AIMS Mathematics, 7(2): 2782-2809.
AIMS Mathematics DOI:10.3934/math.2022154

%5 Received: 27 July 2021

Accepted: 16 November 2021
http://www.aimspress.com/journal/Math Published: 19 November 2021

Research article

S -asymptotically w-periodic dynamics in a fractional-order dual inertial
neural networks with time-varying lags

Huizhen Qu and Jianwen Zhou*
Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
* Correspondence: Email: jwzhou@ynu.edu.cn.

Abstract: This paper investigates global dynamics in fractional-order dual inertial neural networks
with time lags. Firstly, according to some crucial features of Mittag-Leffler functions and Banach
contracting mapping principle, the existence and uniqueness of S -asymptotically w-periodic oscillation
of the model are gained. Secondly, by using the comparison principle and the stability criteria of
delayed Caputo fractional-order differential equations, global asymptotical stability of the model is
studied. In the end, the feasibility and effectiveness of the obtained conclusions are supported by
two numerical examples. There are few papers focus on §-asymptotically w-periodic dynamics in
fractional-order dual inertial neural networks with time-varying lags, apparently, the works in this
paper fill some of the gaps.
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1. Introduction

Since artificial neural networks own tremendous applications and potentials in a wide range of
areas, numerous academics have pay close attention to neural network models and its applications in
the last few decades, such as secure communication [1,2], signal processing [3], wireless sensor [4],
system identification [5], image encryption [6] and so on. It is worth noting that a majority of neural
network models are described by first-order differential equations, until Babcock and Westervelt [7]
introduced inertia term in neural network and discussed stability, chaos and bifurcation of electronic
inertial neural network, that the inertia term is defined by a second-order derivative term. In recent
years, many literatures learned integer-order inertial neural networks, especially inertial neural
networks with time delays, and numerous interesting conclusions are acquired, such as,
stability [8, 9], glaobal exponential stability [10, 11], Mittag-Leffler stability [12],
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anti-periodicity [13], periodicity [14], synchronization [15, 16] and so on. In addition, making use of
the topological degree theory, Zheng [17] researched the global exponential stability of the
equilibrium point for inertial neural networks with reaction-diffusion terms and distributed delays.
In [18], the authors considered the stability and stabilization of a class of inertial memristive neural
networks with discrete and unbounded distributed delays. They transformed the model into first order
differential equations by means of an appropriate variable substitution method, and derived some
novel conditions ensuring the global stability and stabilization of the model. Tang and Jian [19]
studied the exponential convergence of impulsive inertial complex-valued neural networks with
time-varying delays by constructing proper LyapunovKrasovskii function and using inequality
techniques. In [20], Rakkiyappan et al. presented the stability and synchronization of memristive
inertial neural networks with time delays according to Halanay inequality and matrix measure. Kong
et al. [21] built delay-dependent Lyapunov function rather than taking reduced-order transformation
and investigated the global exponential stability of periodic solutions for inertial neural networks with
time delays by CauchySchwarz inequality and continuation theorem.

Fractional-order calculus [22, 23] is an extension of integer-order calculus and fractional-order
denotes the number of derivative and integral is arbitrary order, which largely overcomes the
weakness of the integer-order calculus and has great practical significance.  Furthermore,
fractional-order calculus can better describe the dynamical behaviors of neural networks than
integer-order calculus. Therefore, in the past few years, many literatures have researched the
dynamical behaviors of fractional-order neural networks and they have achieved a lot of results, e.g.,
asymptotical stability [24-27], Mittag-Leffler stability [28,29], synchronization [30,31] and so on.
Remarkably, few papers researched fractional-order neural networks with an inertial term. Inertial
term is very helpful in characterizing dynamical behaviors of neural networks, thus it is of great
importance to regard inertial term in neural networks. Fractional-order inertial neural networks are
obviously distinct from the present fractional-order neural networks and few papers consider this type
neural networks in the past years. For example, by the composition properties of Riemann-Liouville
fractional-order derivative and adequate feedback control, Gu et al. [32] considered global
synchronization of Riemann-Liouville fractional-order inertial neural networks with time invariable
delays. Zhang et al. [33] discussed the synchronization of a RiemannLiouville-type fractional inertial
neural network with two inertial terms by constructing Lyapunov functions. Nevertheless, to our
knowledge, so far few papers focus on fractional-order inertial neural networks in the sense of
Caputo [34], because it is extremely difficult to manage the fractional-order derivatives with two
different states. With the above analysis, this paper investigates the global asymptotical stability of
S -asymptotically w-periodic oscillation for fractional-order dual inertial neural networks (FODINNs)
with time-varying lags.

In practical applications, periodic motion is an interesting and significant dynamical property for
the models in engineering, since many biological and cognitive activities (e.g., heartbeat, locomotion,
memorization, etc) regularly repeat. Meanwhile, human brain is often in periodic oscillation, thus it
is worth studying periodic motion of the models for finding the working principle of human brain.
Yet, fractional-order models can not generate nonconstant periodic oscillation [35,36]. Owing to this,
many scholars devoted to the study of S -asymptotically periodic solution for fractional-order models in
recent years, see [37,38]. Therefore, this article considers the S -asymptotically periodic oscillation and
stability for FODINNSs (2.1). To date, almost no paper focuses on the periodic dynamics of FODINNSs.
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The main contributions of this paper lie in the following aspects: (1) Based on the composition
properties of Caputo fractional-order derivative, two important lemmas on calculation of Caputo
fractional-order derivative are deduced; (2) Novel and concise conditions are derived for the
existence, uniqueness and global asymptotical stability of §-asymptotically periodic oscillation for
FODINNs (2.1); (3) The influences of time lags on dynamic behaviors of FODINNs (2.1) are
discussed; (4) The acquired results in this paper can complement the corresponding works in
literatures [9, 12, 14,24,27,28,30,39,40].

