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1. Introduction

The definition of a monoidal category first appeared in 1963 in the work of MacLane [8], and later
in his classic book [9] (first published in 1971). The notion of a Hopf algebra first appeared in topology
(more specifically, in the work [5] of Hopf in 1941, as an algebraic construction capturing the structure
of cohomology rings of H-spaces, in particular, Lie groups). Around that time, it was realized that Hopf
algebras could be viewed as algebraic structures arising from tensor categories with a fiber functor, i.e.,
a tensor functor to the category of vector spaces, through the so-called reconstruction theory (which
takes its origins in [4, 19]). Since then, the theory of Hopf algebras has gradually became a part of the
theory of tensor categories, and the theory of categories has been used in proving some of the more
recent results on Hopf algebras (such as the classification of semisimple Hopf algebras of prime power
dimension and the classification of triangle Hopf algebras). Linear algebraic groups have been studied
by a number of well known mathematicians [2, 6] for details. Very special classes of linear algebraic
semigroups were studied in detail in [3, 14, 15]. A general study of linear algebraic semigroups was
begun by Mohan. S. Putcha in the papers [16, 17]. As known, the category of affine algebraic groups
is anti-equivalent to the category of finitely generated commutative reduced Hopf algebras [1]. The
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weak Hopf algebra proposed by Fang Li is an extension of Hopf algebras. So, we can define the
so-called affine algebraic regular monoid such that the category of affine algebraic regular monoids is
anti-equivalent to the category of finitely generated commutative reduced weak Hopf algebras. This is
the main work of this paper.

2. Preliminary

Throughout this paper, R,Z+ will denote the sets of all reals and positive integers, respectively.
As preparation, we introduce several concepts that related to a semigroup S . For an element x ∈ S ,

we call x regular if there exists some x∗ ∈ S satisfying

xx∗x = x, x∗xx∗ = x∗,

x∗ is called the regular inverse of x. We denote

V(x) = {x∗ ∈ S | xx∗x = x, x∗xx∗ = x∗},

the set of all regular inverse elements of x and

E(S ) = {x ∈ S | x2 = x},

the set of all idempotents of S . If all the elements of S are regular, we call S a regular semigroup.
If V(S ) has only one element for any x ∈ S , S is called an inverse semigroup; in this instance, we
usually denote x−1 = x∗. A bialgebra H over k is called a weak Hopf algebra [10] if there exists
T ∈ Homk(H,H) (the convolution algebra) satisfying

id ∗ T ∗ id = id, T ∗ id ∗ T = T,

where T is called a weak antipode of H.
The same name weak Hopf algebra was also used as another kind of generalization of Hopf algebra

in [7, 12, 13] which comultiplication is no longer required to preserve the unit equivalently, the counit
is not required to be an algebra homomorphism. We must point out that these two kinds of weak
Hopf algebra are completely different generalizations of each other in various directions, since the
only common subclass just consists of Hopf algebras see [11]. The initial motivation of the latter was
its connection with the theory of algebra extension.

k will denote a fixed algebraically closed field, k∗ = k \ {0}. If n ∈ Z+, then kn = k × k × · · · × k
is the affine n-space, Mn(k) the multiplicative monoid of all n × n matrices over k and GL(n, k) its
group units. If X ⊂ kn, the X is closed if it is the set of zeroes of a system of polynomials on kn. If
X ⊂ kn, the X̄ denotes the closure of X. By an algebraic semigroup we mean a closed subset of kn

along with an associative operation which is also a polynomial map. By a homomorphism between
algebraic semigroups, we mean a semigroup homomorphism which is also a morphism of varieties (a
polynomial map). By a connected semigroup we mean an algebraic semigroup such that the underlying
closed set is irreducible (i.e. is not a union of two proper closed subsets).
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3. Affine algebraic semigroup

Firstly, comparing with the concept of affine algebraic group, we will introduce the concept of affine
algebraic semigroup.

Definition 2.1. [1] If A is a commutative k-algebra, the set XA = Mk(A, k) of all k-algebra
morphisms from A to k is called an affine k-variety.

In particular, when A is a finitely generated k-algebra, we say that XA is an affine algebraic k-variety.
Definition 2.2. [1] Let A, B be commutative k-algebras, and let µ : A→ B be a k-algebra morphism.

