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1. Introduction and main result

Waring’s problem of mixed powers concerns the representation of sufficiently large integer n in the
form

n = xk1
1 + xk2

2 + · · · + xks
s .

Among the most interesting cases of mixed powers is that of establishing the representations of
sufficiently large integer as the sum of one square and s positive cubes for each s > 1, i.e.,

n = x2 + y3
1 + y3

2 · · · + y3
s . (1.1)

In 1930, Stanley [7] showed that (1.1) is solvable for s > 6. Afterwards, Stanley [8] and Watson [12]
solved the cases s = 6 and s = 5, respectively. It should be emphasized that Stanley [7] obtained the
asymptotic formula for s > 6, while Sinnadurai [6] obtained the asymptotic formula for s = 6. But
in [12], Watson only proved a quite weak lower bound for the number of representation (1.1) with
s = 5. In 1986, Vaughan [9] enhanced Watson’s result and derived a lower bound with the expected
order of magnitude. In 2002, Wooley [13] illustrated that, although the excepted asymptotic formula
of (1.1) with s = 5 can not be established by the technique currently available, the exceptional set
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is extremely sparse. To be specific, let E1(N) denote the number of integer n 6 N which can not be
represented as one square and five positive cubes with expected asymptotic formula, then Wooley [13]
showed that E1(N) � Nε.

In view of the results of Vaughan [9] and Wooley [13], it is reasonable to conjecture that, for every
sufficiently large even integer N, the following equation

N = p2
1 + p3

2 + p3
3 + p3

4 + p3
5 + p3

6 (1.2)

is solvable. Here and below, the letter p, with or without subscript, denotes a prime number. But
this conjecture is perhaps out of reach at present. However, it is possible to replace a variable by an
almost–prime. In 2014, Cai [1] proved that, for every sufficiently large even integer N, the following
equation

N = x2 + p3
1 + p3

2 + p3
3 + p3

4 + p3
5 (1.3)

is solvable with x being an almost–prime P36 and the p j ( j = 1, 2, 3, 4, 5) primes. Later, in 2018, Li
and Zhang [3] enhanced the result of Cai [1] and showed that (1.3) is solvable with x being an almost–
prime P6 and the p j ( j = 1, 2, 3, 4, 5) primes. Recently, in 2021, Xue, Zhang and Li [15] consider the
problem (1.2) with almost equal prime variables, i.e.,n = p2

1 + p3
2 + p3

3 + p3
4 + p3

5 + p3
6, n ∈ [N − 6U,N + 6U],∣∣∣∣∣p2

1 −
N
6

∣∣∣∣∣ 6 U,
∣∣∣∣∣p3

i −
N
6

∣∣∣∣∣ 6 U, i = 2, 3, 4, 5, 6,
(1.4)

where U = N1−δ+ε with δ > 0 hoped to be as large as possible. Let E(N,U) denote the number of all
positive even integers n satisfying

N − 6U 6 n 6 N + 6U,

which can not be represented as (1.4). One wants to show that there exists δ ∈ (0, 1) such that

E(N,U) � U1−ε, U = N1−δ+ε. (1.5)

In [15], they proved that δ 6 8/225.
In this paper, we shall investigate the exceptional set of the problem (1.2) and establish the following

result.

Theorem 1.1. Let E(N) denote the number of positive even integers n up to N, which can not be
represented as

n = p2
1 + p3

2 + p3
3 + p3

4 + p3
5 + p3

6. (1.6)

Then, for any ε > 0, we have
E(N) � N

4
9 +ε.

We will establish Theorem 1.1 by using a pruning process into the Hardy–Littlewood circle method.
In the treatment of the integrals over minor arcs, we will employ the methods, which is developed by
Wooley in [14], combining with the new estimates for exponential sum over primes developed by
Zhao [16]. For the treatment of the integrals on the major arcs, we shall prune the major arcs further
and deal with them respectively. The full details will be explained in the following revelent sections.
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Notation. Throughout this paper, let p, with or without subscripts, always denote a prime number;
ε always denotes a sufficiently small positive constant, which may not be the same at different
occurrences. As usual, we use ϕ(n), d(n) and ω(n) to denote the Euler’s function, Dirichlet’s divisor
function and the number of distinct prime factors of n, respectively. Also, we use χ mod q to denote a
Dirichlet character modulo q, and χ0 mod q the principal character. e(x) = e2πix; f (x) � g(x) means
that f (x) = O(g(x)); f (x) � g(x) means that f (x) � g(x) � f (x). N is a sufficiently large integer and
n ∈ [N/2,N], and thus log N � log n. The letter c, with or without subscripts or superscripts, always
denote a positive constant, which may not be the same at different occurrences.

