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1. Introduction

As we all know, the time scale theory can unify discrete and continuous analysis, the study of
dynamic equations on time scales can unify the study of difference equations and differential equations
At present, time scale theory and its application have attracted more and more attention [1-3]. On
the other hand, fractional calculus is a generalization of integer calculus. In recent years, the theory
and application of fractional calculus has become a hot field [4-9]. The continuous fractional calculus
has been well developed [10-12]. However, the study of discrete fractional calculus [13—16] is more
complicated than its continuous counterpart. Therefore, the study of fractional dynamic equations
on time scales has important theoretical and practical value. The concept of fractional derivative of
Riemann-Liouville type on time scales was introduced by N. Benkhettou, A. Hammoudi and D. F. M.
Torres in [17]. What happened then was a craze for the studying of it, such as [18-23]. However, as
far as we know, there is almost no research on fractional boundary value problems of fractions on time
scales. Therefore, a substantive investigation of the subject seems promising.

Over-determined equations have always come in considerable problems from mathematical
physics [24-26]. When we discuss the solution of over-determined linear systems, the least squares
method is the most widely used [26-28].

Recently, the boundary value problem of second-order impulsive differential inclusion involving
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relativistic operator is studied in [29] by using non-smooth critical point theorem for locally Lipschitz
functionals. The authors of [30] investigate a class of two-point boundary value problems whose
highest-order term is a Caputo fractional derivative. The existence and multiplicity of positive solutions
for a nonlinear fractional differential equation boundary value problem is established in [31] by the
fixed-point index theory and the Leray-Schauder degree theory. In [32], a class of fuzzy differential
equations with variable boundary value conditions is studied by applying the upper and lower solutions
method and the monotone iterative technique. In [33], some existence results about first-order fuzzy
differential equation with two-point boundary value condition are obtained by the upper and lower
solutions method. In [34], some existence results about first-order fuzzy differential equation with two-
point boundary value condition are provided by using the contraction mapping principle in a complete
metric space. Boundary value problems on time scales are investigated in [35-39].

Through literature search, we found that over-determined boundary value problems on time scales
have not been studied yet, therefore, in this paper, we will study the following nonlinear system of over-
determined Fredholm fractional integro-differential equations on time scales with periodic boundary
condition(FBVP for short):

(
I DY (k1) 3 D ui(0) = nG, (1, i (1), . . ., un (1)) + &, Du(1)Ar,
[a.b)r
A—ae.tela,bly, i=1,N; (D)
u;(t) = &i(t, Du;(1)Ar, A—ae. t€la,b]lr, i=1,N;
[a.b)r
| ui(a) = ui(b) =0, i=1,N,
where 7 > Ois areal constant, 0 < @; < 1, k; € LY[a, blr, k; = ess i[nlf] ki(t) > 0and G : [a, b]r xRN —
tela,bT
R is a function that G(¢, uy, . . ., u,) is continuous with respect to ¢ and continuously differentiable with

respect to u;, i.e., G(,uy,...,uy) € C([a,blr) and G(¢,-,...,-) € C'RM), &(-,+) € C([a, by, [a,b]r)
and so the kernel &; is bounded by M;, G, denotes the partial A—derivative of G with respect to s, ?D;f
and TD are the right and the left Riemann—Liouville fractional derivative operators of order « defined
on T respectively.

When T = R, FBVPy (1.1) reduces to the following standard nonlinear system of over-determined
Fredholm fractional integro-differential equations

;

Dy (ki(1) oD ui®) = nG(t,wi (), ..., un@®) + [ &, Dui(7)d,
“ ae.t€la,b], i=1,N;
u(t) = &(t, Du(t)dT, ae.te€lab], i=1,N;
i@ = ui) = 0. i=TN.

which has been studied by E. Shivanian in [40].

2. Preliminaries

In this section, we briefly collect some notations, definitions, and some lemmas, propositions and
theorems, which play an important role in the proof of our main results.
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A time scale T is an arbitrary nonempty closed subset of the real set R with the topology and
ordering inherited from R. Throughout this paper, we denote by T a time scale. We will use the
following notations: J2 = [a,b[, Jg = [a,b], ] =2 NT,J = Ja NT, J* = [a,p(b)] N T.

