t→∞

ϕ(−t, ω)−1z0

=

∫ 0

−∞

Φ−1(t)
(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

dt
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+

∫ 0

−∞

∫
U

Φ−1(t)
c2(u)

1 + c1(u)
Ñq(dt, du),

where

Φ(t) =exp
[ (

a1 −
1
2

b2
1 +

∫
U

[log(1 + c1(u)) − c1(u)]ν(du)
)

t + b1Bt

+

∫ t

0

∫
U

log(1 + c1(u))Ñq(ds, du)
]
.

Therefore, it follows from Arnold [1] that lim
t→∞

log+ |z(θtω)|
t = 0, ω ∈ Ω̃. That is, the random variable

|z(ω)| is tempered.
(ii) It is easy to see that H(t, s) = Φ(t)Φ−1(s), then one has

z̄t(ω) =Φ(t)
[ ∫ t

−∞

Φ−1(s)
(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

ds

+

∫ t

−∞

∫
U

Φ−1(s)c2(u)
1 + c1(u)

Ñq(ds, du)
]

=Φ(t)
(
z(ω) +

∫ t

0
Φ−1(s)

(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

ds

+

∫ t

0

∫
U

Φ−1(s)c2(u)
1 + c1(u)

Ñq(ds, du)
]

=ϕ(t, ω)z(ω), a.s. (3.5)

Besides, denote s = r + t, then H(t, s) can be written as

H(t, s) =exp
[
−

(
a1 −

1
2

b2
1 +

∫
U

[log(1 + c1(u)) − c1(u)]ν(du)
)

r

−b1(Br+t − Bt) −
∫ r+t

t

∫
U

log(1 + c1(u))Ñq(ds, du)
]

=exp
[
−

(
a1 −

1
2

b2
1 +

∫
U

[log(1 + c1(u)) − c1(u)]ν(du)
)

r

−b1B̂r −

∫ r

0

∫
U

log(1 + c1(u))Ñq̂(dt, du)
]

=Φ−1(r) (3.6)

where B̂r = Br+t − Bt and q̂r = qr+t − qt.
Therefore,

z̄t(ω) =

∫ 0

−∞

Φ−1(t)
(
a2 −

∫
U

c1(u)c2(u)
1 + c1(u)

ν(du)
)

dt

+

∫ 0

−∞

∫
U

Φ−1(t)
c2(u)

1 + c1(u)
Ñq̂(dt, du)

=z(θtω). (3.7)
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According to Schenk-Hoppé [20], (3.5) and (3.7) imply that z̄t(ω) is a measurable stable stationary
solution of system (3.1).

Moreover, it follows from Arnold [1] that z̄t(ω) are continuous trajectories with respect to (t, ω),
ω ∈ Ω̃.

The following theorem is established for the unique tempered random attractor of system (1.3).

Theorem 3.1. If the assumption (H0) and (H1) are satisfied. Further assume that for any u ∈ U

(H2) k̂ = min{k2, k4}, γ̂(u) = γ1(u) ∧ γ2(u), γ̌(u) = γ1(u) ∨ γ2(u)

and
(H3)

∫
U

2[log(1 + γ̌(u)) − γ̂(u)]ν(du) < σ2 + 2k̂.

Then the random dynamical system generated by system (1.3) has the unique tempered random
attractor A(ω)ω∈Ω with domain of attractionD(A) containing the universe of sets Cl(U), generated by

U =
{
(D(ω))ω∈Ω |D(ω) ⊂ R2

+ is a tempered random set
}
.

Furthermore, the random attractor A(ω)ω∈Ω of system (1.3) is measurable with respect to
F 0
−∞ = σ

{
Bt,Nq([t, 0), B); t ≤ 0

}
.

Proof. Define V(x, y) = (x + y)2, applying Itô’s formula, one obtains

V(xt, yt)

=V(x0, y0) +

∫ t

0
[2(xs + ys)(k1 x̄0 − k2xs − k4ys) + σ2x2

s + σ2y2
s]ds

+

∫ t

0
2σ(xs + ys)2dBs +

∫ t

0

∫
U

[
(xs + γ1(u)xs + ys + γ2(u)ys)2

−(xs + ys)2 − 2(xs + ys)(xs + γ1(u)xs + ys + γ2(u)ys)
]
ν(du)ds

+

∫ t

0

∫
U

[
(xs− + γ1(u)xs− + ys− + γ2(u)ys−)2 − (xs− + ys−)2

]
Ñq(ds, du)

=V(x0, y0) +

∫ t

0
[2(xs + ys)(k1 x̄0 − k2xs − k4ys) + σ2x2

s + σ2y2
s]ds

+2σ
∫ t

0
(xs + ys)2dBs − 2

∫ t

0

∫
U

(xs + ys)(xs + γ1(u)xs + ys + γ2(u)ys)
]
ν(du)ds

+

∫ t

0

∫
U

[
(xs− + γ1(u)xs− + ys− + γ2(u)ys−)2 − (xs− + ys−)2

]
Nq(ds, du).