2. Outline of the proof of Theorem 1.1

Let N be a sufficiently large positive integer. By a splitting argument, it is sufficient to consider the
even integers n ∈ (N/2,N]. For the application of the Hardy–Littlewood method, we need to define the
Farey dissection. Let A > 0 be a sufficiently large fixed number, which will be determined at the end
of the proof. We set

Q0 = logA N, Q1 = N
1
6 , Q2 = N

5
6 , I0 =

[
−

1
Q2
, 1 −

1
Q2

]
.

By Dirichlet’s lemma on rational approximation (for instance, see Lemma 12 on page 104 of Pan and
Pan [4]), each α ∈ [−1/Q2, 1 − 1/Q2] can be written as the form

α =
a
q

+ λ, |λ| 6
1

qQ2
, (2.1)

for some integers a, q with 1 6 a 6 q 6 Q2 and (a, q) = 1. Define

M(q, a) =

[
a
q
−

Q1

qN
,

a
q

+
Q1

qN

]
, M =

⋃
16q6Q1

⋃
16a6q
(a,q)=1

M(q, a),

M0(q, a) =

[
a
q
−

Q200
0

qN
,

a
q

+
Q200

0

qN

]
, M0 =

⋃
16q6Q100

0

⋃
16a6q
(a,q)=1

M0(q, a),

m1 = I0 \M, m2 = M \M0.

Then we obtain the Farey dissection

I0 = M0 ∪m1 ∪m2. (2.2)

For k = 2, 3, we define
fk(α) =

∑
Xk<p62Xk

e(pkα),

where Xk = (N/16)
1
k . Let

R(n) =
∑

n=p2
1+p3

2+p3
3+p3

4+p3
5+p3

6
X3<p2,...,p662X3

X2<p162X2

1.
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From (2.2), one has

R(n) =

∫ 1

0
f2(α) f 5

3 (α)e(−nα)dα =

∫ 1− 1
Q2

− 1
Q2

f2(α) f 5
3 (α)e(−nα)dα

=

{∫
M0

+

∫
m1

+

∫
m2

}
f2(α) f 5

3 (α)e(−nα)dα.

In order to prove Theroem 1.1, we need the two following propositions:

Proposition 2.1. For n ∈ [N/2,N], there holds∫
M0

f2(α) f 5
3 (α)e(−nα)dα = S(n)J(n) + O

(
n7/6

log7 n

)
, (2.3)

where S(n) is the singular series defined in (4.1), which is absolutely convergent and satisfies

0 < c∗ 6 S(n) � 1 (2.4)

for any integer n satisfying n ≡ 0 (mod 2) and some fixed constant c∗ > 0; while J(n) is defined
by (4.5) and satisfies

J(n) �
n7/6

log6 n
.

The proof of (2.3) in Proposition 2.1 will be demonstrated in Section 4. For the property (2.4) of
singular series, we shall give the proof in Section 5.

Proposition 2.2. Let Z(N) denote the number of integers n ∈ [N/2,N] satisfying n ≡ 0 (mod 2) such
that

2∑
j=1

∣∣∣∣∣∣
∫
m j

f2(α) f 5
3 (α)e(−nα)dα

∣∣∣∣∣∣ � n7/6

log7 n
.

Then we have
Z(N) � N

4
9 +ε.

The proof of Proposition 2.2 will be given in section 6. The remaining part of this section is devoted
to establishing Theorem 1.1 by using Proposition 2.1 and Proposition 2.2.

Proof of Theorem 1.1. From Proposition 2.2, we deduce that, with at most O
(
N

4
9 +ε) exceptions, all

even integers n ∈ [N/2,N] satisfy
2∑

j=1

∣∣∣∣∣∣
∫
m j

f2(α) f 5
3 (α)e(−nα)dα

∣∣∣∣∣∣ � n7/6

log7 n
,

from which and Proposition 2.1, we conclude that, with at most O
(
N

4
9 +ε) exceptions, all even integers

n ∈ [N/2,N] can be represented in the form p2
1 + p3

2 + p3
3 + p3

4 + p3
5 + p3

6, where p1, p2, p3, p4, p5, p6 are
prime numbers. By a splitting argument, we get

E(N) �
∑

06`�log N

Z

(
N
2`

)
�

∑
06`�log N

(
N
2`

) 4
9 +ε

� N
4
9 +ε.