Then the map
aµ : XB → XA,

aµ(x) = x ◦ µ, x ∈ XB

is called a morphism of affine k-varieties.
Definition 2.3. [1] If A is a commutative k-algebra,

nilA = { f ∈ A : there exists a natural number n for which f n = 0}.

If nilA = {0}, A is called reduced.
Let A, B be commutative k-algebras, Vk denotes the category of affine k-varieties, and the set of all

morphisms from an affine k-variety XB to XA is written by Vk(XB, XA). So, we can get the following
result.

Proposition 2.4. [1] Let A be a commutative k-algebra, the morphism from the affine k-variety
XA to the affine line k is called a function on XA, the set of all functions on XA is written by Vk(XA, k).
When A is reduced, then Vk(Xk, A) � A. The two correspondences defined by

A 7→ XA = Mk(A, k), XA 7→ Vk(XA, k)

which give an anti-equivalence between the category of finitely generated commutative reduced k-
algebras and the category of affine algebraic k-varieties.

Theorem 2.1. [1] If A, B are commutative k-algebras, we get

Mk(A, k) × Mk(B, k) � Mk(A ⊗ B, k).

Therefore, the product XA × XB of XA and XB is taken as sets which admits a structure of an affine
k-variety, and is called the product of XA and XB. If A and B are affine k-algebras, A ⊗k B is also an
affine k-algebra.

Definition 2.5. [1] A finitely generated commutative reduced k-algebra is called an affine k-
algebra.

Definition 2.6. [1] Given an affine k-variety G = Mk(H, k) with H is an affine k-algebra, G admits
a group structure, if the two maps

m : G ×G → G, (x, y) 7→ xy,

s : G → G, x 7→ x−1, where xx−1 = x−1x = e

are morphisms of affine k-varieties, then we call G an affine k-group.
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In particular, when G is an affine algebraic k-variety, G is called an affine algebraic k-group. The
map m, s and the embedding e → G of the identity elements e into G, correspond to the k-algebra
morphisms

∆ : H → H ⊗ H, S : H → H, ε : H → k.

In this situation, to say that the multiplication map m : G × G → G satisfies the group axioms is
equivalent to say that ∆ and ε satisfy the axioms of k-coalgebras and that S is the antipode, in which
case, H turns out to be a k-Hopf algebra. Therefore an affine k-group is precisely G = Mk(H, k), where
H is commutative reduced k-Hopf algebra, and G is regarded as a group where the multiplication is
given via the convolution defined by

(x ∗ y)( f ) = Σ( f )x( f(1))y( f(2)), f ∈ H, x, y ∈ G.

In other words, G is the group G(H◦) of all group-like elements of the dual k-Hopf algebra H◦ of H,
where

H◦ = { f ∈ H∗| f (I) = 0, for some ideal I of A such that dimA/I < ∞}.

Then the two correspondences
H 7→ Mk(H, k), G 7→ Vk(G, k)

give an anti-equivalence between the category of affine algebraic k-groups and the category of finitely
generated commutative reduced k-Hopf algebras.

Definition 2.7. [1] A k-Hopf algebra whose underlying k-algebra is an affine k-algebra is called an
affine k-Hopf algebra.

Definition 2.8. A weak k-Hopf algebra whose underlying k-algebra is an affine k-algebra is called
an affine weak k-Hopf algebra.

It is known that for every regular monoid S , its semigroup algebra kS over k is a weak Hopf algebra
as generalization of a group algebra. On the other hand, the set of all group-like elements of a weak
Hopf algebra is a regular monoid. So, we can give the definition of affine algebra k-regular monoid.