The framework of this paper is organized as follows. In Section 2, some required definitions,
properties and lemmas are presented. In Section 3, the existence and uniqueness of S -asymptotical
w-periodic oscillation of FODINNs (2.1) are gained by the contraction mapping principle. In
Section 4, global asymptotical stability of FODINNSs (2.1) is deduced in accordance with comparison
principle and stability criteria for delayed Caputo fractional-order differential equations. In Section 5,
two numerical examples are given to illustrate the validness of the obtained conclusions. The
conclusions and the future works are described in Section 6.

Notations: N represents the set of positive integers; R?" represents the 2n-dimensional real vector
space; R* = (0, +o0); C represents the set of complex numbers and C*'(J, R*") represents the space
composing of 2n-order continuous differentiable functions from J to R?".

2. Caputo derivative, Mittag-Leffler function and Model description

2.1. Caputo derivative
Definition 2.1. ( [41]) The a-order Caputo fractional derivative of f € C"([ty, +o0),R) is given by
A0

- (t—s)“‘"”ds O<n—-1<a<n, neN),
fo

Dy () = o

where 1 > t, and the Gamma function I'(-) is defined by I'(z) = f sle™ds (z > 0).
0

Lemma 2.1. ( [41]) D [ax(?) + by(t)] = a’Dy x(t) + bDy y(t), where x(1), y(1) € C"([tp, +0),R), 0 <
n—-1<a<n,neN.

Property 2.1. ( [42]) ‘D%‘Dﬁ)x(t) = ‘D;f)+ﬁx(t), where x(t) € C'([ty, +0),R), @, € R*, a + B < 1.
Property 2.2. ( [42]) Suppose that x(¢) € C"([ty, +0), R), then

fe% f% @,
DI x(t) = DID - - D x(0),

where t > 1), @ = iaﬁ, a; € (0,1, m—1 < @ < m € N and it has i; < nsuchthatlzkaj =k,
k=1,2,...,m—1. . =1
Lemma 2.2. If x(1) € C*([ty, +00), R), then D} PDf x(t) = ‘DI x(1), where | <a <2,0<f < 1.
Proof. From Property 2.1 and Property 2.2, it yields

D DL x(1) = DL Dy DL x(1) = D x(r).

The proof is end. O
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2.2. Mittag-Leffler function

The one-parameter and two-parameter Mittag-Lefller functions [41] are defined by

o) Zk ) Zk
Bu@)i= Y o Ep@i= Y o z€C, >0,
o(2) 24 Tak+ 0’ 5(2) 24 Mok + B z€C, a,f>0

In particular, (1) Ei(2) = €% (2) Eo.1(2) = Ba(2); (3) Era(z) = <.

d
Lemma 2.3. ([41]) d—[z”Ea,aH(/lz")] = za_lEa,a(/lza), where a, A,z € C.
v4

1 1
Lemma 2.4. ([35]) If A > O and a € (0, 1], then lim t"E, 441 (=A1") = f and t°Bg 411 (—At") < /—1f0r
t—00
t>0.

Lemma 2.5. ([35,36]) Ifa,A > 0 and a € (0, 1], then
lim E,(-At*) = 0, limf (t = )" "Byol-A(t — 5)*]ds = 0.
—00 [—o0 0

2.3. Model description

In this paper, we investigate the global asymptotical stability of §-asymptotically w-periodic
oscillation for fractional-order dual inertial neural networks (FODINNs) with time-varying lags in the
form of

Dyxi(t) = —ai(t)"Dﬁxi(t) = bi(t)xi(1) + Z cij(D) fi(x(1))
=1
+ Z dij(0g (x;(t = 7)) + I(t) = &Dixi(1), >0, (2.1)
=1

with initial conditions

xi(8) = ¢i(s),  Dixi(s) = ¥i(s), s € [-7,0], T = max sup |r,(1),

<JSn 450

where Dy, ‘Dg and ‘D] are the Caputo derivative of orders 1 < @ < 2,0 <g < landy = a - B,
respectively; x;(f) € R is the state of ith neuron at time #; n 1s the amount of units in the neural network;
a;(t) > 0 is variable coeflicient and b;(r) > 0 is damping coeflicient; c;;(¢) represents the synaptic
connection weight of the unit j to the unit i at time #; d;;(r) denotes the synaptic connection weight of
the unit j to the unit i at time # — 7;(¢); fj(x;(?)) is the output of jth neuron at time #; g;(x;(t — 7,(¢)))
is the output of jth neuron at time ¢ — 7;(1); I;(¢) represents the external input at time f; 7;(¢) is time
variable delay at time t > 0; ¢;(s) and ¢;(s) are bounded and continuous functions; & > 1 is a constant,
ih,j=1,2,...,n
Let y;(¢) = CDﬁxi(t) + &:x,(1), it gets from Lemmas 2.1 and 2.2 that

Dy yilt) = Dy [ D) + £xi)] = D) + &D P xio). 2:2)
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wheret>0andi=1,2,...,n
Substituting (2.2) into Eq (2.1), then Eq (2.1) can be described by

Dixi(t) = —Exi(0) + yi(),
DI yi(t) = —ai0)yie) — [b(D) — &a; (t)]xl<r)+Zc,,(th,(t))

(2.3)
+ Z dif()g (Xt = TH(0) + (1), 1> 0,
=1
x(s) = @ls), (o) = Ui(s) +Eps), s € [-T,0Li=1,2,...,n

Let SAP,(R™) = {(x,)" € C([0,+00),R*) : x = (x1,X3,..., )", ¥ = (1,2, yn)» x; and y;
are S -asymptotically w-periodic functions with initial conditions ¢;(s) and ¥;(s) + &@i(s), s € [-T, 0],
i=1,2,.. n} S AP, (R?") is a Banach space with norm ||x||., = sup max{lxl(t)l [yi(Dl}.