This completes the proof of Theorem 1.1.
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3. Some auxiliary lemmas

Lemma 3.1. Suppose that α is a real number, and that |α− a/q| 6 q−2 with (a, q) = 1. Let β = α− a/q.
Then we have

fk(α) � dδk(q)(log x)c

X1/2
k

√
q(1 + N|β|) + X4/5

k +
Xk√

q(1 + N|β|)

 ,
where δk = 1

2 +
log k
log 2 and c is a constant.

Proof. See Theorem 1.1 of Ren [5]. �

Lemma 3.2. Suppose that α is a real number, and that there exist a ∈ Z and q ∈ N with

(a, q) = 1, 1 6 q 6 Q and |qα − a| 6 Q−1.

If P
1
2 6 Q 6 P

5
2 , then one has∑

P<p62P

e
(
p3α

)
� P1− 1

12 +ε +
q−

1
6 P1+ε(

1 + P3|α − a/q|
)1/2 .

Proof. See Lemma 8.5 of Zhao [16]. �

Lemma 3.3. For α ∈ m1, we have
f3(α) � N

11
36 +ε.

Proof. By Dirichlet’s rational approximation (2.1), for α ∈ m1, one has Q1 6 q 6 Q2. From
Lemma 3.2, we get

f3(α) � X
11
12 +ε

3 + X1+ε
3 Q−

1
6

1 � N
11
36 +ε.

This completes the proof of Lemma 3.3. �

For 1 6 a 6 q with (a, q) = 1, set

I(q, a) =

[
a
q
−

1
qQ0

,
a
q

+
1

qQ0

]
, I =

⋃
16q6Q0

2q⋃
a=−q

(a,q)=1

I(q, a). (3.1)

For α ∈ m2, by Lemma 3.1, we have

f3(α) �
N

1
3 logc N

q
1
2−ε

(
1 + N|λ|

)1/2 + N
4
15 +ε = V3(α) + N

4
15 +ε, (3.2)

say. Then we obtain the following lemma.

Lemma 3.4. We have∫
I

|V3(α)|2dα =
∑

16q6Q0

2q∑
a=−q

(a,q)=1

∫
I(q,a)
|V3(α)|2dα � N−

1
3 log2A N.
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Proof. We have

∑
16q6Q0

2q∑
a=−q

(a,q)=1

∫
I(q,a)
|V3(α)|2dα

�
∑

16q6Q0

q−1+ε

2q∑
a=−q

(a,q)=1

∫
|λ|6 1

Q0

N
2
3 logc N

1 + N|λ|
dλ

�
∑

16q6Q0

q−1+ε

2q∑
a=−q

(a,q)=1

( ∫
|λ|6 1

N

N
2
3 logc Ndλ +

∫
1
N 6|λ|6

1
Q0

N
2
3 logc N
N|λ|

dλ
)

� N−
1
3 logc N ·

∑
16q6Q0

q−1+εϕ(q) � N−
1
3 Q1+ε

0 logc N � N−
1
3 log2A N.

This completes the proof of Lemma 3.4. �

4. Proof of Proposition 2.1

In this section, we shall concentrate on establishing Proposition 2.1. We first introduce some
notations. For a Dirichlet character χ mod q and k = 2, 3, we define

Ck(χ, a) =

q∑
h=1

χ(h)e
(
ahk

q

)
, Ck(q, a) = Ck(χ0, a),

where χ0 is the principal character modulo q. Let χ2, χ
(1)
3 , χ(2)

3 , χ(3)
3 , χ(4)

3 , χ(5)
3 be Dirichlet characters

modulo q. Define

B
(
n, q, χ2, χ

(1)
3 , χ(2)

3 , χ(3)
3 , χ(4)

3 , χ(5)
3

)
=

q∑
a=1

(a,q)=1

(
C2(χ2, a)

5∏
i=1

C3

(
χ(i)

3 , a
))

e
(
−

an
q

)
,

B(n, q) = B
(
n, q, χ0, χ0, χ0, χ0, χ0, χ0

)
,

and write

A(n, q) =
B(n, q)
ϕ6(q)

, S(n) =

∞∑
q=1

A(n, q). (4.1)

Lemma 4.1. For (a, q) = 1 and any Dirichlet character χ mod q, there holds∣∣∣Ck(χ, a)
∣∣∣ 6 2q1/2d βk(q)

with βk = (log k)/ log 2.

Proof. See the Problem 14 of Chapter VI of Vinogradov [11]. �
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Lemma 4.2. Let Ck(q, a) be defined as above. Then there holds

∑
q6x

∣∣∣B(n, q)
∣∣∣

ϕ6(q)
� log x. (4.2)

Proof. By Lemma 4.1, we have

B(n, q) �
q∑

a=1
(a,q)=1

∣∣∣∣C2(q, a)C5
3(q, a)

∣∣∣∣ � q3ϕ(q)d 9(q).