Definition 2.9. Given an affine k-algebra H, the affine k-variety S = Mk(H, k) admits a regular
monoid structure, if the two maps

m : S × S → S , (x, y) 7→ xy,

t : S → S , x 7→ x∗, where x∗ is a fixed element in Vx

are morphisms of affine k-varieties, then we call S an affine k-regular monoid.
Then, as the result of k-Hopf algebra H and affine k-group G = Mk(H, k), we can ge the main result

of this paper:
Theorem 2.2. (Main result) Let k be an algebraically closed field, H be a commutative weak

k-Hopf algebra, the two correspondences

H 7→ Mk(H, k), S 7→ Vk(S , k)

give an anti-equivalence between the category of affine algebraic k-regular monoids and the category
of finitely generated commutative reduced weak k-Hopf algebras.
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4. The proof of main result

Theorem 3.1. [10] Let H = (H,m, µ,∆, ε,T ) be a weak k-Hopf algebra, for any a, b ∈ H,T (ab) =
T (b)T (a), then H◦ = (H◦,∆∗, ε∗,m∗, µ∗,T ∗) is also a weak k-Hopf algebra, where T ∗ is weak Hopf
antipode of H◦.

Proposition 3.1. Let H be a weak k-Hopf algebra, A be a commutative k-algebra, then the set
Alg(H, A) of algebra morphisms from H to A is a regular sub-monoid of Hom(H, A).

Proof. Obviously, µAεH is an algebraic morphism form H to A, and it is the identity of Alg(H, A).
Let f , g ∈ Alg(H, A), T be the weak antipode, for any x, y ∈ H,

( f ∗ g)(xy) =
∑
(xy)

f ((xy)(1))g((xy)(2)) =
∑

(x),(y)

f (x(1)) f (y(1))g(x(2))g(y(2))

=
∑

(x),(y)

f (x(1))g(x(2)) f (y(1))g(y(2)) = ( f ∗ g)(x)( f ∗ g)(y)

( f ∗ f ◦ T ∗ f )(x) =
∑
(x)

f (x(11)) f (T (x(12))) f (x(2))

= f (
∑
(x)

x(11)T (x(12))x(2)) = f (x)

So, f ∗ f ◦ T ∗ f = f , similarly f ◦ T ∗ f ∗ f ◦ T = f ◦ T . Hence, Alg(H, A) is a regular sub-monoid of
Hom(H, A).

Definition 3.2. [10] Let H be a weak Hopf algebra, I is an ideal of H.
(1) ∆(I) ⊆ H ⊗ I + I ⊗ H;
(2) ε(I) = 0;
(3) T (I) ⊆ I.
Then, I is called a biideal of H if it satisfies (1) and (2). I is called a weak Hopf ideal of H if it

satisfies (1)–(3).
Beishang Ren [18] had discussed some properties of quotient Hopf algebra and the Hopf algebra

homomorphism by the basic methods of Hopf algebras. Similarly, the following theorem from
Theorem 3.2 to Theorem 3.4 will discuss the relative properties about quotient weak Hopf algebra and
weak Hopf algebra homomorphism.

Theorem 3.2. Let K,H,N be weak Hopf algebras, f : K → H, g : K → N are weak Hopf algebra
morphisms. If g is epimorphism, and ker(g) ⊆ ker( f ), then there exists a unique weak Hopf algebra
morphism h : N → H such that hg = f .

Proof. At first, there is a unique k-linear map h : N → H, such that hg = f . Since g is epimorphism,
for any n1, n2 ∈ N, there exist k1, k2 ∈ K such that n1 = g(k1), n2 = g(k2), hence

h(n1n2) = h(g(k1)g(k2)) = h(g(k1k2))
= f (k1k2) = f (k1) f (k2) = hg(k1)hg(k2).

So, h is an algebra morphism.
On the other hand,

∆H(hg) = ∆H f = ( f ⊗ f )∆K = (hg ⊗ hg)∆K

= (h ⊗ h)(g ⊗ g)∆K = (h ⊗ h)∆Ng.
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Since g is epimorphism, there is ∆Hh = (h ⊗ h)∆N .
Moreover, εH(hg) = εH f = εK = εNg, so εHh = εN . Hence, h is a coalgebra morphism.
At last,

TH(hg) = TH f = f TK = hgTK = hTNg,

that is THh = hTN .
Hence, h is a weak Hopf algebra morphism, and it is unique by the uniqueness of the linear map.
Theorem 3.3. Let K,H,N be weak Hopf algebras, f : K → H, h : N → H are weak Hopf algebra

morphisms. If h is monomorphism, and Im( f ) ⊆ Im(h), then there exists a unique weak Hopf algebra
morphism g : K → N such that hg = f .

