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Abstract: In the present work, the authors developed the scheme for time Fractional Partial Diffusion
Differential Equation (FPDDE). The considered class of FPDDE describes the flow of fluid from the
higher density region to the region of lower density, macroscopically it is associated with the gradient of
concentration. FPDDE is used in different branches of science for the modeling and better description
of those processes that involve flow of substances. The authors introduced the novel concept of
fractional derivatives in term of both time and space independent variables in the proposed FPDDE.
We provided the approximate solution for the underlying generalized non-linear time PFDDE in the
sense of Caputo differential operator via Laplace transform combined with Adomian decomposition
method known as Laplace Adomian Decomposition Method (LADM). Furthermore, we established the
general scheme for the considered model in the form of infinite series by aforementioned techniques.
The consequent results obtained by the proposed technique ensure that LADM is an effective and
accurate technique to handle nonlinear partial differential equations as compared to the other available
numerical techniques. At the end of this paper, the obtained numerical solution is visualized graphically
by Matlab to describe the dynamics of desired solution.
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1. Introduction

Those dynamical and biological phenomena that involve the rate of change are usually modeled
by Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs). Differential
Equations (DEs) have the ability to predict all types of dynamic phenomena and are used to describe
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the exponential growth and decay over time. DEs have a wide range of applications in various fields,
such as physics, engineering, biology, etc. Furthermore, some useful applications of DEs to model
the engineering and physical phenomena can be found in some recent articles, see [1–5]. ODEs often
model one dimensional dynamical system, such as moment, flow of electricity, motion of an object
and motion of pendulum to explain thermodynamics concepts, for detail, see [6–8]. DEs are also used
in the formulation of biological fields, such as to check growth and decay of diseases. On the other
hand PDEs are also used to model multidimensional system. One of the important and significant
application of PDEs is that it can be used to formulate natural phenomena, such as sound waves, heat
transform, electrostatics, electrodynamics, quantum mechanics and flow of fluid, see [9–14].

An essential aspect of the proposed field is to investigate Fractional Partial Differential Equations
(FPDEs). The researchers have made considerable attention to investigate the concerned class of DEs
from both theoretical and application point of view. Fractional operators have some advantages over
conventional derivatives, such as hereditary properties, memory effects, globle in nature and great
degree of freedom. Keeping this importance in view, researchers paid more attention to investigate the
considered class of PFDEs. The mathematical models involving fractional-order derivatives are more
reliable and accurate as compared to traditional derivatives. In some situations, a mathematical model
involving integer-order derivative does not describe the real situation. In this connection, fractional-
order derivatives are more efficient to describe such a real-world problems, see [15–21].

Diffusion equation is one of the well known PDEs, that is related to the flow of fluid from the
higher density region to the region of lower density; macroscopically it is associated with the gradient
of concentration. Fractional Partial Diffusion Models (FPDMs) are used in different branches of
science for the modeling and better description of those processes that involve flow of substances.
For example, the time-fractional diffusion model describes the diffusion of porous media in physics,
relaxation phenomena, and model anomalous diffusion. Apart from this, FPDMs are also used in the
modeling of a variety of biological processes, like the transport of fusion plasma, see [22].

FPDDEs are the generalization of diffusion models of integer order derivatives. S. Kumar et al. [23,
24] studied the time FPDDEs under external force, that is given by

∂αψ(x, t)
∂tα

= K
∂2ψ(x, t)
∂x2 −

∂

∂x

(
ψ(x, t)F(x)

)
, 0 < α ≤ 1, K > 0. (1.1)

where the probability density function is represented by ψ(x, t) for the particle at a point ‘x’ and time
‘t’. The constant K > 0 depends upon the universal gas constant, which is a coefficient of fraction,
temperature, external force F(x) and Avogadro number.

The researchers take a keen interest in analysis of FPDDEs, due to numerous applications
in physical science, biology and medicine. Moreover, fractional diffusion equations are used
to model turbulent flow, groundwater contaminant transport, and the chaotic dynamics of the
classical conservative system. Therefore, different analytic and numerical techniques are used for
the investigation of such a models [25]. The researchers studied different features of FPDEs by
various numerical techniques, such as the New Homotopy Perturbation Method (NHPM) [26], Finite
Difference Method (FDM) [27], New Iterative Method (NIM) [28] and many more [29, 30]. Recently,
S. Kumar et al., studied the time diffusion equation via Homotopy Perturbation Transform Method
(HPTM) [23], with fractional derivative term of independent variable ‘t’ only.