Therefore, the left–hand side of (4.2) is

�
∑
q6x

q3ϕ(q)d 9(q)
ϕ6(q)

�
∑
q6x

(log log q)5d 9(q)
q2 � (log log x)5

∑
q6x

d 9(q)
q2 � log x.

This completes the proof of Lemma 4.2. �

In order to treat the integral on the major arcs, we write fk(α) as follows:

fk(α) =
∑

Xk<p62Xk
(p,q)=1

e
(
pk

(
a
q

+ λ

))
+ O(log q) =

q∑
`=1

(`,q)=1

e
(
a`k

q

) ∑
Xk<p62Xk

p≡` (mod q)

e(pkλ) + O(log N).

For the innermost sum on the right–hand side of the above equation, by Siegel–Walfisz theorem, we
have ∑

Xk<p62Xk
p≡` (mod q)

e(pkλ) =

∫ 2Xk

Xk

e(ukλ)d π(u, q, `)

=

∫ 2Xk

Xk

e(ukλ)d
(

1
ϕ(q)

∫ u

2

dt
log t

+ O
(
ue−c
√

log u
))

=
1

ϕ(q)

∫ 2Xk

Xk

e(ukλ)
log u

du + O
(
Xke−c

√
log N

)
=

vk(λ)
ϕ(q)

+ O
(
Xke−c

√
log N

)
,

say. Therefore, we have

fk(α) =
Ck(q, a)
ϕ(q)

vk(λ) + O
(
Xke−c

√
log N

)
,

and thus

f2(α) f 5
3 (α) =

C2(q, a)C5
3(q, a)

ϕ6(q)
v2(λ)v5

3(λ) + O
(
N

13
6 e−c
√

log N
)
.

Then we derive that∫
M0

f2(α) f 5
3 (α)e(−nα)dα
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=
∑

16q6Q100
0

q∑
a=1

(a,q)=1

e
(
−

an
q

) ∫ Q200
0
qN

−
Q200

0
qN

(
C2(q, a)C5

3(q, a)
ϕ6(q)

v2(λ)v5
3(λ) + O

(
N

13
6 e−c
√

log N
))

e(−nλ)dλ

=
∑

16q6Q100
0

B(n, q)
ϕ6(q)

∫ Q200
0
qN

−
Q200

0
qN

v2(λ)v5
3(λ)e(−nλ)dλ + O

(
N

7
6 e−c
√

log N
)
. (4.3)

Noting that

vk(λ) =

∫ (2Xk)k

Xk
k

x
1
k−1e(λx)
log x

dx,

hence the innermost integral in (4.3) can be written as∫ Q200
0
qN

−
Q200

0
qN

( ∫ (2X2)2

X2
2

x−
1
2 e(λx)
log x

dx
)( ∫ (2X3)3

X3
3

x−
2
3 e(λx)
log x

dx
)5

e(−nλ)dλ. (4.4)

By using the elementary estimate

vk(λ) =

∫ (2Xk)k

Xk
k

x
1
k−1e(λx)
log x

dx �
N

1
k−1

log N
min

(
N,

1
|λ|

)
,

we know that if we extend the interval of the integral in (4.4) to [−1/2, 1/2], then the resulting error is

�

∫ 1
2

Q200
0
qN

N−
23
6

log6 N
·

dλ
λ6 �

N−
23
6

log6 N
·

q5N5

Q1000
0

�
N

7
6

(log N)500A �
n

7
6

(log n)500A .

Hence we obtain ∫ Q200
0
qN

−
Q200

0
qN

v2(λ)v5
3(λ)e(−nλ)dλ = J(n) + O

(
n

7
6

(log n)500A

)
,

where

J(n) =

∫ 1
2

− 1
2

( ∫ (2X2)2

X2
2

x−
1
2 e(λx)
log x

dx
)( ∫ (2X3)3

X3
3

x−
2
3 e(λx)
log x

dx
)5

e(−nλ)dλ

=

∫ (2X2)2

X2
2

∫ (2X3)3

X3
3

∫ (2X3)3

X3
3

∫ (2X3)3

X3
3

∫ (2X3)3

X3
3

∫ (2X3)3

X3
3

∫ 1
2

− 1
2

x−
1
2

1 (x2x3x4x5x6)−
2
3

(log x1)(log x2) · · · (log x6)