Proof. At first, there is a unique k-linear map g : K → N, such that hg = f . Since f , h are algebra
morphisms, so, for any k1, k2 ∈ K,

h(g(k1k2)) = f (k1k2) = f (k1) f (k2) = hg(k1)hg(k2) = h(g(k1)g(k2)).

Since h is monomorphism, g(k1k2) = g(k1)g(k2), so h is an algebra morphism.
On the other hand,

(h ⊗ h)∆Ng = ∆Hhg = ∆H f = ( f ⊗ f )∆K = (h ⊗ h)(g ⊗ g)∆K .

Since h is monomorphism, there is ∆Ng = (g ⊗ g)∆K .
Moreover, εNg = εHhg = εH f = εK , so εNg = εK . Hence, g is a coalgebra morphism.
At last,

hgTK = f TK = TH f = THhg = hTNg,

that is gTK = TNg.
Hence, g is a weak Hopf algebra morphism, and it is unique by the uniqueness of the linear map.
Theorem 3.4. Let H, L be weak Hopf algebras, φ : H → L is weak Hopf algebra morphism, I is a

weak Hopf ideal of H and π : H → H/I is a regular morphism, then
(1) Kerφ = {x ∈ H : φ(x) = 0} is a weak Hopf ideal of H.
(2) H/I has unique weak Hopf algebra structure such that π is a weak Hopf algebra morphism.
(3) For any weak Hopf ideal I which satisfies I ⊆ Kerφ, there is unique weak Hopf algebra

morphism φ̄ : H/I → L such that φ̄ ◦ π = φ.
Proof. (1) Kerφ = {x ∈ H : φ(x) = 0}. For any x ∈ Kerφ, φ(x) = 0, then (φ⊗φ)∆H(x) = ∆Lφ(x) = 0.

So,
∆H(x) ∈ Ker(φ ⊗ φ) = Kerφ ⊗ H + H ⊗ Kerφ,

hence, ∆H(Kerφ) ⊆ Kerφ ⊗ H + H ⊗ Kerφ.
On the other hand, εH(x) = εLφ(x) = 0, φTH(x) = TLφ(x) = 0, so, TH(x) ∈ Kerφ, that is TH(Kerφ) ⊆

Kerφ. In conclusion, Kerφ is a weak Hopf ideal of H.
(2) We can suppose H = (H,m, µ,∆, ε,T ), let H/I = (H/I,m′, µ′,∆′, ε′,T ′). For any x, y ∈ H, we

define
m′((x + I)(y + I)) = xy + I, µ′(1) = µ(1) + I,

∆′(x + I) =
∑
(x)

(x(1) + I) ⊗ (x(2) + I), ε′(x + I) = ε(x) + I, T ′(x + I) = T (x) + I.
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So, it can prove that H/I = (H/I,m′, µ′,∆′, ε′,T ′) has a weak Hopf algebra structure such that π is a
weak Hopf algebra morphism.

Suppose H/I has another weak Hopf algebra structure H/I = (H/I,m1, µ1,∆1, ε1,T1) such that π is
a weak Hopf algebra morphism. Then

m1((x + I)(y + I)) = m(π(x)π(y)) = mπ(xy) = ab + I;

µ1(1) = (π ◦ µ)(1) = µ(1) + I;

∆1(x + I) = ∆1π(x) = (π ⊗ π)∆(x) =
∑
(x)

(x(1) + I) ⊗ (x(2) + I);

ε1(x + I) = ε1π(x) = ε(x);

T1(x + I) = T1π(x) = πT (x) = T (x) + I.

Hence, m′ = m1, µ
′ = µ1,∆

′ = ∆1, ε
′ = ε1,T ′ = T1, H/I has the unique weak Hopf algebra structure

such that π is a weak Hopf algebra morphism.
(3) Since π is epimorphism, and Kerπ = I ⊆ Kerφ, then we can prove the conclusion by the result

of Theorem 3.2.
Theorem 3.5. (1) Let A, B be weak Hopf algebras, and the weak antipodes TA, TB of A and B are

anti-algebra morphisms respectively. φ : A → B is a weak Hopf algebra morphism over the field k,
then φ◦ : B◦ → A◦ is also a weak Hopf algebra morphism.