>0 l=si=

Equation (2.3) can be converted to

Dixi(t) = —Exi(D) + yi(0),
DI Pyit) = —Ayi(t) + [A — ai®)]yi(0) — [bilr) — Eai(D]x() + Z cii(0) f(x(1)

. 7= (2.4)
+ ) dij(Dgiei(t = Ti(0) + L), >0,
i=1
xi(s) = @i(s), yi(s) =yi(s) + &ipi(s), se[-7,0l,i=1,2,...,n,

where A is undetermined constant. From Eq (2.4), for any ¢ = (¢7,...,¢% ¢},...,¢)" € SAP,(R™),
it obtains

Dixi(t) = —&xi(0) + B(1),
DI Pyi(t) = —Ayi() + [A — ai(D1P) () — [bi(t) — Eai(D]pF() + Z (O f(5(D)

j=1

* Z dif(g (5t = TH(1) + 1), >0,

(TP)X(s) —x"’“)—sol(s) (TP)(s) =y = Ju(s) + &@ils), s €[-7,01,i=1,2,...,n.

Define operator T : ¢ — x?, V¢ = (¢7,...,05 ¢}, ....¢)" € SAP,(R™) as

To= (T, ....(TE)E (TP, ..., (T =, .. x8y0,..y) = 2, (2.5)
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where

(TP = x{" = OB (&) + f (t = sV "By [t — sV | 41(5)ds,

0
(T)/()) = ¥/ = [5:(0) + £510)| Baop(—Ar"F)

+ f (t = )P Boopap |[-Alt = 5)° 7
" (2.6)

x[[A — ai()16(5) ~ [bi(s) = Ea(IBES) + Y cif()FH5(s)
j=1

+ ) (I8~ TN + EOds, 130,

j=1
(TP)i(s) = X/ = @i(s),  (Te)(s) =y = Ji(s) + E@iCs), se[-1,0Li=1,2,...,n.

If T has a unique fixed point ¢* € SAP,(R*"), then ¢* = T¢* = x¢ is a unique S -asymptotically
w-periodic oscillation of FODINNS (2.1).

Remark 2.1. If @ — g, then Eq (2.1) is turned into the typical fractional-order neural networks as
follows:

Dixi(t) = ~bixt) + D & f;06,0) D dij0g;0xt = i(0)) + (o),

= = (2.7)
xi(s) = SDI'(S)7 S [_Ta 0]9
where
. bi) +& ci(1) . dij(?) - (1)
bit: B ij(f) = ) di't: s Ilt: ’
D=1 O Tvan YT e 0T Traw
t > 0and i,j = 1,2,...,n. Numerous dynamical properties of Eq (2.7) were discussed in

literatures [24, 27, 39, 40], e.g., finite-time stability, global asymptotical w-periodicity and
Mittag-Lefller stability, etc. Apparently, the discussed models in this article extends the models in
literatures [24,27,39,40].

Remark 2.2. If @ = 2 and 8 = 1 in Eq (2.1), then it is shifted to the classical integer-order inertial
neural networks [43—47] described by

dx2(r) dxi() Y
5 = = la) + &) == ~ bilx(0) + ,Zl c(D (D)
+ Z di(g(x;t —T,(0)) + (1), t>0,i=1,2,...,n. (2.8)
=1

In allusion to Eq (2.8), the Volterra integral expression with the exponential function kernel is
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given by

f
x?(t) Bi(0)e 5 + f e‘f"(’_s)qﬁf(s)ds,
0

WO = [00) + £@i(0)] e + f e‘A“‘”[[A — ai(9)1¢)(5) = [bi(5) — Eai()(5)
0

n " (2.9)
£ C(F@E) + Y diy(gi(s = T,()) + Li(s)|ds, 1> 0,
=1 j=1

= -
= gis), ¥ = Gu(s) + E@i(s),  se€[-1,0Li=1,2,...,n.

By employing Eq (2.9), the periodic dynamics of Eq (2.8) had been studied in literatures [43,44].
So our works in this paper supplement the works in literatures [43,44].

3. S-asymptotical w-periodicity

Define f = st1>1[£) | (1) and ]_‘ = gltl; | f()| for a bounded function f € C([ty, +o0),R), ||x|]| = {2;2{1 |x;| for

Vx = (x1,x,...,x,)" € R™.

Definition 3.1. ( [38]) If for any x = (x|, X5,...,x,)" € C([ty, +o0),R"), it has w > 0 ensure that

t1—1>£—Ic1>o [x(t + w) — x()|| = t1—1>1-;—rio grslia; |x;(t + w) — x;(¢)] = 0, then x is S -asymptotically w-periodic.
Assume the conditions below in FODINNSs (2.1) are fulfilled.

(Hy) ai(t) > 0, bi(t) > 0, c;j(t), d;j(t) and Ii(¢) are S-asymptotically w-periodic functions; 7;(¢) is
w-periodic function, V¢ > O? iLj=1,2,...,n.
(H,) There exist two numbers L; > (0 and L§ > 0 such that

i) = [ < L=y, 1gi(0) — g0 < Lilx—yl, VYx,yeR, j=12,...,n

_ _ o f 5 Co.
(H3) .f,->lanin>.fiai+Zc,~ij+Zd,~jL§, ,]= 1,2,...,n.

J=1 J=1

By (H;), it has A > b; satisfying the following inequality:

1 ) n ) n_o .
0<6=~ A=b+ca+ ) Gl + Y il <1, i=12,..,n 3.1)

J=1 J=1

Theorem 3.1. If (H|)—(H3) hold, then FODINNs (2.1) exists a unique S-asymptotical periodic
oscillation.

Proof. Let T : SAP,(R*") — C([0, +00), R?") be defined as that in Eq (2.5).
To begin with, it shows that T : SAP,(R*) — SAP,(R*). For V¢ = (¢],....¢..8),....¢)" €
SAP,(R®), Ve > 0, there exists #; > 0 resulting

6t + w) — i (D < €, 1t +w) — g (D] <,

AIMS Mathematics Volume 7, Issue 2, 2782-2809.



2789

97 + w = 7;(t + W) = P31 = T(D)] = P71 + w = T(1)) = (1 = T(D))| <€,
lai(t + w) —ai(D <€, |bi(t+w)—Dbi()| <€, |t +w)—cij(t) <e,
Idij(t+a))—dij(t)| <e, |L[t+w)-IL(1)<e t>1, i,j= 1,2,...,n.