× e
(
(x1 + x2 + x3 + x4 + x5 + x6 − n)λ

)
dλdx1 · · · dx6

�
X−1

2 X−10
3

(log N)6

∫ (2X2)2

X2
2

∫ (2X3)3

X3
3

· · ·

∫ (2X3)3

X3
3

∫ 1
2

− 1
2

e
(
(x1 + x2 + · · · + x6 − n)λ

)
dλdx1 · · · dx6

�
X−1

2 X−10
3

(log N)6 N5 �
N

7
6

(log N)6 �
n

7
6

(log n)6 . (4.5)

Therefore, by (5.4), (4.3) becomes∫
M0

f2(α) f 5
3 (α)e(−nα)dα = S(n)J(n) + O

(
n

7
6

log7 n

)
,

which completes the proof of Proposition 2.1.
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5. The singular series

In this section, we shall concentrate on investigating the properties of the singular series which
appear in Proposition 2.1.

Lemma 5.1. Let p be a prime and pα‖k. For (a, p) = 1, if ` > γ(p), we have Ck(p`, a) = 0, where

γ(p) =

α + 2, if p , 2 or p = 2, α = 0;
α + 3, if p = 2, α > 0.

Proof. See Lemma 8.3 of Hua [2]. �

For k > 1, we define

S k(q, a) =

q∑
m=1

e
(
amk

q

)
.

Lemma 5.2. Suppose that (p, a) = 1. Then

S k(p, a) =
∑
χ∈Ak

χ(a)τ(χ),

where Ak denotes the set of non–principal characters χ modulo p for which χk is principal, and τ(χ)
denotes the Gauss sum

p∑
m=1

χ(m)e
(
m
p

)
.

Also, there hold |τ(χ)| = p1/2 and |Ak| = (k, p − 1) − 1.

Proof. See Lemma 4.3 of Vaughan [10]. �

Lemma 5.3. For (p, n) = 1, we have∣∣∣∣∣∣∣
p−1∑
a=1

S 2(p, a)S 5
3(p, a)

p6 e
(
−

an
p

)∣∣∣∣∣∣∣ 6 32p−
5
2 . (5.1)

Proof. We denote by S the left–hand side of (5.1). By Lemma 5.2, we have

S =
1
p6

p−1∑
a=1

( ∑
χ2∈A2

χ2(a)τ(χ2)
)( ∑

χ3∈A3

χ3(a)τ(χ3)
)5

e
(
−

an
p

)
.

If |Ak| = 0 for some k ∈ {2, 3}, then S = 0. If this is not the case, then

S =
1
p6

∑
χ2∈A2

∑
χ(1)

3 ∈A3

∑
χ(2)

3 ∈A3

∑
χ(3)

3 ∈A3

∑
χ(4)

3 ∈A3

∑
χ(5)

3 ∈A3

× τ
(
χ2

)
τ
(
χ(1)

3
)
τ
(
χ(2)

3
)
τ
(
χ(3)

3
)
τ
(
χ(4)

3
)
τ
(
χ(5)

3
)

×

p−1∑
a=1

χ2(a)χ(1)
3 (a)χ(2)

3 (a)χ(3)
3 (a)χ(4)

3 (a)χ(5)
3 (a)e

(
−

an
p

)
.
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From Lemma 5.2, the sextuple outer sums have not more than
(
(2, p − 1) − 1

)
×

(
(3, p − 1) − 1

)5 6
1 × 25 = 32 terms. In each of these terms, we have∣∣∣∣τ(χ2

)
τ
(
χ(1)

3
)
τ
(
χ(2)

3
)
τ
(
χ(3)

3
)
τ
(
χ(4)

3
)
τ
(
χ(5)

3
)∣∣∣∣ = p3.

Since in any one of these terms

χ2(a)χ(1)
3 (a)χ(2)

3 (a)χ(3)
3 (a)χ(4)

3 (a)χ(5)
3 (a)

is a Dirichlet character χ (mod p), the inner sum is

p−1∑
a=1

χ(a)e
(
−

an
p

)
= χ(−n)

p−1∑
a=1

χ(−an)e
(
−

an
p

)
= χ(−n)τ(χ).

From the fact that τ(χ0) = −1 for principal character χ0 mod p, we have∣∣∣χ(−n)τ(χ)
∣∣∣ 6 p

1
2 .

By the above arguments, we obtain

∣∣∣S∣∣∣ 6 1
p6 · 32 · p3 · p

1
2 = 32p−

5
2 .

This completes the proof of Lemma 5.3. �

Lemma 5.4. Let L(p, n) denote the number of solutions of the congruence

x2
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 ≡ n (mod p), 1 6 x1, x2, . . . , x6 6 p − 1.