(2) Let C be the category of the weak Hopf algebras which weak antipodes are anti-algebra
morphisms, then, the anti-function from C to itself

ϕ :C → C
A 7→ A◦

is adjoint, that is to say that for any A, B ∈ C, there is a natural isomorphism:

θ : HomweakHop f (A, B◦)→ HomweakHop f (B, A◦).

Proof. (1) At first, φ◦ is a bialgebra morphism on k. And, φTA = TBφ, so T ∗Aφ
◦ = φ◦T ∗B, that is

TA◦φ
◦ = φ◦TB◦ . Hence, φ◦ : B◦ → A◦ is a weak Hopf algebra morphism.

(2) Let φ : A → B be a weak Hopf algebra morphism, then φ◦ : B◦ → A◦ is a weak Hopf algebra
morphism from the result of (1). Base on the inclusion relation B◦ ⊂ B∗, we can deduce a k-algebra
morphism (B∗)◦ → (B◦)◦. On the other hand, B ⊂ (B∗)◦, so there is a coalgebra morphism

ξB :B→ (B◦)◦

b 7→ ξB(b) : f 7→ f (b),∀b ∈ B, f ∈ B◦.

Since the identity of (B◦)◦ is ε(B◦), then for any morphism f ∈ B◦, f 7→ f (1), this morphism is ξB(1)
exactly.

For any a, b ∈ B, f ∈ B◦,

(ξB(a)ξB(b))( f ) = (ξB(a) ⊗ ξB(b))∆B◦( f ) = f mB(a ⊗ b) = f (ab) = ξB(ab)( f );

(T(B◦)◦ ◦ ξB)(b)( f ) = (ξB(b))TB◦( f ) = TB◦( f )(b) = f TB(b) = (ξBTB)(b)( f ).
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That is T(B◦)◦ ◦ ξB = ξBTB. Hence, ξB is a weak Hopf algebra morphism.
At last, let φ ∈ HomweakHop f (A, B◦), ψ ∈ HomweakHop f (B, A◦), define

θ :HomweakHop f (A, B◦)→ HomweakHop f (B, A◦)
φ 7→ φ◦ ◦ ξB;

Φ :HomweakHop f (B, A◦)→ HomweakHop f (A, B◦)
ψ 7→ ψ◦ ◦ ξA.

Obviously Φ(θ(φ)) = φ, θ(Φ(ψ)) = ψ, so θ is an isomorphism.
Let S be a monoid with identity element e, then kS is a weak Hopf algebra with ∆(x) = x ⊗ x,

ε(x) = e, T (x) = x∗, x∗ ∈ V(x). The dual k-linear space (kS )∗ of kS has (kS )∗ � Map(S , k), we denote
Mk(S ) = Map(S , k). The following action makes Mk(S ) a two-sided kS -module.

(x f y)(z) = f (yzx), f ∈ Mk(S ), x, y, z ∈ S .

For f ∈ Mk(S ), we denote the left kS -module, the right kS -module and the two-sided kS -module
generated by f respectively by kS f , k f S , and kS f S .

Theorem 3.6. [1] The k-linear map

π :Mk(S ) ⊗ Mk(S )→ Mk(S × S )
f ⊗ g 7→ π( f ⊗ g) : (x, y) 7→ f (x)g(y),∀x, y ∈ S , f , g ∈ Mk(S )

is injective; the k-algebra morphism

δ :Mk(S )→ Mk(S × S )
f 7→ δ( f ) : (x, y) 7→ f (xy),∀x, y ∈ S , f ∈ Mk(S )

has the following result:

δ( f ) ∈ π(Mk(S ) ⊗ Mk(S ))⇔ dim kS f < ∞.

Definition 3.3. [1] When f ∈ Mk(S ) satisfies the condition that dim kS f < ∞, f is said to be a
representative function on S . The set of all representative functions on S is denoted by Rk(S ). Rk(S ) is
a k-subalgebra of Mk(S ).

Now we have
Theorem 3.7. [1] δ(Rk(S )) ⊂ π(Rk(S ) ⊗ Rk(S )).
Thus, ∆ = π−1 ◦ δ : Rk(S ) → Rk(S ) ⊗ Rk(S ) is a k-algebra morphism that define a comultiplication

on Rk(S ). Moreover, by defining a k-algebra morphism ε : Rk(S ) → k by ε( f ) = f (e), (Rk(S ),∆, ε)
becomes a k-coalgebra, and the fact that ∆, ε are k-algebra morphisms implies that Rk(S ) is a k-
bialgebra. This is called the representative k-bialgebra of S .