In this paper, the authors have generalized the idea used in [22], and introduced the novel concept
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of fractional-order derivatives in the sense of both independent variables ‘t’ and ‘x’. The newly
constructed FPDDE is given by

∂αψ(x, t)
∂tα

= K
∂βψ(x, t)
∂xβ

−
∂γ

∂xγ

(
ψ(x, t)F(x)

)
, 0 < α, γ ≤ 1, 1 < β ≤ 2, K > 0. (1.2)

The authors used the tool of LADM, to investigate the considered model. Laplace Adomian
decomposition is the best tool to obtain the approximate solution of nonlinear PFDEs. LADM is the
combination of two powerful techniques, the Adomian decomposition method and Laplace transform.
LT inversion is a well-known ill-posed problem. Here we assume to compute an exact inverse from LT
tables. When a closed form for the solution is unknown, LT numerical inversion is needed. It requires
attention and different methods, algorithms, and software elements are available in the literature,
see [31, 32]. Using the proposed techniques, we can obtain both analytical, if exists and approximate
solutions for nonlinear DEs. The considered technique is more powerful as compared to the other
available techniques, because it gives us particular solutions without finding general solution for DEs.
Furthermore, it does not require predefined size declaration like Runge-Kutta method, possesses less
parameters, no need of discretization and linearization. As compared to other analytical techniques,
the proposed technique is efficient and simple to investigate numerical solution of nonlinear fractional
partial differential equations. The results obtained by this method ensure the capability and reliability
of the proposed method for nonlinear fractional partial differential equations, see [21, 33, 34].

2. Preliminaries

The concerned section, is devoted to the well-known definitions related to fractional calculus that
will be useful in further correspondence in this work.

Definition 2.1. The LT of a function g(x, t) defined ∀ t ≥ 0, is denoted by G(x, s) = L {g(x, t)} and is
given as

G(x, s) = L {g(x, t)} =

∫ ∞

0
e−stg(x, t)dt,

where ‘L ’ is called LT operator or Laplace transformation and ‘s’ is the transformed variable.

Definition 2.2. In Caputo sense, the fractional order derivative for the function ψ on the interval
(0,∞) × (0,∞) is defined such as

cDαψ(x, t) =
1

Γ(m − α)

∫ t

0
(t − s)m−α−1ψm(x, s)ds, α ∈ (m − 1,m) , m ∈ N.

where m = [α] + 1, [α] is the integral part of α. As α −→ m the Caputo fractional derivative becomes
conventional nth order derivative of the function.

Particularly for α ∈ (0, 1),

cDαψ(x, t) =
1

Γ(m − 1)

∫ t

0

1
(t − s)α

∂

∂s
ψ(x, s)ds.
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Definition 2.3. The LT of Caputo derivatives is given by

L {cDαψ(x, t)} = sαψ(x, s) −
m−1∑
k=0

sα−k−1ψk(x, 0), α ∈ (m − 1,m), m ∈ N.

where m = [α] + 1 and [α] denote the integral part of α.

3. Analysis of time partial fractional diffusion equation

This section of the work, is devoted to the general scheme for solution of time FPDDE (1.2), via
LT. The proposed time FPDDE under external force is given by

∂αψ(x, t)
∂tα

= K
∂βψ(x, t)
∂xβ

−
∂γ

∂xγ

(
ψ(x, t)F(x)

)
, 0 < α, γ ≤ 1, 1 < β ≤ 2, K > 0 (3.1)

subjected to the initial condition(IC)

ψ(x, 0) = h(x).

Where the probability density function is represented by ψ(x, t) for the particle at a point ‘x’, time
‘t’ and the constant K > 0 depends upon universal gas constant, coefficient of fraction, temperature,
external force F(x) and Avogadro number.

Applying LT to (3.1), we get

L
{
∂αψ(x, t)
∂tα

}
= L

{
K
∂βψ(x, t)
∂xβ

−
∂γ

∂xγ

(
ψ(x, t)F(x)

)}
.

By using the properties of LT, the above relation becomes

ψ(x, s) −
1
s
ψ(x, 0) =

1
sα

L
{
K
∂βψ(x, t)
∂xβ

−
∂γ

∂xγ

(
ψ(x, t)F(x)

)}
.