Because of ¢ is asymptotically periodic, so ||¢|le. < +00.
For ¢ > 0, from the first equation of Eq (2.6), it gets

(Tt + w) = OB, |-&i(t + w)| + fo (t+w= sV Byg [-&(t + w - 5F| 4)(5)ds
= G0y [-&(t + | + f (t = sV "By [t - 5V 6)(s + w)ds.
Hence, for ¢ > 0, it yields

(Te);(t + w) — (Te); (1)
- 0Es -6+ 0| - GO () + [ (1= 9 Bua 60 57
0
X [qbf(s + w) — ¢f(s)] ds + f (t— sV ' Byp [—g,-(t +w-— s)ﬂ] ¢’ (s)ds
= K (1) + Kn(0) + Ki3(2),

where

Ka(t) = 3i(0) {Bg |[-&(t + )| - Bg (-&4)},
Ki(r) = fo (t = sV "By [t = sV | [#](s + w) — )(9)] ds,
0
Ki(1) = f (t= sV Bpg|-&it + w = 5| g)(9)ds, i=1,2,....n.
According to Lemma 2.5, for € > 0, it has #, > #; such that

Ka(®l <€, Vt>t,i=1,2,...,n (3.2)

If £ > 0, then Egg[—£#°] > 0, together with Lemma 2.3 it obtains

|Kin(2)] <

fo (= P B |41t = 5P| [4)(s + w) - $1(5)] ds

+i f t(t — sV By |-&ilt - 9] 4)(s + w) — 8 (5)| ds

< 2/|¢lleo fo (t= sV "By &t — sF|ds + € f (t = sV "By [t - 5| ds

t

= 2ll¢lle fo (t = sV Bag | &t — 5V | ds — (t = sV Byp &t — s)']

n

= 2/|¢lle fo (t = 5P " Bpp|-&i(t = sV | ds + e(t — )P Bgpn &t — 1),
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where V¢ > t;,i = 1,2,...,n. By means of Lemmas 2.4 and 2.5, there exists #; > f, ensuring
|Kn(H)| <2, t>t,1=1,2,...,n.
Similarly, it has #, > t; such that
Ks(®)| < Le, t>t,i=1,2,...,n.
From (3.2)—(3.4), there exists a positive number M;; large enough satisfying
(T@);(t+w)—(T);() < Mye, t>ts, i=1,2,...,n.

On the other hand, for ¢ > 0, by the second equation of Eq (2.6), it obtains
(Tt +w) = |§:(0) + &GO Baog [-AG + )| + f “4 w5
0
XBa-pa-p |-Alt + w = 5)7| [[A — ai(9)1¢](s) = [bils) - £ai(s)] 45(s)

+ D GOSN + Y ()8, @5s = i) + L) |ds
=1 =1

= [#:(0) + £@i(0) | Buog [-A(r + )] + f (- sy

XBa-pa-p |~Alt = 5| [[A — ai(s + WP (s + W)

—[bils + ) = &ai(s + W] (s + ) + D cifls + W)FH(@(s + W)

J=1

+ > dij(s + W)gi(@(s + w = T() + [i(s + w)]ds,

=1

which obtains

(Te),(t + w) — (T, (1)
= [#:(0) + £i(0) | Boop [~ A(t + )P | = [5:(0) + £:51(0) | Bop (-A1"F)

- f (1 = 9 By s [-AC = 5P| {IA = s + 0)IB](5 + ) ~ [4 = 45169
0

— [bi(s + w) = &iai(s + w)] 7 (s + W) + [bi(s) — Eai(s)] P7(s) + Z cij(s + W) fi(¢i(s + w))

J=1

= D GO + D dij(s + w)gi@i(s + w = T,(5)) = D dij(5)g (s = Ti(s)
j=1 J=1

j=1
0
+Ii(s + w) — Il-(s)}ds + f (t = )P Bapap |-Alt = 57|

X 14 = ai(s + 01 ]Gs + ) = [bi(s + ©) = Eals + )] $i(s + )

(3.3)

(3.4)

(3.5)
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+ G5+ OS5+ )+ Y di(s + 0)gi(}(s + @ =Ty + (s + @) ds
J=1 j=1

=Py +Pp+P3+Py+Ps+Pg+ P7+Pg
+Pig + Pijo + Py + Piio + Pz + Pjg + Pjs + Py,

where
P = [5:0) + &3O {Burs [-AC + 0] ~ Burp (A7) |,

Py = fo = 9B g |[—AG = 5P| 1A = ai(s + W) [#)(s + ) — ()] ds,
Py = fo = 9By s |-AG = 9P| [ai(s) - ai(s + )] ¢ (s)ds,
Py = fo (= By g |-AG = )| [£ai(s + w) = bi(s + )] [¢7(s + w) — ¢(s)] ds,
Pis = fo = By g |=AGC = )| [bils) = bils + )] ¢ (s)ds,

P =& f (t = )" P Bypap | ~A = )| [ai(s + ) — ai(5)] ¢} (s)ds,
0

Py = fo (= B gy [—AG@ = 5] > [eists + @) = cii(9)] (@) (s + w)ds,

J=1

Py = fo (t = )P B pap|[-AG = 9] Y cis(9) [ (@5 + ) = £(@}(s))] ds,

=1

Py = fo (t = )P By gap |[-AG = )] Y |disls + @) = di(5)] (@) (s + w = T(s))ds,

J=1

!
Py = f (t - S)a_ﬁ_lEa—ﬁ,a—ﬁ
0

SEEDEIDY diJ»(s)[gj(«»;(s +w—1,(5)) — gi(¢%(s — Ti(s)) [ds,

=1
P = f(l - S)a_ﬂ_lEa—ﬂ,a—ﬂ [_A(t - S)Q_ﬂ] [/i(s + w) — I;(s)] ds,
0
0
Pipp = f (= S)a_ﬁ_lEa—ﬂ,a—ﬂ [_A(t - S)a_ﬂ] [A = a;i(s + w)] ¢,y(s + w)ds,

0
Pz = f (t - s)a_ﬁ_lEa—,B,a—,B [—A(f - S)a_ﬁ] [&ia:(s + w) — bi(s + w)] ¢7 (s + w)ds,
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n