Proposition 3.4. Let S be a regular monoid, and V(y)V(x) ⊆ V(xy) for any x, y ∈ S , then Rk(S )
becomes a commutative weak Hopf algebra.

Proof. Since S is a regualr monoid, we can define

T :Rk(S )→ Rk(S )
f 7→ T ( f ) : x 7→ f (x∗), where x∗ is a fixed elment in

V(x) which satisfies T ( f )(xy) = T ( f )(y)T ( f )(x).
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Then, we can prove T ( f ) ∈ Rk(S ) directly. Moreover,

(id ∗ T ∗ id)( f )(x) =
∑
( f )

[ f(11)T ( f12) f(2)](x) =
∑
( f )

f(11)(x) f(12)(x∗) f(2)(x) = f (x).

Hence, id ∗ T ∗ id = id. Similarly, T ∗ id ∗ T = T . At the same time, Rk(S ) ⊆ Mk(S ), so, Rk(S ) is a
weak Hopf algebra.

Remark. When S is an inverse monoid or commutative regular monoid, V(y)V(x) ⊆ V(xy) is
always right for any x, y ∈ S , then Rk(S ) will be a weak Hopf algebra from the above proposition.

Theorem 3.8. (1) Let H be an affine k-algebra, if S = Mk(H, k) is an affine algebra k-regular
monoid, then H has weak Hopf algebra structure.

(2) Let H be a weak Hopf algebra, and an affine k-algebra as algebra, then S = Mk(H, k) is an affine
algebra k-regular monoid.

Proof. (1) Let S = (Mk(H, k),w,m, t) be the affine k-regular monoid, then

m : Mk(H, k) × Mk(H, k)→ Mk(H, k),
t : Mk(H, k)→ Mk(H, k),
l : e→ Mk(H, k)

are affine algebraic k-variety morphisms. Then, there are k-algebra morphisms ∆ : H → H ⊗ H,
T : H → H, ε : H → k such that

m = ∆∗ ◦ λ, T = t∗, e = ε,

where λ : Mk(H, k) × Mk(H, k) → Mk(H ⊗ H) is an isomorphism, and λ(λ × id) = λ(id × λ). Then for
any f , g, h ∈ Mk(H, k)

m(m × id)( f , g, h)(a) = ∆∗λ(∆∗λ × id)( f , g, h)(a)
= λ(λ × id)( f , g, h)(∆ ⊗ id)∆(a)

Since m(m × id) = m(id × m), λ(λ × id) = λ(id × λ), and the arbitrariness of f , g, h, then ∆(∆ × id) =
∆(id × ∆).

Since m( f , e)(a) = f (a), hence for any f ∈ Mk(H, k),

∆∗λ( f , e)(a) = λ( f , e)(
∑
(a)

a(1) ⊗ a(2)) =
∑
(a)

f (a(1))ε(a(2)) = f (
∑
(a)

a(1)ε(a(2))) = f (a).

From the arbitrariness of f ,
∑

(a) a(1)ε(a(2)) = a. Similarly,
∑

(a) ε(a(1))a(2) = a.
Moreover, m(m × id)( f , t( f ), f )(a) = f (a), that is∑

(a)

f (a(11)) f (T (a12)) f (a(2)) = f (a),

hence,
∑

(a) a(11)T (a(12))a(2) = a, that is to say id ∗ T ∗ id = id. Similarly, T ∗ id ∗ T = T .
In conclusion, H is a weak Hopf algebra.
(2) Let H = (H, µ, η,∆, ε,T ) be a weak Hopf algebra,

λ : Mk(H, k) × Mk(H, k)→ Mk(H ⊗ H)
( f , g) 7→ λ( f , g), λ( f , g)(x ⊗ y) = f (x)g(y).
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Then, λ is an isomorphism.
Let

m = ∆∗ ◦ λ : Mk(H, k) × Mk(H, k)→ Mk(H ⊗ H, k)→ Mk(H, k)
t = T ∗ : Mk(H, k)→ Mk(H, k),
e = ε.