By the comparison theorem [5] and (H2), it follows that for any (x0, y0) ∈ R2
+

V(xt, yt) ≤V(x0, y0) +

∫ t

0

[(
− 2k̂ + σ2 − 2

∫
U
γ̂(u)ν(du)

)
(xs + ys)2

−2σ2xsys + 2k1 x̄0(xs + ys)
]
ds +

∫ t

0
2σ(xs + ys)2dBs
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+

∫ t

0

∫
U

(2 + γ̌(u))γ̌(u)(xs− + ys−)2Nq(ds, du)

=V(x0, y0) +

∫ t

0

[
I7V(xs, ys) + I8

]
ds +

∫ t

0
2σV(xs, ys)dBs

+

∫ t

0

∫
U

I9(u)V(xs−, ys−)Ñq(ds, du) (3.8)

where I7 = −2k̂ + σ2 +
∫

U
[2γ̌(u) + γ̌2(u) − 2γ̂(u)]ν(du), I8 = −2σ2xsys + 2k1(xs + ys)x̄0 and I9(u) =

(2 + γ̌(u))γ̌(u).
According to I8, it follows that there exists a positive constant l7 such that I8 ≤ l7.
Let ϕ(t, ω)(x0, y0) be the stochastic dynamical systems generated by system (1.3) and

ψ(t, ω)V(x0, y0) be generated by the following system

V(xt, yt) =V(x0, y0) +

∫ t

0
(I7V(xs, ys) + l7)ds +

∫ t

0
2σV(xs, ys)dBs

+

∫ t

0

∫
U

I9(u)V(xs−, ys−)Ñq(ds, du). (3.9)

Applying the variation of constant formula to system (3.9), one immediately gets

ψ(t, ω)V(x0, y0) =Φ1(t)
{

V(x0, y0) +

∫ t

0
l7Φ

−1
1 (s)ds

}
(3.10)

where

Φ1(t) =exp
[ (

I7 − 2σ2 +

∫
U

[log(1 + I9(u)) − I9(u)]ν(du)
)

t + 2σBt

+

∫ t

0

∫
U

log(1 + I9(u))Ñq(ds, du)
]
.

Thus, it follows from (3.8) that the associated stochastic system (3.9) has the following dominating
solution ψ, i.e.,

V(ϕ(t, ω)(x0, y0)) ≤ ψ(t, ω)V(x0, y0). (3.11)

By Lemma 3.1 and (H3) , one shows that ψ(t, ω) has the unique invariant measure µ supported by

z1(ω) =

∫ 0

−∞

l7Φ
−1
1 (t)dt. (3.12)

It follows from Lemma 3.1 (i) that z1(ω) ≥ 0, and it attracts any points with exponential speed.
Therefore, it is easy to verify that ψ(t, θ−tω)z1(θ−tω) → z1(ω) as t → ∞ for any z1(ω) with
e−εtz1(θ−tω)→ 0, ε > 0.

Let η(·) : Ω→ R+, η(ω) = sup{z|z ∈ I(ω)} with lim
t→∞

log+ η(θtω)
t = 0. Define the universe of sets by

U1 = {I(ω) ⊂ R+ is a tempered random set}. (3.13)

From Schenk-Hoppé [20], there exists a ε > 0 such that e−εtz(θ−tω) → 0 as t → ∞. Meanwhile, it is
clear to see thatU1 is closed under inclusion and Ω × {z} ∈ U1 for any deterministic point {z} ⊂ R+.
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From the definition of U1 and the above same reference, it follows that the random set [0, (1 +

ε)z1(ω)] is absorbing w.r.t. the universeU1. Note further that for any 0 < x < y

ψ(t, ω, 0) > 0 and ψ(t, ω)x < ψ(t, ω)y.