0
P = f (t = )P B pap |[-Alt = 5P| 3 cisls + W) fi($3(s + w))ds,

J=1

0 n
Pys = f (t = )P By gap [-AG = )] ) dij(s + 0)g,($}(s + w = Ti(5))ds,
Y <

0
Pij = f (t= )P Bopas|-Alt = )" P| (s + w)ds, i=1,2,....n.
Based on Lemma 2.5, for € > 0, it has t5 > #4 ensuring
|Pa(t) <€, Vt>ts,i=1,2,...,n. (3.6)

Obviously, when ¢ > 0, E,_g3[—A7**] > 0 and applying Lemma 2.3, it acquires

|Pi| <

f = By [AG— 97| 14— a5 + )1 [ 65 + @)~ #)()] s
0

+‘ f = B s |-AG = 9" | 1A - ais + )] ¢ (s + w) — ¢)(5)| ds
< 2419l fo (= P By |-G~ 7] ds

+Ae f, t(r = )P Eypap|-Alt - 9" F|ds
= 2All¢ll fo = B s |-AG - 9" *]ds

t

—A€e(t = )" P Ey_pa-pur |[-C(t — )" 7

n
|
= 24l¢ll f (t = )P Bapap |-Alt - 57| ds
0
+Ae(t = 1) PBogapn |=C(t = 1),
where Yt > 11,i=1,2,...,n. From Lemmas 2.4 and 2.5, it has ¢ > t5 such that
|Pp()] <2e, t>t5, i=1,2,...,n. (3.7

In the same way, there exists #; > ¢ such that

26l 26l 26116l
P < e <26, sl < D2 pon) < Zille (3.8)
A A A
2 n f 2 n _ f
P < 5 D LJlBll +1f1Oe, P50l < 5 > el]e. (3.9)
j=1 =1
20 . 2 5,
Po] < 5 Y Ellols +18,O0De,  Pao(0l < 7 > dyLe, (3.10)
J=1 j=1
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2
Pl < 2& P < Aligllwe.  1Pus(0)] < &iili@llwe.

IPina(0)] < Z &L gl + £ ODe,  [Pus(d)] < Z dij(Li]¢lles + 12, (O)De,

J=1 J=1

|Pas(t) < Le, t>1t;, i=1,2,...,n.
By means of (3.6)—(3.13), there exists a M, > 0 large enough such that

(TE+w) ~ TR < Mae, 1>, i=1.2....n.

(3.11)

(3.12)

(3.13)

(3.14)

Combining (3.5) and (3.14), it implies that ||(T¢)(t + w) — (TP)()|l < lmill{Mn,Miz}E, therefore

Ty € SAP,(R™).

Then, we will show that T is contractive mapping. For ®,¥ € SAP,(R*"), applying Lemma 2.4,

from the first equation of Eq (2.6), it achieves

|(TD); (1) — (TY); (D] =

fo t(z — sV B | &t - || @ (s) - W(s) | ds

<& = ¥l f (t = sV "By [t - 5| ds
0
= "Bypn (—&1°) |® = Wl

1
Sg—“q)_lyl|007 tZO,i:l’Q’""’n’

1

based on (H3), it deduces
1
IT®() — TY(D)lleo < max —||® — ¥l < [|O — V|-
1<i<n fi

Similarly,
(T D), (1) — (T'F),(0)]

= ‘ fo f(t — )P Bypasp [—A(t - s)a—ﬁ] {[A — a;(s)] [(Df(s) —- ¥ s)]

~[bi(s) — £ [OF(s) = ES)] + Y ()| FH@(s) = fi(¥(s))]

=1

+ Z dij(s) [gj((Df(S - Tj(S))) - gj(\Pf(S - Tj(S)))] }ds

=

< [A - l_?l. + rf,-c_l,- + Z EIJLf + Z CZJLf
=1

J=1

1 = Plle

(3.15)

(3.16)
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t
X f (t = )P Byopa-p |-Alt = 5)°P| ds
0

= 1" PEopopr1(“AL"F) [A - b, +&a; + Z Eiij + Z d_ijL§ IO — ¥lleo
j=1 j=1
1 n n _
<< [A —b+ &+ )l + Y AL |0 - Plle, 120, i=1,2,..,n, (317
j=1 j=1

by (3.1), it gains

1 n n _
- —lA- a. ..l L8 -
ITD@) ~ T¥Wle < max - |A = b, +&ai + Z;c,,Lj + Z;d,JLj I — Wil
j= j=
= max 6/|® — ¥l < ||~ ¥l (3.18)
<i<n

From (3.16) and (3.18), it deduces
ITO@) - TYOlleo < 1O = ¥llcos

which induces T is contractive mapping. Hence, T has a unique fixed point ¢* = T¢" and ¢* €
SAP,(R?) is a unique S -asymptotical periodic oscillation of FODINNS (2.1). The proof is end. O

Remark 3.1. It is well known that one of the most important dynamical property in neural networks
is periodic oscillations and many physiological activities such as heartbeat, memorization, respiration
are repetitive. Hence, it is necessary to take period into account. Over the past few years, some
academics have researched the periodic solutions of integer-order INNs [43—47] and fractional-order
neural networks [26,39,40,48]. However, to the best of our knowledge, for asymptotically periodic
oscillations of FODINNSs, almost no scholars concentrate on it. Therefore, the work in this paper fills
the gap in this regard and has great significance.

Remark 3.2. Obviously, Lemmas 2.4 and 2.5 hold under the condition of 0 < @ < 1. However, if
a > 1, it is difficult to confirm the boundedness and asymptotic properties of Mittag-Leffler functions.
Hence, let @ > 1, it is not sure Lemmas 2.4 and 2.5 hold and this issue will be considered in the future
work.

Remark 3.3. In [12], the author researched the asymptotical w-periodicity of Riemann-Liouville
fraction-order inertia neural networks under the condition of sup,. fot(t — ) (s + w) — I;(s)| < +00,
which is very strict. Whereas, in this paper we don’t need the above-mentioned condition hold, which
sorts of extend the results of [12].