Then, for any f , g, h ∈ Mk(H, k), x ∈ H,

m(m × id)( f , g, h)(x) = ∆∗λ(∆∗λ × id)( f , g, h)(x)

=
∑
(x)

λ(λ × id)( f , g, h)(x(11) ⊗ x(12) ⊗ x(2))

=
∑
(x)

f (x(11))g(x(12))h(x(2)).

Similarly,
m(id × m)( f , g, h)(x) =

∑
(x)

f (x1)g(x(21))h(x(22)).

Since (∆ ⊗ id)∆ = (id ⊗ ∆)∆, so m(m × id) = m(id × m).

m(m × id)( f , t( f ), f )(x) = ∆∗λ(∆∗λ × id)( f , t( f ), f )(x)

=
∑
(x)

f (x(11))t( f )(x(12)) f (x(2)) =
∑
(x)

f (x(11)) f (T (x(12))) f (x(2))

= f (
∑
(x)

x(11)T (x(12))x(2)) = f (x).

So, m(m × id)( f , t( f ), f ) = f . Similarly, m(m × id)(t( f ), f , t( f )) = t( f ).
At last,

m( f , e)(x) =
∑
(x)

f (x(1))e(x(2)) =
∑
(x)

f (x(1))ε(x(2)) = f (x),

that is m( f , e) = f . Similarly, m(e, f ) = f . So, S = Mk(H, k) is a regular monoid. Moreover, H is an
affine k-algebra, then S = Mk(H, k) is an affine algebraic k-regular monoid.

Proof of Theorem 2.2. The theorem can get by the result of Proposition 2.4 and Theorem 3.8.
Example 3.1. Let H = k[T,T ′] be a weak Hopf algebra which satisfies TT ′T = T , T ′TT ′ = T ′,

and
∆(T ) = T ⊗ T, ∆(T ′) = T ′ ⊗ T ′, S (T ) = T ′, S (T ′) = T, ε(T ) = ε(T ′) = 1,

then Mk(H, k) is an affine algebraic k-regular monoid.
Theorem 3.9. (1) Let WHk be the category of weak Hopf algebras, MGr be the category of regular

monoids, for any H,H1,H2 ∈ Ob jWHk, g ∈ HomWHk(H1,H2), we can define

ψ : WHk → MGr ψ(g) : Mk(H2, k)→ Mk(H1, k)
H 7→ Mk(H, k) φ2 7→ φ2 ◦ g.

Then ψ is an anti-function.
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(2) Let IGr be the category of inverse mononids, for any G, G1, G2 ∈ Ob jIGr, f ∈ HomIGr (G1,G2),
φ2 ∈ Rk(G2), we can define

ϕ : IGr → WHk ϕ( f ) : Rk(G2)→ Rk(G1)
G 7→ Rk(G) φ2 7→ φ2 ◦ f .

Then, ϕ is an anti-function too.
Proof. (1) For any H1,H2,H3 ∈ Ob jWHk, g1 ∈ HomWHk(H1,H2), g2 ∈ HomWHk(H2,H3). Based

on the proof procedure of Theorem 3.8 (2), ψ(H1) ∈ MGr. Next, We will prove that ψ(g1) is a regular
monoid morphism. Given h ∈ H1, φ1, φ2 ∈ Mk(H1, k),

ϕ(g1)(φ2 ∗ φ1)(h) = (φ2 ∗ φ1)(g1(h)) =
∑

(g1(h))

φ2(g1(h)(1))φ1(g1(h)(2))

On the other hand,
[ψ(g1)(φ2) ∗ ψ(g1)(φ1)](h) =

∑
(h)

φ2(g1(h(1))φ1(g1(h(2)).

That is ψ(g1)(φ2) ∗ ψ(g1)(φ1) = ψ(g1)(φ2 ∗ φ1).
Moreover,

ψ(g1)(e2)(h) = e2(g1(h)) = ε2g1(h) = ε1(h) = e1(h),

that is ψ(g1)(e2) = e1. Hence, ψ(g1) is a regular monoid morphism.
Next, for any h ∈ H1,φ ∈ Mk(H1, k),

ψ(g1 ◦ g2)(φ)(h) = φ(g1 ◦ g2)(h),

(ψ(g2) ◦ ψ(g1))(φ)(h) = φ(
∑
(h)

g2(h(1))g1(h(2))) = φ(g1 ◦ g2)(h).