Definition 2.1. [41] (Fractional integral on time scales) Suppose h is an integrable function on J. Let
0 < a < 1. The left fractional integral of order a of h is defined by

Trapen . [ E=0(s)!
TIh(t) := / @) oA

The right fractional integral of order a of h is defined by

b _ a1
Ty = [ T s,

t ['(@)
where T is the gamma function.

Definition 2.2. [41] (Riemann-Liouville fractional derivative on time scales) Lett € T, 0 < a < 1,
and h : T — R. The left Riemann-Liouville fractional derivative of order « of h is defined by

A A
"DYh(t) = (El}-ah(r)) 2 1 ( / (t—a(s)” "h(s)As) :

The right Riemann-Liouville fractional derivative of order a of h is defined by

A A
DYh(t) = —(?‘1,1—‘%0)) = - ( / (o(s) — 1) "h(s)As) )

Theorem 2.1. [19] Leta >0, p,q > 1, and % + é <1+ a, where p # 1 and q # 1 in the case when
11—7 + 511 = 1 + a. Moreover, if

Sy = {f f= Tl?g,geL"u)}
and
TI(LP) = {f f= le’g,gev’w},

then the following integration by parts formulas hold:

(a) If p € LP(J) and ¥ € L1(J), then

/ (1) (Eflf’w)(t)At: / W)(?Iz’so) (H)At.
Jo Jo

(b) If g € TIX(LP) and f € T17(LY), then

/ g(®) <ED§’f) (DAt = / f(® (?D§g> (DAL
Jo Jo
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Proposition 2.1. [42] Suppose p € Rand p > 1. Let p’ € R be such that
feLlJ% and g € L% (J°), then f - g € L\(J°) and

+ — = 1. Then, if

1, 1
p 7

1F - glly < D1z - gl

Definition 2.3. [43] Let O < a < 1 and let 1 < p < oo. By left Sobolev space of order a we will mean
the set Wl = Wil (J,RN) given by

Wit = {u € Ly; dg e Ly, Yo € C; such that/ u(t) - TDYp(t)At = / g(r) - go(t)At}.
Jo Jo
Remark 2.1. [43] A function g given in Definition 2.3 will be called the weak left fractional derivative
of order 0 < a < 1 of u; let us denote it by “u’..

Theorem 2.2. [43]If0 < @ < 1 and 1 < p < oo, then the weak left fractional derivative "ul, of a
function u € Wi, coincides with its left Riemann-Liouville fractional derivative "DuA—a.e.onl.

Theorem 2.3. [43] Let 0 < a < 1,1 < p < coand u € Ly. Then u € W7 iff there exists a function
g € LY such that

/Jo u(t)?DZgo(t)At = /JO gp(tAt, ¢e C;’f’rd.

In such a case there exists the left Riemann-Liouville derivative D of u and g = *Du.

Remark 2.2. [43] The function g will be called the weak left fractional derivative of u € WX;’; of
order a. From the above theorem it follows that it coincides with an appropriate Riemann-Liouville
derivative.

Let us fix 0 < @ < 1 and consider in the space Wy, a norm || - llwer, given by

T f
IIMII’V’VZ.p+ = llllyy + 1l DYy, € Wy
\a

Theorem 2.4. [43] The space WZ:; is complete with respect to each of the norms || ||WZ’”+ and || ||“’Wg’p+
forany0<a<1,1<p<co. ’ '

Theorem 2.5. [43] The space WX:Q is reflexive with respect to the norm || - ||W‘va+ forany 0 < a <1
and 1 < p < oo. ’

Theorem 2.6. [43] The space WZ:5+ is separable with respect to the norm || - ||WZ”’+ forany) <a <1
and 1 < p < oo, ’

Proposition 2.2. [43]LetO<a <land1 < p <oco. Forallue Wy7., ifl —a > % ora > 11;, then

a

T na .

lalleg < o e el @.1)
ifa>landl+l: 1, then
p P q
_1

bﬂ/ P T na

l|ullco < tlla Dy ullze . (2.2)
F'(@)((@ — g + 1)«
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Remark 2.3. [43] It follows from (2.1) and (2.2) that WX:f; is continuously immersed into C(J,R")
with the natural norm || - ||eo.