Then, for n ≡ 0 (mod 2), we have L(p, n) > 0.

Proof. We have

p · L(p, n) =

p∑
a=1

C2(p, a)C5
3(p, a)e

(
−

an
p

)
= (p − 1)6 + Ep,

where

Ep =

p−1∑
a=1

C2(p, a)C5
3(p, a)e

(
−

an
p

)
.

By Lemma 5.2, we obtain
|Ep| 6 (p − 1)(

√
p + 1)(2

√
p + 1)5.

It is easy to check that |Ep| < (p − 1)6 for p > 13. Therefore, we obtain L(p, n) > 0 for p > 13. For
p = 2, 3, 5, 7, 11, we can check L(p, n) > 0 directly. �

Lemma 5.5. A(n, q) is multiplicative in q.
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Proof. By the definition of A(n, q) in (4.1), we only need to show that B(n, q) is multiplicative in q.
Suppose q = q1q2 with (q1, q2) = 1. Then we have

B(n, q1q2) =

q1q2∑
a=1

(a,q1q2)=1

C2(q1q2, a)C5
3(q1q2, a)e

(
−

an
q1q2

)

=

q1∑
a1=1

(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

C2
(
q1q2, a1q2 + a2q1

)
C5

3
(
q1q2, a1q2 + a2q1

)
e
(
−

a1n
q1

)
e
(
−

a2n
q2

)
. (5.2)

For (q1, q2) = 1 and k ∈ {2, 3}, there holds

Ck(q1q2, a1q2 + a2q1) =

q1q2∑
m=1

(m,q1q2)=1

e
(
(a1q2 + a2q1)mk

q1q2

)

=

q1∑
m1=1

(m1,q1)=1

q2∑
m2=1

(m2,q2)=1

e
(
(a1q2 + a2q1)(m1q2 + m2q1)k

q1q2

)

=

q1∑
m1=1

(m1,q1)=1

e
(
a1(m1q2)k

q1

) q2∑
m2=1

(m2,q2)=1

e
(
a2(m2q1)k

q2

)
= Ck(q1, a1)Ck(q2, a2). (5.3)

Putting (5.3) into (5.2), we deduce that

B(n, q1q2)

=

q1∑
a1=1

(a1,q1)=1

C2(q1, a1)C5
3(q1, a1)e

(
−

a1n
q1

) q2∑
a2=1

(a2,q2)=1

C2(q2, a2)C5
3(q2, a2)e

(
−

a2n
q2

)
= B(n, q1)B(n, q2).

This completes the proof of Lemma 5.5. �

Lemma 5.6. Let A(n, q) be as defined in (4.1). Then
(i) We have ∑

q>Z

A(n, q) � Z−
3
2 +εd(n). (5.4)

(ii) There exists an absolute positive constant c∗ > 0, such that, for n ≡ 0 (mod 2), there holds

0 < c∗ 6 S(n) � 1.

Proof. From Lemma 5.5, we know that B(n, q) is multiplicative in q. Therefore, there holds

B(n, q) =
∏
pt‖q

B(n, pt) =
∏
pt‖q

pt∑
a=1

(a,p)=1

C2(pt, a)C5
3(pt, a)e

(
−

an
pt

)
. (5.5)
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From (5.5) and Lemma 5.1, we deduce that B(n, q) =
∏
p‖q

B(n, p) or 0 according to whether q is square–

free or not. Thus, one has
∞∑

q=1

A(n, q) =

∞∑
q=1

q square–free

A(n, q). (5.6)

Write
R(p, a) := C2(p, a)C5

3(p, a) − S 2(p, a)S 5
3(p, a).

Then

A(n, p) =
1

(p − 1)6

p−1∑
a=1

S 2(p, a)S 5
3(p, a)e

(
−

an
p

)
+

1
(p − 1)6

p−1∑
a=1

R(p, a)e
(
−

an
p

)
. (5.7)

Applying Lemma 4.1 and noticing that S k(p, a) = Ck(p, a) + 1, we get S k(p, a) � p
1
2 , and thus

R(p, a) � p
5
2 . Therefore, the second term in (5.7) is 6 c1 p−

5
2 . On the other hand, from Lemma 5.3, we

can see that the first term in (5.7) is 6 26 · 32p−
5
2 = 2048p−

5
2 . Let c2 = c1 + 2048. Then we have proved

that, for p - n, there holds
|A(n, p)| 6 c2 p−

5
2 . (5.8)