4. Global asymptotical stability

B, i=1,2,...,n, (), t>0,i=1,2,...,n,
o = oi(t) = (“.1)

a—pB, i=n+1l,n+2,...,2n, 0, t>0,i=n+1,n+2,...,2n.
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Lemma 4.1. ( [49]) Assume that x € C'([ty, +o0),R), then CD%x2(t) < 2x(t) Dy x(1), Yt € [to, +00),
O<a<l

Definition 4.1. ( [41]) The Laplace transform for f(¢) is defined by

F(s):L{f(t);s}:fOoe_”f(t)dt, s €C.
0

Lemma 4.2. ( [41]) Suppose that F(s) is the Laplace transform of f(t) € C"([0, +o0),R), it gets
n—1

(1) LEDGf(1); s} = s°F(s) = Y s"* fP(0), 0<n-1<a<nneN 20 s5¢eC
k=0
(2) lim f(r) = lin& SF(s).
t—+00 Nd

Lemma 4.3. Assume that nonnegative functions u;,v; € C ([0, +0),R). Considering the fractional-
order differential inequalities below

2n 2n
D ut) < —au(t) + by ; uit) + ¢; ; ut — o), >0, 42
ui(t) = (1) 20, te[-7,0],
and the following fractional-order differential system
2n 2n
Dyvit) = —awi(t) + by Y vilD) +ci ) vit =), >0, “3)

i=1 j=1
vi(t) = ¢i(1) 20, te[-1,0],

where o (t) is defined as in (4.1), i,j = 1,2,...,2n. If a; > 0, b; > 0 and ¢; > 0, then u;(t) < v,(¢),
Ye>0,i=1,2,...,2n.

Proof. Based on Eq (4.2), considering the following fractional-order system:

2n 2n
Diui(t) = —aui(t) + b; ) wl0) +¢; ) uilt = o) = mit), >0,
i=1 j=1

ui(t) = ¢i(1) 20, re€[-71,0],

where m;(t) is nonnegative continuous function in [0, +00), i = 1,2,...,2n. By Theorem 3.25 in
literature [41] and similar to the proof of Theorem 3.1 in literature [35], it easily verifies that

ui(t) = @i(0)Eq, (—a;it™) + f (t = )" Bay,[—ai(t = $)"]
0

2n 2n
x | b; Zl ui(s) + ¢; Zl uj(s — o i(s)) - m,-(s)} ds, 1>0,i=1,2,...,2n. (4.4)
i= j=

From Eq (4.3), it has
!
vi(t) = @i(0)E,,(—a;t™) + f (t = $) "By o, —ait — $)]
0
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2n 2n
x | b; Z vi(s) + ¢ Z vi(s - aj(s))] ds, t>0,i=1,2,...,2n. (4.5)
i= j=

Next, we will prove u;(f) < v;(f) via proof by contradiction. Since u; and v; are continuous, it must
exist #p € (0,+o0) and iy € {1,2,...,2n} such that u; (t)) > v;, (%), and u;(t) < vi(¢) for ¢ € [0,1) and
ie{l,2,...,2n}. By (4.4) and (4.5), it yields

uio(tO) = QDiO(O)EaiO ( alo f (tO - s)alo a,o @i [ azo(to - s)alo]
2n 2n

x[bio D uis) + iy ) uyls = o i(s)) = m(s)|ds, (4.6)

i=1 =1

and

viy(to) = iy (0)Ea,, (—aify f (to = )0 Bay a [—tig(fg — $)™]

2n 2n
X |biy > (s) +ciy » vis =0 j(5))| ds @)
i=1 =1
According to (4.6) and (4.7), it has
l/tl‘o(l‘o) < QOI‘O(O)E%O ( a,o f (t S)llto—lEa’O o [ azo(to _ S)(I,O]
2n 2n
X|bi o) + iy Y s = (s |ds < i)
i=1 =1
This is a contradiction. So u;(¢) < vi(t) fort > 0,i=1,2,...,2n. The proof is end. O

Define @ = sup,., |€&ai(t) — bi(D)], L = max Lf Lf = maXL i = max¢,; and d, = max dj,
! - 1<j<n 1<j<n 1<j<n 1<j<n
i=1,2,...,n

Theorem 4.1. Suppose that (H,) and the following condition hold.

2n
M.
(Hy) infs0ai(s) >0, & > 1, mm m; > Zm, + max Z L where a =supo;(t) <1,

1<i<2n 1<i<2n - O'l >0
2% — 1, i=1.2,....n,

n; = 0 -
2a,—d) —ncp L' —nd L5,  i=n+1,n+2,...,2n,

{0, i=1,2,...,n,

a) + ¢ L7, i=n+1,n+2,...,2n,

1, i=1,2,...,n,
M;=4 _
d;. L8, i=n+1l,n+2,...,2n.
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Then FODINNSs (2.1) is globally asymptotically stable.

Proof. Let (x, )" = (x1,..., %0 V1,...,y0)" and (£, )T = (X1,...,%nV1,..., V)] be two solutions of
Eq (23) Let u, = X; — )~Cl’, Vi=Yi— 571' and z = (Zl, cee ,Zzn)T, where i = I/t?, In+i = Viz, i= 1, 2, coesn
From the first equation of Eq (2.3), it obtains

Diui(t) = —Elx(t) — ()] + i) — 5.0,
which yields from Lemma 4.1 that

Dyuf (1) < 2ui(0) Digui(r) = =2&3(1) + 2ui(1)vi(0)

=261 (1) + |uF (0) + V}(0)]
—2& - Du () +vi@t), t>0,i=1,2,...,n, 4.8)

IA I

which deduces

CDgiZi(I) — Cl)gulz(t) < —myzi(t) + z,4i(F)

—m;zi(1) + Zpti(t — O pti(2))

2n 2n
—mizit) + g ) zi() + M; ) 2yt = (1), (4.9)
i=1 j=1

IA

wheret >0,i=1,2,...,n
It gets from the second equation of Eq (2.3) that

DEPvi(t) = —aiDlyi(0) - Fi(0)]
+[&iai (1) = biO][xi(1) — Xi(D] + Z cij(0) [fj(xj(z)) - fj()zj(;))]