According to the proof of Lemma 3.1 (ii), one obtains by (3.10) and (3.12)

ψ(t, θ−tω)(1 + ε)z1(θ−tω) ≤ (1 + ε)z1(ω), (3.14)

that is, the random set [0, (1 + ε)z1(ω)] is forward invariant for ψ w.r.t. the universeU1.
Similar to the proof of (3.14), one gets

e−εtz1(θ−tω)→ 0, as t → ∞,

for any ε > 0. Therefore, [0, (1 + ε)z1(ω)] ∈ U1.
Let B(ω) be a compact set of R2

+ defined by

B(ω) = V−1([0, (1 + ε)z1(ω)]), f or any ε > 0.

It is easy to see that B(ω) is non-empty and bounded if the pre-images of sets is bounded.
Next, one proves that the family {B(ω)}ω∈Ω satisfies the conditions of Schenk-Hoppé [20].
In fact, it follows from Schenk-Hoppé [20] that B(ω) is measurability and forward invariant, i.e.,

ψ(t, θ−tω)B(θ−tω)) ⊂ B(ω).

Moreover, the definition of U implies that the variable η(ω) = sup{
√

x2 + y2 : v = (x, y) ∈ U} grows
sub-exponentially. For any C ∈ U, note that V(x, y) = (x + y)2 ≤ 2|v|2, thus one further proves that
the random variable satisfies sup{v : v ∈ V(C(ω))} ≤ 2η(ω) which grows sub-exponentially, that is,
V(C) ∈ U1.

Similarly, one gets that there exists a t(ω,V(C)) such that for any t ≥ t(ω,C)

V(ϕ(t, θ−tω)C(θ−tω)) ⊂ ψ(t, θ−tω)V(C(θ−tω)) ⊂ [0, (1 + ε)z1(ω)] = V(B(ω)), (3.15)

Meanwhile, from the fact that z1(θ−tω) ≤ z1(ω) and the set [0, (1 + ε)z1(ω)] absorbing any set in U1,
which implies the absorbtion of any set w.r.t. ϕ inU.

For any C ∈ U, there exists a random variable ϑ(ω) > 0 such that C(ω) ⊂ D(ϑ(ω)) = {(x, y) ∈
R2

+,
√

x2 + y2 ≤ ϑ(ω)}. It is easy to see that D(b̂ρ(ω)) ∈ U and D(b̂ρ(ω)) is a neighborhood of C(ω)
for any b̂ > 1.

Note that z1(ω) is F 0
−∞ measurable, so is A(ω). Therefore, it gives the complete proof in Schenk-

Hoppé [20].

Remark 3.1. Compared to Wei [25], this paper considers the compensated Poisson random measure
and further establishes the unique attractor for the stochastic multimolecule oscillatory reaction model.

Based on Theorem 3.1, the following theorem obtains the singleton sets random attractor of system
(1.3).
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Theorem 3.2. Let (H0) − (H2) hold, if the following assumption

(H4) : k1 x̄0 < σ
2 and

∫
U

2[log(1 + γ̌(u)) − γ̂(u)]ν(du) < 2k̂

hold, then the random dynamical system generated by system (1.3) has the unique tempered random
attractor A(ω) = {(0, 0)} with domain of attractionD(A) containing the universe of sets Cl(U), which
is given by

U =
{
(D(ω))ω∈Ω |D(ω) ⊂ R2

+ is a tempered random set
}
.

In particular, for any (x, y) ∈ R2
+, the solutions ϕ(t, θ−tω)(x0, y0) and ϕ(t, ω)(x0, y0) tend to {(0, 0)} with

exponential speed as t → ∞.

Proof. Define a function V(x, y) = (x + y)2. According to the proof of Theorem 3.1, one gets

dV(xt, yt) ≤
[
I7V(xt, yt) + I8

]
dt + 2σV(xt, yt)dBt

+

∫
U

I9(u)V(xt−, yt−)Ñq(dt, du) (3.16)

where I7 = −2k̂ + σ2 +
∫

U
[2γ̌(u) + γ̌2(u) − 2γ̂(u)]ν(du), I8 = −2σ2xsys + 2k1(xs + ys)x̄0 and I9(u) =

(2 + γ̌(u))γ̌(u).
Moreover, denote

Ω1 = {(x, y)|x + y ≥ 1, x ≥ 0, y ≥ 0}, Ω2 = {(x, y)|x + y < 1, x ≥ 0, y ≥ 0},

then R2
+ = Ω1 ∪Ω2. For (x, y) ∈ Ω1, one has

dV(xt, yt) ≤(I7 + 2k1 x̄0)V(xt, yt)dt + 2σV(xt, yt)dBt

+

∫
U

I9(u)V(xt−, yt−)Ñq(dt, du).