Moreover, if we use Lemma 4.1 directly, it follows that

∣∣∣B(n, p)
∣∣∣ =

∣∣∣∣∣∣ p−1∑
a=1

C2(p, a)C5
3(p, a)e

(
−

an
p

)∣∣∣∣∣∣ 6 p−1∑
a=1

∣∣∣∣C2(p, a)C5
3(p, a)

∣∣∣∣
6 (p − 1) · 26 · p3 · 486 = 31104p3(p − 1),

and therefore ∣∣∣A(n, p)
∣∣∣ =
|B(n, p)|
ϕ6(p)

6
31104p3

(p − 1)5 6
25 · 31104p3

p5 =
995328

p2 . (5.9)

Let c3 = max(c2, 995328). Then for square–free q, we have

∣∣∣A(n, q)
∣∣∣ =

(∏
p|q
p-n

∣∣∣A(n, p)
∣∣∣)(∏

p|q
p|n

∣∣∣A(n, p)
∣∣∣) 6 (∏

p|q
p-n

(
c3 p−

5
2
))(∏

p|q
p|n

(
c3 p−2))

= cω(q)
3

(∏
p|q

p−
5
2

)( ∏
p|(n,q)

p
1
2

)
� q−

5
2 +ε(n, q)

1
2 .

Hence, by (5.6), we obtain∑
q>Z

|A(n, q)| �
∑
q>Z

q−
5
2 +ε(n, q)

1
2 =

∑
d|n

∑
q> Z

d

(dq)−
5
2 +εd

1
2 =

∑
d|n

d−2+ε
∑
q> Z

d

q−
5
2 +ε

�
∑
d|n

d−2+ε

(
Z
d

)− 3
2 +ε

= Z−
3
2 +ε

∑
d|n

d−
1
2 � Z−

3
2 +εd(n),
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which proves (5.4), and hence gives the absolutely convergence of S(n). In order to prove (ii) of
Lemma 5.6, by Lemma 5.5, we first note that

S(n) =
∏

p

(
1 +

∞∑
t=1

A
(
n, pt)) =

∏
p

(
1 + A(n, p)

)
=

(∏
p6c3

(
1 + A(n, p)

))(∏
p>c3
p-n

(
1 + A(n, p)

))(∏
p>c3
p|n

(
1 + A(n, p)

))
. (5.10)

From (5.8), we have ∏
p>c3
p-n

(
1 + A(n, p)

)
>

∏
p>c3

(
1 −

c3

p5/2

)
> c4 > 0. (5.11)

By (5.9), we obtain ∏
p>c3
p|n

(
1 + A(n, p)

)
>

∏
p>c3

(
1 −

c3

p2

)
> c5 > 0. (5.12)

On the other hand, it is easy to see that

1 + A(n, p) =
p · L(p, n)
ϕ6(p)

.

By Lemma 5.4, we know that L(p, n) > 0 for all p with n ≡ 0 (mod 2), and thus 1 + A(n, p) > 0.
Therefore, there holds ∏

p6c3

(
1 + A(n, p)

)
> c6 > 0. (5.13)

Combining the estimates (5.10)–(5.13), and taking c∗ = c4c5c6 > 0, we derive that

S(n) > c∗ > 0.

Moreover, by (5.8) and (5.9), we have

S(n) 6
∏
p-n

(
1 +

c3

p5/2

)
·
∏
p|n

(
1 +

c3

p2

)
� 1.

This completes the proof Lemma 5.6. �

6. Proof of Proposition 2.2

In this section, we shall give the proof of Proposition 2.2. We denote byZ j(N) the set of integers n
satisfying n ∈ [N/2,N] and n ≡ 0 (mod 2) for which the following estimate∣∣∣∣∣∣

∫
m j

f2(α) f 5
3 (α)e(−nα)dα

∣∣∣∣∣∣ � n
7
6

log7 n
(6.1)
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holds. For convenience, we useZ j to denote the cardinality ofZ j(N) for abbreviation. Also, we define
the complex number ξ j(n) by taking ξ j(n) = 0 for n < Z j(N), and when n ∈ Z j(N) by means of the
equation ∣∣∣∣∣∣

∫
m j

f2(α) f 5
3 (α)e(−nα)dα

∣∣∣∣∣∣ = ξ j(n)
∫
m j

f2(α) f 5
3 (α)e(−nα)dα. (6.2)

Plainly, one has |ξ j(n)| = 1 whenever ξ j(n) is nonzero. Therefore, we obtain∑
n∈Z j(N)

ξ j(n)
∫
m j

f2(α) f 5
3 (α)e(−nα)dα =

∫
m j

f2(α) f 5
3 (α)K j(α)dα, (6.3)

where the exponential sum K j(α) is defined by

K j(α) =
∑

n∈Z j(N)

ξ j(n)e(−nα).