J=1

+ > dij(0) 2500 = Ti(0) — gj(Fi(t = 7,0)],

J=1

which derives from Lemma 4.1 that

DyPVi(E) < 200D Pvi(h)
= —zai(f)vi () + 2[&ai(t) — bi()]vi(t)u(1)

F2i(0) D i) | £ = £%0)]
j=1

F20it) Y dif(0)[2;0x,t = T(0) = g,(Fi(t = 7,(0))]
j=1

IA

=2a(tV}(0) + 2[&iai(t) = O (E)vi(o)
# " 28 LuyOIviOl + ) 2di Lyt = 7 )lIvi(0)]

J=1 J=1
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< =2ai(0)v; (1) + 21&ai(t) = biO)] lui(O)vi(2)]
#2860 OOl + 2di L8 Y it = T (O)Ivi(2)]
j=1 j=1
< =2a,(tWvi(t) + allu; () + vi(1)]
el Y [0 + V0| + dult Y [ = 7)) + 0]
j=1 j=1
= - [Zai(t) - a? —né, LS — mf,-*Lg] viz(t)
+a U} (1) + Eul! ) w0 + dlf Y k(e —T(1)
=1 =
< - [ZQI. — sup a? —nén L - nJi*Lg] vf(t)
>0
wsupal D () + Eul! Y B0 + dilf )t - (1), (4.10)
>0 =1 j=1 j=1

wheret > 0,i=1,2,...,n. By (4.4), it acquires

D™ iz,4i(1) = D F(0)

< =My iZpgi(1) + [SUP a? + Ei*Lf] Z M?(f) + M,y M?(f - 7,(0)
>0 j=1 Jj=
= —My4iZn+i(t) + [Sup Cl? + Ei*Lf] Z Zj(t) + M, Z Zj(t - O_j(t))
=0 . .
= J=1 J=1
2n 2n
< iz (t) + s D 20+ My ) 25t = (1), (4.11)
Jj=1 =1

wheret > 0,7 =1,2,...,n. Summarizing (4.9) and (4.5) leads to

2n 2n
Dyizlt) < —mizi(®) + iy ) 20+ My ) 2t =00, t>0,i=1,2,....2n.  (4.12)

J=1 J=1

Next, considering the following equations:

2n 2n
Dy'qi(t) = —migi(t) + i ) qi(t) + Mi Y qi(t = i(1), 1> 0,
i=1 j=1

qi(s) =z(s) =20, se[-71,0l,i=1,2,...,2n.

(4.13)

If (1) is the inverse function of ¢ — o ;(¢), then u;(t — o ;(t)) = t, j = 1,2,...,2n. Set Q;(s) > 01is
the Laplace transform of ¢;(t) > 0,i = 1,2, ..., 2n. Referring to Eq (4.13) and Lemma 4.2, it acquires

2n 2n

$"Qi(s) = s"7'20) = —miQi(s) + iy Y Q) + M; ) fo e7q;(t - o (1) d

i=1 j=1
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5[u+0'j(f‘j(’4))]

= —m; <s>+m,ZQ(s>+MZf(O)I_U(ﬂ())q,(u)du
aj JNT

I/\

—m; Q;(s) + m; Z 0i(s) + Z 7 f e "vi(u)du (s > 0)
Y J-0;0)

—miQi(s) + i Z Qi(s)
i=1

2n

+Z 1 — [QJ(S) + IO e (1) dt] (s > 0).

;(0)

2n
Let O = Z Q;, @ = max{B, o — B} and @ = min{B, @ — S}. It gains
i=1
2n

. M;
[+ g = 37 25,2 T g7 00
s ‘meZZl f epindt, s € (0,1),
- i J-0;0)

i=1 j=1

thus
2n
< 5.
50(3) < |+ min mi~ 2 m e ]
2n  2n 0
€Y i(0) + f e i1 dt], s€(0,1).
[ Z Z Z 1= 1(0) !
By Lemma 4.2, it derives lim ¢;(¢) < 11r(1)1 sO(s)=0,i=1,2,...,2n. It indicates from Lemma 4.3
t—+o00 s—0*
that lim |z;(#)] < lim g;(t) = 0, which gains the global asymptotical stability of FODINNs (2.1). The
t—+00 t—+00
proof is end. o

From Theorem 3.1 and Theorem 4.1, it deduces

Theorem 4.2. Suppose that (H,)—(H,) are fulfilled, then FODINNs (2.1) exists a unique
S -asymptotical w-periodic oscillation, which is globally asymptotically stable.

Remark 4.1. Apparently, the time-varying lags have no influence on §-asymptotical w-periodic
oscillation for FODINNS (2.1), but can affect the global asymptotical stability for FODINNSs (2.1).

Remark 4.2. In recent years, numerous articles were devoted to the studies of stability and
periodicity of integer-order inertial neural networks [8, 12, 14, 16,43—-47], and few papers studied
asymptotical stability [26,27], Mittag-Leffler stability [28,29] and periodicity [39,40] of FODINNSs.
To the best of our knowledge, up to now, only [32-34] studied global synchronization of FOINNS
and other dynamics (e.g., asymptotical stability) of FODINNs have not been considered in the past
years. Therefore, the works of this section fill this gap and lay the groundwork for future development
in studying other dynamics of FOINNS.
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Remark 4.3. If o; = « and oi(t) =00 = 1 2,. 2n) then inequality (4.12) is turned into ‘DyZ(7) <
—kZ(t), where Z(t) = Zz,(t) k=m- Zm, ZM,, m = lrgirzlnm,, t > 0. Therefore, Z(t) <

Z(OE,(=kt*), t > 0. If k > 0, then FODINNs 2.1)1 1s global Mittag-Leftler stability.

Remark 4.4. Based on Lemma 4.1, the global asymptotical stability of FODINNs (2.1) is gained.
Assume that @ > 1, it is worth to study that whether the stability of FODINNSs (2.1) holds, this is an
interesting topic and deserves to further research.