Proposition 2.3. [43]Let0 < a < land1 < p < co. Assume that a > % and the sequence {u;} C WZ:5+
converges weakly to u in W' Then, uy — u in C(J,RY), i.e., lu — uillo = 0, as k — co.

Remark 2.4. [43] It follows from Proposition 2.3 that WZ:i} is compactly immersed into C(J,RY) with
the natural norm || - ||eo.

Theorem 2.7. [44] Let E be a reflexive real Banach space and ® : E — R a sequentially weakly lower
semicontinuous, coercive and continuously Gateaux differentiable in which its Gateaux derivative has
a continuous inverse on E*. Furthermore, suppose that¥ : E — R be a sequentially weakly upper
semicontinuous and continuously Gateaux differentiable functional in which its Gateaux derivative is
compact, such that ®(0) = Y(0) = 0. Suppose also there exist r € R and uy € E with 0 < r < ®(uy),

satisfying
(H) sup W) < ros

D(uy)
ue®-1(]—co0,r])
| O r . _ . .
(Hy) Vnel, = ] Yo s l},(u)], the functional ® — n¥ is coercive.
ued™1(1-co,r])

Therefore, for each n € 1, the functional ® — nY¥Y admits at least three distinct critical points in E.

Note that if ;(-) € LY(J), K; = ess injf k;(t) > 0, an equivalent norm in W% is
te ,

1
el = ( / k(1) TDCu(t)P AL + / |u(t)|”At) , Yue Wy, i=T1,N. (2.3)
Jo Jo

It easily follows from «;(-) € LY(J), k; = ess in;f k;(t) > 0 and Proposition 2.2 that
te

P p—— ( / Ki<r>|ED?fu(t>|"Ar) " (2.4)
[(a; + D@7\

1

lulle < LA (/ Ki(r>|ED?'u(t>lpAt)p' 2.5)
F(@)((@ - Dg + D@y \Jn

The equality (2.3) and inequality (2.4) yield that the norm defined by (2.3) is equivalent to the
following norm

letllo, = ( / 0 K,-(z)|jfpgfu(;)|2m> , YueWyl i=T1,N, (2.6)
J

which is induced by the following inner product

2

U, V), = (/ k(1) ID?iu(Z) EDfiv(t)At) , Yu,ve szj, i
JO

I,N.
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In the following analysis, we will work with the norm given by (2.6). Now, let p = 2, define

E = H WK‘ equipped with the norm

N
WUz = > lwlly,, U= (ur,un,...,uy) € E, i = T,N. 2.7)

Definition 2.4. We call U = (uy,u,,...,uy) € E the weak solution of FBVPy (1.1) if the following
equation holds

iv: K,(t) IDYwi () IDYvi(H AL - Z / &, Du(t)vi(HATAL
i=1 7050

—17/ i Gt u (1), .., un(®))vi(t)At =0, YV =W,v,...,vy) €E. (2.8)
7

0 =1

3. Main result

In this section, we present and prove our main result as follows.

Theorem 3.1. Suppose that G : J x RY — R is a function such that G(-,uy,...,uy) € C(J),
G(t,-,...,") € C'(R") and G(1,0,...,0) = O for all t € J. Moreover, suppose that there are a positive
constant r and a function Z(t) = (z,(¢), ..., zy(2)) such that the following suppositions hold:

(So) @i €]5.1];
M (exiCai-1) |
(§1) M; < TedsCah
N ) N
(S2) Yollzilly, = 2r + 37 [h0 [0 &t Dz(D)z(DATAL
i=1 i=1
s G(tyi,e.., A
ffo (vl,vZf.jlv]/Iv))ewCr) 1At 2 J ,0G(.21(0),...2n (1) A1
(S 3) r <73 N ’
S kil fo fprm@zoaar
i= i=1
fo sup G(t,v1,....yN)At

J
(V1Y )ET(Cr)
(S4) liminf GEn=i) o 00 W
Vi:lvil>+o0 Z v;2

where

bza,
C —
15N {Fz(a DK (2a; — 1) — b2+l M, }

N
1
Y(Cr) = {F:(Vl,V2,...,VN)€RN:§Z lzg }’

b2(1/,+1M bZUQ
=1 . o=mino, A=max{-—— — \
v Rapca; — 1) 7~ imen? 1o { oT2(a; + D }
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Then FBVPr (1.1) has at least three distinct weak solutions in E, for those 1n's belong to the
following interval