For j = 1, 2, set

I j =

∫
m j

f2(α) f 5
3 (α)K j(α)dα.

From (6.1)–(6.3), we derive that

I j �
∑

n∈Z j(N)

n
7
6

log7 n
�
Z jN

7
6

log7 N
, j = 1, 2. (6.4)

By Lemma 2.1 of Wooley [14] with k = 2, we know that, for j = 1, 2, there holds∫ 1

0

∣∣∣ f2(α)K j(α)
∣∣∣2dα � Nε

(
Z jN

1
2 +Z2

j

)
. (6.5)

It follows from Cauchy’s inequality, Lemma 2.5 of Vaughan [10], Lemma 3.3 and (6.5) that

I1 �

(
sup
α∈m1

∣∣∣ f3(α)
∣∣∣) × ( ∫ 1

0

∣∣∣ f3(α)
∣∣∣8dα

) 1
2
( ∫ 1

0

∣∣∣ f2(α)K1(α)
∣∣∣2dα

) 1
2

� N
11
36 +ε ·

(
N

5
3 +ε

) 1
2
·
(
Nε

(
Z1N

1
2 +Z2

1

)) 1
2

� N
41
36 +ε

(
Z

1
2
1 N

1
4 +Z1

)
� Z

1
2
1 N

25
18 +ε +Z1N

41
36 +ε. (6.6)

Combining (6.4) and (6.6), we get

Z1N
7
6 log−7 N � I1 � Z

1
2
1 N

25
18 +ε +Z1N

41
36 +ε,

which implies
Z1 � N

4
9 +ε. (6.7)

Next, we give the upper bound forZ2. By (3.2), we obtain

I2 �

∫
m2

∣∣∣ f2(α) f 4
3 (α)V3(α)K2(α)

∣∣∣dα + N
4
15 +ε ×

∫
m2

∣∣∣ f2(α) f 4
3 (α)K2(α)

∣∣∣dα = I21 + I22, (6.8)
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say. For α ∈ m2, then either one has Q100
0 < q 6 Q1 or Q100

0 < N |qα − a| 6 NQ−1
2 = Q1. Therefore, by

Lemma 3.1, we get

sup
α∈m2

∣∣∣ f2(α)
∣∣∣ � X

4
5 +ε

2 +
X2(log N)c

(q(1 + N |α − a/q|))
1
2−ε
�

X2(log N)c

Q50−ε
0

�
N

1
2

log40A N
. (6.9)

In view of the fact thatm2 ⊆ I, where I is defined by (3.1), Cauchy’s inequality, the trivial estimate
K2(α) � Z2, Theorem 4 of Hua (See [2], P 19), Lemma 3.4 and (6.9), we obtain

I21 �Z2 · sup
α∈m2

∣∣∣ f2(α)
∣∣∣ × ( ∫ 1

0

∣∣∣ f3(α)
∣∣∣8dα

) 1
2
( ∫
I

∣∣∣V3(α)
∣∣∣2dα

) 1
2

�Z2 ·

(
N

1
2

log40A N

)
·
(
N

5
3 logc N

) 1
2 ·

(
N−

1
3 log2A N

) 1
2 �

Z2N
7
6

log20A N
, (6.10)

where the parameter A is chosen sufficiently large for above bound to work. Moreover, it follows from
Cauchy’s inequality, (6.5) and Theorem 4 of Hua (See [2], P 19) that

I22 �N
4
15 +ε ×

( ∫ 1

0

∣∣∣ f3(α)
∣∣∣8dα

) 1
2
( ∫ 1

0

∣∣∣ f2(α)K2(α)
∣∣∣2dα

) 1
2

�N
4
15 +ε ·

(
N

5
3 +ε

) 1
2
·
(
Nε

(
Z2N

1
2 +Z2

2

)) 1
2

�N
11
10 +ε ·

(
Z

1
2
2 N

1
4 +Z2

)
� Z

1
2
2 N

27
20 +ε +Z2N

11
10 +ε. (6.11)

Combining (6.4), (6.8), (6.10) and (6.11), we deduce that

Z2N
7
6

log7 N
� I2 = I21 + I22 �

Z2N
7
6

log20A N
+Z

1
2
2 N

27
20 +ε +Z2N

11
10 +ε,

which implies
Z2 � N

11
30 +ε. (6.12)

From (6.7) and (6.12), we have
Z(N) � Z1 +Z2 � N

4
9 +ε.

This completes the proof of Proposition 2.2.
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