Applying inverse LT and using IC

ψ(x, t) = h(x) + L −1
[ 1

sα
L

{
K
∂βψ(x, t)
∂xβ

−
∂γ

∂xγ

(
ψ(x, t)F(x)

)}]
. (3.2)

Assuming the solution ψ(x, t) in the form of infinite series, we have

ψ(x, t) =

∞∑
i=0

ψi(x, t).

Thus, Eq (3.2) becomes

∞∑
i=0

ψi(x, t) = h(x) + L −1
[ 1

sα
L

{
K
∂β

∂xβ

∞∑
i=0

ψi(x, t) −
∂γ

∂xγ

(
F(x)

∞∑
i=0

ψi(x, t)
)}]
. (3.3)
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Comparing the ith terms of Eq (3.3), we have

ψ0(x, t) = h(x),

ψ1(x, t) = L −1
[ 1

sα
L

{
K
∂βψ0(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ0(x, t)

)}]
,

ψ2(x, t) = L −1
[ 1

sα
L

{
K
∂βψ1(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ1(x, t)

)}]
,

ψ3(x, t) = L −1
[ 1

sα
L

{
K
∂βψ2(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ2(x, t)

)}]
,

...

ψn(x, t) = L −1
[ 1

sα
L

{
K
∂βψn−1(x, t)

∂xβ
−
∂γ

∂xγ

(
F(x)ψn−1(x, t)

)}]
. n ≥ 1 (3.4)

By simple computation, we get

ψ0(x, t) = h(x),

ψ1(x, t) =

{
K
∂βψ0(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ0(x, t)

)} tα

Γ(α + 1)
,

ψ2(x, t) =

{
K
∂βξ

∂xβ
−
∂γ

∂xγ

(
F(x)ξ

)} t2α

Γ(2α + 1)
,

ψ3(x, t) =

{
K
∂βζ

∂xβ
−
∂γ

∂xγ

(
F(x)ζ

)} t3α

Γ(3α + 1)
,

where

ξ = K
∂βψ0(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ0(x, t)

)
and

ζ = K
∂βξ

∂xβ
−
∂γ

∂xγ

(
F(x)ξ

)
.

Continuing on the same fashion, we obtain the series solution as

ψ(x, t) =h(x) +

{
K
∂βψ0(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ0(x, t)

)} tα

Γ(α + 1)
+

{
K
∂βξ

∂xβ
−
∂γ

∂xγ

(
F(x)ξ

)} t2α

Γ(2α + 1)

+

{
K
∂βζ

∂xβ
−
∂γ

∂xγ

(
F(x)ζ

)} t3α

Γ(3α + 1)
+ ...

The error in the infinite series can be calculated from the nth term of the series truncated by n − 1
terms. Following truncation error in Taylor series, power series etc we can say that the order of error
is O(znα). Consequently, we can say that the error in the series after truncating it to first four terms is
given by

Error =

{
K
∂βτ

∂xβ
−
∂γ

∂xγ

(
F(x)τ

)} z4α

Γ(4α + 1)
, z ∈ (t0, t f ),

where

τ = K
∂βζ

∂xβ
−
∂γ

∂xγ

(
F(x)ζ

)
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Now the truncated approximate solution can be expressed as

ψ(x, t) =h(x) +

{
K
∂βψ0(x, t)
∂xβ

−
∂γ

∂xγ

(
F(x)ψ0(x, t)

)} tα

Γ(α + 1)
+

{
K
∂βξ

∂xβ
−
∂γ

∂xγ

(
F(x)ξ

)} t2α

Γ(2α + 1)

+

{
K
∂βζ

∂xβ
−
∂γ

∂xγ

(
F(x)ζ

)} t3α

Γ(3α + 1)
+ Error,

where

Error =

{
K
∂βτ

∂xβ
−
∂γ

∂xγ

(
F(x)τ

)} z4α

Γ(4α + 1)
, z ∈ (t0, t f ).

4. Numerical discussion

This section is comprised of few examples to elaborate the constructed scheme for considered
model, we have also presented plots to illustrate the computation for proposed examples.

Example 1. Consider the time PFDE with K = 1, F(x) = −x, β = 2 and γ = 1, the proposed equation
is given as

∂αψ(x, t)
∂tα

=
∂2ψ(x, t)
∂x2 +

∂

∂x

(
xψ(x, t)

)
, (4.1)

subjected to IC:

ψ(x, 0) = x2.

In applying LT to (4.1), we get

L
{
∂αψ(x, t)
∂tα

}
= L

{
∂2ψ(x, t)
∂x2 +

∂

∂x

(
xψ(x, t)

)}
.