Hence, ψ(g1 ◦ g2) = ψ(g2) ◦ ψ(g1). Similarly, we can prove ψ(idH1) = idMk(H1,k).
In conclusion, ψ is an anti-function.
(2) Based on the remark of Proposition 3.4, ϕ(G1) ∈ Ob jWHk. Next, we will prove that ϕ( f ) is a

weak Hopf algebra morphism. For any a ∈ G1,

ϕ( f )(φ2 · φ
′
2)(a) = (φ2 · φ

′
2)( f (a)) = φ2( f (a))φ′2( f (a)),

and
(ϕ( f )(φ2) ∗ ϕ( f )(φ′2))(a) = [ϕ( f )(φ2)(a)][ϕ( f )(φ′2)(a)] = φ2( f (a))φ′2( f (a)).

That is
ϕ( f )(φ2 · φ

′
2) = ϕ( f )(φ2) ∗ ϕ( f )(φ′2).

Hence, ϕ( f ) is an algebra morphism.
For any a, a′ ∈ G1,

∆Rk(G1)ϕ( f )φ2(a ⊗ a′) = ϕ( f )φ2(aa′) = φ2 ◦ f (aa′),
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(ϕ( f ) ⊗ ϕ( f ))∆Rk(G2)φ2(a ⊗ a′) =
∑

(i)

(ϕ( f ) ⊗ ϕ( f ))(ri ⊗ si)(a ⊗ a′)

=
∑

(i)

ϕ( f )(ri)(a)ϕ( f )(si)(a′)

=
∑

(i)

ri( f (a))si( f (a′))

= φ2( f (a) f (a′)) = (φ2 ◦ f )(aa′),

where ∆Rk(G2)φ2 =
∑

(i) ri ⊗ si. So,

∆Rk(G1)ϕ( f )φ2 = (ϕ( f ) ⊗ ϕ( f ))∆Rk(G2)φ2.

Moreover,
(εRk(G1) ◦ ϕ( f ))(φ2) = ϕ( f )(φ2)(e1) = φ2( f (e1))

= φ2(e2) = εRk(G2)(φ2),

so, εRk(G1) ◦ ϕ( f ) = εRk(G2), that is ϕ( f ) is a co-algebra morphism.
At last,

ϕ( f )T2(φ2)(a) = T2(φ2)( f (a)) = φ2t2( f (a)),

T1ϕ( f )(φ2)(a) = T1(φ2 f )(a) = φ2 f (t1(a)) = φ2t2( f (a)).

Hence, ϕ( f )T2 = T1ϕ( f ).
In conclusion, ϕ( f ) is a weak Hopf algebra morphism.
On the other side, for any f1 ∈ HomIGr (G1,G2), f2 ∈ HomIGr (G2,G3), φ3 ∈ Rk(G3), φ1 ∈ Rk(G1), we

have
ϕ( f2 ◦ f1)(φ3)(a) = φ3 ◦ ( f2 ◦ f1)(a),

(ϕ( f1) ⊗ ϕ( f2))(φ3)(a) = ϕ( f1)(φ3 ◦ f2)(a) = (φ3 ◦ f2 ◦ f1)(a).

So, ϕ( f2 ◦ f1) = ϕ( f1) ◦ ϕ( f2). Moreover,

ϕ(idG1)(φ1)(a) = (φ1 ◦ idG1)(a) = φ1(a)
= idRk(G1)(φ1(a)),

that is ϕ(idG1) = idRk(G1).
In summary, ϕ is an anti-function.

5. Conclusions

First of all, we have defined the affine algebraic regular monoid comparing with the concept of affine
algebraic group and proved that the anti-function from the category C of weak Hopf algebras whose
weak antipodes are anti-algebra morphisms is adjoint at section 2. After that, we have characterized
the affine weak k-algebra H whose affine k-variety S = Mk(H,k) admits a regular monoid structure:
the category of affine algebraic regular monoids is anti-equivalent to the category of finitely generated
commutative reduced weak Hopf algebras at section 3.
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