For (x, y) ∈ Ω2, by (H4), it is easy to verify that I8 ≤ 0. Therefore, one further obtains by the comparison
theorem for any (x, y) ∈ R2

+

dV(xt, yt) ≤(I7 + 2k1 x̄0)V(xt, yt)dt + 2σV(xt, yt)dBt

+

∫
U

I9(u)V(xt−, yt−)Ñq(dt, du). (3.17)

According to Lemma 3.1, (3.17), (H0)–(H2) and (H4), the top Lyapunov exponent λ1 of system (1.3)
can be bounded by

λ1 =lim
t→∞

log(x2
t + y2

t )
2t

≤ lim
t→∞

log V(xt, yt)
2t

≤
1
2

(
I7 − 2σ2 + 2k1 x̄0 +

∫
U

[log(1 + I9(u)) − I9(u)]ν(du)
)

+ lim
t→∞

log |V(x0, y0)|
2t

+ lim
t→∞

2σBt

2t
+ lim

t→∞

∫ t

0

∫
U

I9(u)Ñq(dt, du)

2t
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=
1
2

(
−2k̂ − σ2 + 2k1 x̄0 +

∫
U

2[log(1 + γ̌(u)) − γ̂(u)]ν(du)
)
< 0.

From Lemma 3.1, one gets that the stochastic dynamical system generated by the following stochastic
system

dzt =(I7 + 2k1 x̄0)V(xt, yt)dt + 2σV(xt, yt)dBt

+

∫
U

I9(u)V(xt−, yt−)Ñq(dt, du)

has the unique invariant measure δ0. Similar to the proof of Theorem 3.1, it shows that A(ω) = {(0, 0)} =

V−1(0, 0) is an attractor.
In particular, for any (x0, y0) ∈ R2

+, the solutions ϕ(t, θ−tω)(x0, y0) and ϕ(t, ω)(x0, y0) tend to A(ω)
with exponential speed as t → ∞.

4. Examples and computer simulations

In this section, we introduce mainly some examples and numerical simulations to support the main
results.

Example 4.1. Let us illustrate the conditions of the unique tempered random attractor for Theorem 3.1.
Choosing

k1 = 1.1, k2 = 2.5, x̄0 = 2.2, k3 = 2.15, k4 = 0.65, σ = 0.5,
γ1(u) = γ2(u) = 0.55 and ν(U) = 0.65,

implies that the conditions (H0) − (H3) are satisfied. It follows from Theorem 3.1 that system (1.3)
has a unique random attractor. Applying the Infinitesimal method [28] and [3] to simulate (1.3), the
simulated of system (1.3) is shown Figure 1. Meanwhile, the numerical simulations of the different
samples xt and yt are shown as in Figure 2(a) and (b).

Figure 1. The simulation of system (1.3) with T = 100 and (x0, y0) = (0.55, 0.65).
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(a) (b)

Figure 2. The simulation of system (1.3) with T = 100 and (x0, y0) = (0.55, 0.65). (a) The
simulation of reactant xt, (b) The simulation of reactant yt.

Example 4.2. Let us illustrate the conditions of the singleton set random attractor for Theorem 3.2.
Choosing

k1 = 0.1, k2 = 1.5, x̄0 = 0.2, k3 = 1.15, k4 = 0.1, σ = 0.2
γ1(u) = γ2(u) = 0.35 and ν(U) = 0.75,

implies that the conditions (H0) − (H2) and (H4) are satisfied. then system (1.3) has a singleton set
random attractor by Theorem 3.2. Moreover, the simple simulated orbit of system (1.3) is as shown in
Figure 3.

Figure 3. The simple simulated orbit of system (1.3) with T = 1000 and (x0, y0) =

(0.25, 0.35).
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5. Conclusions

Note that we established the existence of the corresponded random attractors in a stochastic low
concentration trimolecular oscillatory chemical system [25], but the uniqueness is unknown. Based on
this fact, we considered a stochastic multimolecule oscillatory reaction model with Poisson jumps in
this paper. We have not only obtained that the multimolecule oscillatory reaction model with Poisson
jumps has a unique global positive solution, but also importantly obtained the existence and uniqueness
of random attractors in the stochastic multimolecule oscillatory reaction model, by using a technique
similar to the Lyapunov’s direct method.
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