By using properties of LT, the above relation becomes

ψ(x, s) −
1
s
ψ(x, 0) =

1
sα

L
{
∂2ψ(x, t)
∂x2 +

∂

∂x

(
xψ(x, t)

)}
.

From the inverse LT and using the IC, we obtain

ψ(x, t) = x2 + L −1
[ 1

sα
L

{
∂2ψ(x, t)
∂x2 +

∂

∂x

(
xψ(x, t)

)}]
. (4.2)

Let us assume the solution ψ(x, t) in terms of infinite series as given by

ψ(x, t) =

∞∑
i=0

ψi(x, t).

Equation (4.2) becomes

∞∑
i=0

ψi(x, t) = x2 + L −1
[ 1

sα
L

{
∂2

∂x2

∞∑
i=0

ψi(x, t) +
∂

∂x

(
x
∞∑

i=0

ψi(x, t)
)}]
. (4.3)
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Comparing the terms of Eq (3.3), we have

ψ0(x, t) = x2,

ψ1(x, t) = L −1
[ 1

sα
L

{
∂2ψ0(x, t)
∂x2 +

∂

∂x

(
xψ0(x, t)

)}]
,

ψ2(x, t) = L −1
[ 1

sα
L

{
∂2ψ1(x, t)
∂x2 +

∂

∂x

(
xψ1(x, t)

)}]
,

ψ3(x, t) = L −1
[ 1

sα
L

{
∂2ψ2(x, t)
∂x2 +

∂

∂x

(
xψ2(x, t)

)}]
,

...

ψn(x, t) = L −1
[ 1

sα
L

{
∂2ψn−1(x, t)

∂x2 +
∂

∂x

(
xψn−1(x, t)

)}]
. n ≥ 1 (4.4)

Calculating the terms, we have

ψ0(x, t) = x2,

ψ1(x, t) =
(2 + 3x2)tα

Γ(α + 1)
,

ψ2(x, t) =
(8 + 9x2)t2α

Γ(2α + 1)
,

ψ3(x, t) =
(26 + 27x2)t3α

Γ(3α + 1)
,

Continuing this manner, the desired solution of Eq (4.1), is

ψ(x, t) = x2 +
(2 + 3x2)tα

Γ(α + 1)
+

(8 + 9x2)t2α

Γ(2α + 1)
+

(26 + 27x2)t3α

Γ(3α + 1)
+ .......

The truncated solution after four terms is

ψ(x, t) = x2 +
(2 + 3x2)tα

Γ(α + 1)
+

(8 + 9x2)t2α

Γ(2α + 1)
+

(26 + 27x2)t3α

Γ(3α + 1)
+ Error.

For the considered example, Error is

Error =

(
80x + 81x2

) z4α

Γ(4α + 1)
.

For classical order α = 1, the obtained solution is

ψ(x, t) = x2 + (2 + 3x2)t +
(8 + 9x2)t2

2
+

(26 + 27x2)t3

6
+

(
80x + 81x2

) z4

Γ(24)
.

Example 2. Consider the time PFDE with K = 2, F(x) = −e−x, β = 2 and γ = 1, the proposed
equation is given as

∂αψ(x, t)
∂tα

= 2
∂2ψ(x, t)
∂x2 +

∂

∂x

(
e−xψ(x, t)

)
, (4.5)
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subjected to IC:

ψ(x, 0) = e−x + x.

Applying LT to (4.5), we get

L
{
∂αψ(x, t)
∂tα

}
= L

{
2
∂2ψ(x, t)
∂x2 +

∂

∂x

(
e−xψ(x, t)

)}
.

By using properties of LT, the above relation becomes

ψ(x, s) −
1
s
ψ(x, 0) =

1
sα

L
{
2
∂2ψ(x, t)
∂x2 +

∂

∂x

(
e−xψ(x, t)

)}
.

Applying now the inverse LT and using IC, we have

ψ(x, t) = e−x + x + L −1
[ 1

sα
L

{
2
∂2ψ(x, t)
∂x2 +

∂

∂x

(
e−xψ(x, t)

)}]
. (4.6)

Assuming the solution ψ(x, t) in terms of infinite series

ψ(x, t) =

∞∑
i=0

ψi(x, t).