Remark 4.5. In this section, the global asymptotical stability for FODINNs (2.1) is investigated, [12]
researched the Mittag-Leffler stability for fractional-order inertial neural networks with time-delays.
Moreover, the fractional order in [12] is even number, comparatively speaking, the results of this
article are more general.

5. Numerical examples

Example 5.1. Considering FODINNSs with periodic coefficients as follows:

Diyxi(t) = —ai(t)”Dﬁxi(t) = bi(D)x; (1) + Z cij(D) fi(x;(0)
=1

+ Z dij(Dg(x,(t = T0) + L(1) — &DAxi(), 1> 0, (5.1)

where a = 1.8, 8 = 0.8, a;(1) = 3+0.005 sinz, b;() = 13+0.02 cos t, 7;(r) = 1+0.01 sin ¢, [;(t) = 1+cost,

0.0Sx?
& =4, fix)) =gi(x)) = Txi

cii(t) c12(p) _ 0.5+0.5sinr 0.5+0.5sint _ di (1) dix(@) = d,(f)
() cn@) ] | 05+05cost 05+0.5cost |\ do(t) dan(t) | 7Y

cij(t) = (
i, j = 1,2. Obviously, L = L = 0.1,

&idi; + ZaﬁLf + ZJ,-,-Lﬁ = 4%3.005+0.1x4=1242<1298=b, i=1,.2.

Thus, conditions (H;)—(H3) are validated. By Theorem 3.1, the existence and uniqueness of § -
asymptotical 2r-periodic oscillation for system (5.1) are obtained, see Figures 1 and 2.
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X, (1)

X, (1)

0.12

0.1

0.08

0.06

0.04 |

0.02

-0.02

0.12

0.1

0.08

0.06 |-

0.04

0.02 -

-0.02

1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
t

Figure 1. State variable x; of Eq (5.1).

1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
t

Figure 2. State variable x, of Eq (5.1).

2
M.
Besides, m; = 476172, /; = 1.12828, M; = 1, &} = 0.01, ) —— =2.0202,i = 1,2, ie,,
—i 1 -0

J
condition (Hy) in Theorem 4.1 holds. By Theorem 4.1, system (5.1) is globally asymptotically stable,

see Figures 3 and 4.
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0.2 T T T T T T T T

0.1

O¢

0.1

X, (1)

-0.2

-0.3

0.4 1 1 1 1 1 1 1 1

Figure 4. Stability of state variable x, of Eq (5.1).

Example 5.2. Considering the following FODINNs with asymptotic periods:

Dyxi(t) = —ai(t)CDgxi(t) = bi(D)x; (1) + Z cij(D) fi(x;(0)
=1

+ ) dij(Dg;xi(t = Ti(0) + L(0) - EDxt), >0,
j=1

10

(5.2)

t
where @ = 1.8, 8 = 0.8, a;(t) = m(3 +0.005sin?), bi(r) = 13 + 0.02cost, 7;(t) = 1 + 0.01 sint,
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¢ 0.0Sx?

Ii(t) = 1_+t(1 + COS l’), é:i = 4, f](x]) = g](x]) = Tx?,
P CHORCEON * (0.5+0.5sins 0.5+ 0.5sint
Y () can(t) 1+2\0.5+05cost0.5+0.5cost

_ (dll(t) di (1)

o (1) dzz(t)):dif(l)’ ij=1,2.

It is easy to get that

g+ ) eyl + ) dyLf=4x3.005+0.1x4=1242<1298=b, i=1.2
j=1 =1

Therefore, (H,)—(H3) in Theorem 3.1 are fulfilled. By Theorem 3.1, system (5.2) owns a unique
S -asymptotical periodic oscillation, see Figures 5 and 6.

0.12

0.08

0.06

0

0.04

0.02

I I I I I I
40 50 60 70 80 90 100

t

Figure 5. State variable x; of Eq (5.2).
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0.1 4

=

0.06 -

X, (1)

0.04 -

WUV

.0.02 1 1 1 1 1 1 1 1 1 J
0 10 20 30 40 50 60 70 80 90 100

t

Figure 6. State variable x, of Eq (5.2).

2
M.
On the other hand, m; = 4.76172, /i; = 1.12828, M; = 1, o"j*. = 0.01, Z ! — =2.0202,i= 1,2,

1-0
=1 i
which implies that condition (Hy) in Theorem 4.1 holds. Therefore, by Theorem 4.1, system (5.1) is

globally asymptotically stable, see Figures 7 and 8.

0.4

0.3

0.2 g

0.1

X,

-0.1¢

02 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Figure 7. Stability of state variable x; of Eq (5.2).
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X, (1)

-0.05

-0.15

Figure 8. Stability of state variable x, of Eq (5.2).

6. Conclusions and future works

This paper research a class of Caputo fractional-order inertial neural networks with time variable
delays and some interesting results for FODINNSs are achieved as follows. By the features of Mittag-
Leffler functions and contraction mapping theorem, the existence and uniqueness of S -asymptotically
w-periodic oscillation for FODINNs (2.1) have been discussed. Based on the comparison theorem
and stability criteria of delayed fractional-order differential equations, global asymptotical stability of
S -asymptotically w-periodic oscillation for FODINNS (2.1) has been addressed.

In the future, there are several issues that deserve further consideration, which are listed as follows:

(1) It is essential to focus on whether the paper’s work can be extended to the models with other
fractional orders, e.g., @ >2and 1 < < 2.

(2) The methods in this paper can be used to study other FODINNS, e.g., BAM FODINNSs, memristive
FODINNs, CohenGrossberg FODINN:S, etc.

(3) Other dynamics of FODINNs are also need to be considered, e.g., almost periodicity and
synchronization, etc.

(4) Other neural networks can be considered by using the method in this paper, e.g., fractional-order
quaternion-valued neural networks [50,51], fractional-order multi-dimension-valued fuzzy neural
networks [52], fractional-order multi-dimension-valued BAM neural networks [53], fractional-
order multi-dimension-valued memristive neural networks [54].
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