Thus, the Eq (4.6) becomes
∞∑

i=0

ψi(x, t) = e−x + x + L −1
[ 1

sα
L

{
2
∂2

∂x2

∞∑
i=0

ψi(x, t) +
∂

∂x

(
e−x

∞∑
i=0

ψi(x, t)
)}]
. (4.7)

Comparing both sides of Eq (4.7), we have

ψ0(x, t) = e−x + x,

ψ1(x, t) = L −1
[ 1

sα
L

{
2
∂2ψ0(x, t)
∂x2 +

∂

∂x

(
e−xψ0(x, t)

)}]
,

ψ2(x, t) = L −1
[ 1

sα
L

{
2
∂2ψ1(x, t)
∂x2 +

∂

∂x

(
e−xψ1(x, t)

)}]
,

ψ3(x, t) = L −1
[ 1

sα
L

{
2
∂2ψ2(x, t)
∂x2 +

∂

∂x

(
e−xψ2(x, t)

)}]
,

...

ψn(x, t) = L −1
[ 1

sα
L

{
2
∂2ψn−1(x, t)

∂x2 +
∂

∂x

(
e−xψn−1(x, t)

)}]
. n ≥ 1 (4.8)

Calculating the terms, we have

ψ0(x, t) = e−x + x,

ψ1(x, t) =
(3e−x − 2e−2x − xe−x)tα

Γ(α + 1)
,

ψ2(x, t) =
(10e−x − 23e−2x + 6e−3x − 2xe−x + 2xe−2x)t2α

Γ(2α + 1)
,
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Continuing the same fashion, the solution of Eq (4.5), is obtained as

ψ(x, t) = e−x + x +
(3e−x − 2e−2x − xe−x)tα

Γ(α + 1)
+

(10e−x − 23e−2x + 6e−3x − 2xe−x + 2xe−2x)t2α

Γ(2α + 1)
+ ......

The solution truncated after three terms is

ψ(x, t) = e−x + x +
(3e−x − 2e−2x − xe−x)tα

Γ(α + 1)
+

(10e−x − 23e−2x + 6e−3x − 2xe−x + 2xe−2x)t2α

Γ(2α + 1)
+ Error,

where

Error =
(6e−x − 122e−2x + 126e−3x − 24e−4x + 2xe−x + 8xe−2x − 6xe−3x)z3α

Γ(3α + 1)
, z ∈ (t0, t f ).

For classical order α = 1, the obtained solution is

ψ(x, t) =e−x + x + (3e−x − 2e−2x − xe−x)t + (10e−x − 23e−2x + 6e−3x − 2xe−x + 2xe−2x)
t2

2
+

(6e−x − 122e−2x + 126e−3x − 24e−4x + 2xe−x + 8xe−2x − 6xe−3x)
z3

6
, z ∈ (t0, t f ).

5. Discussion

The obtained results reveal the complete agreement with the results obtained by Das [24] and S.
Kumar, et al. [23] by VIM and LHPM respectively. The plots obtained for the LADM solution and
VIM solution also show complete similarity, which justifies the claim of complete agreement. LADM
solution is almost valid for a wide range of nonlinear DEs. The consequences obtained by the proposed
technique ensure that the scheme is very effective and easy to implement in considering a class of
nonlinear PFDDE models. In comparison with other analytical techniques, the proposed technique is
an efficient and simple tool to investigate numerical solution of nonlinear fractional partial differential
equations with a high degree of accuracy.

The plots illustrate the possible concentration of finding the flowing particles of a fluid at any point
and time, based on the behavior of the approximated solution. Figures 1 and 2 show the behavior
of the solution of example 1, in which the dependent variable has direct linkage with space and time
variables. Where as Figures 3 and 4 show the behavior of solution of example 2, in which the dependent
variable has direct linkage with time and inverse with space variables. For different values of α, the two
dimensional behavior of the corresponding approximated solutions is also displayed in the given plots.
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Figure 1. 3-D and 2-D plots of approximate solution of Example 1, obtained via LADM.
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Figure 2. 3-D and 2-D plots of approximate solution of Example 1, obtained via VIM.
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Figure 3. 3-D and 2-D plots of approximate solution of Example 2, obtained via LADM.
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Figure 4. 3-D and 2-D plots of approximate solution of Example 2, obtained via VIM.

6. Conclusions

In this paper, the authors developed the scheme for generalized time FPDDE involving more
than one fractional derivative. In order to obtain the desired results, the authors utilized the tools
of well-known numerical techniques so-called LADM. To elaborate our main results, we provided
some numerical problems for illustrative purposes in few iterations. Which provides the reliability of
proposed techniques. To describe the dynamics of the proposed model, we visualized the obtained
results graphically via Matlab.
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