N N
Szl - > / / &i(t, D)zi(D)zi()ATAL
i=1 i=1 JJoJ jo

2/ G(t,z1(0), ..., zy(t)) At / sup G, vi,...,vy)AL
JO J

O (v1,v2,...vW)EY(Cr)

r

I, = 3.1

Proof. Theorem 2.7 will be the powerful tool for us to prove Theorem 3.1. It follows from the fact that

WZ’HQ is a reflexive and separable Banach space and that £ = H wye a+ equipped with the norm ||u||g
l 1

is also a reflexive and separable Banach space. Next, for any given U = (u (), ..., uy(?)) € E, define
O, ¥ : E — R as follows:
1 & 1 <&
_ 2
) = 5 ; ez, = 5 ; /, 0 /, G U@ DATAL (3.2)
and
Y(U) = / G(t,ui(t),...,un(t))At. (3.3)
JO
The functionals ® and ¥ are well defined, Gateaux differentiable and for all V = (v{,v,...,vy) € E,

their Gateaux derivatives are given as

N N
W)V) =) / kit) 5 D ui(t) D (AL = / / E(t, Du(T)vi(ATAL (3.4)
i=1 /I i-1 IS0
and
¥'(U)V) = / G (t,ui (D), . . ., un(D)Vi(DAL, (3.5)
Jo

respectively. In fact, ®(U), Y(U) € E*, where E* is dual space of E. It is easy to see that the functional
@ is sequentially weakly lower semicontinuous and its Gateaux derivative admits a continuous inverse
on E*. Besides, in view of (3.2), |;(t, T)] < M; and by the definition of o, one gets

N
D) =5 Znun2 5 / / &t OO ATA
- YOS
1 N N1
—Znun ZMibnuinm / ()AL
i=1 i=1 7

[\.)

1 N N

EZnunm ZMibzuuini

> 2, - > Mb — il
24, = T@)Qai-Dik
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1 N b2a,-+1
=5 > luilly, | 1= Mib?
i=1

()2, — 1)ik;
o N
22> Ml
i=1

g
=—||U||E. 3.6
7 IUlle (3.6)
Because of o > 0 and (S1), so it follows from (3.6) that ||Ulllim ®(U) = +oo0. That is to say, @ is
E—+00
coercive.
Suppose that lim U,, — U in E, where U,,(t) = (t,1(?), . . ., u n(1)), then U, converges uniformly

m—+o0o

to U on J by Proposition 2.3. Therefore, we have

lim sup W(U,,) =lim sup / G(t, U (1), ..., Uy N(1)AL
JO

m—+o0o m—+00

S/ G(t,u (1), ..., un(t)At
Jo
=¥ (U), (3.7)

which yields that ¥ is sequentially weakly upper semicontinuous. In addition, taking G(¢,-,...,-) €
C'(RY) into account, one obtains

lim G(t, ty (D), ..., upn() = G(t,u(2), ..., un(t), VYte
m—+oo

Consequently, the Lebesgue control convergence theorem on time scales implies that ¥'(U,,) — ¥’ (U)
strongly, as a result, we conclude that ¥’ is strongly continuous on E. Hence, ¥ : E — E*is a
compact operator.

Assume Uy(t) = (0,...,0) and U,(r) = Z(¢), in consideration of (S,) , one derives that

N N
1 , 1
0<r< Zl el = 5 Z} /j 0 /J & (D (DATAL

N N
1 1
:EZHZiHii—EZ/ / &, Dui(Du () ATAL
i=1 i=1 VI

=¥Y(U)). (3.8)

It is obvious for us to deduce that ®(Uy(7)) = Y(Uy(¢)) = 0 by (3.2) and (3.3).

Now, we are in a position to demonstrate that ® and WV satisfy the conditions (H;) and (H,) of
Theorem 2.7.

In view of (3.2), |&(t, 7)| < M; and (2.5), we get

®7!(] = oo, r])
= {UecE: 0U)<r)

N N
= {U €E: %Z iz, = %Z/ / &t Du(T)u(ATAL < r}
i=1 i=1 JI0JI°
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which implies that

S
m

E:

|u,|| ——ZMbuunw / ui(t)AtSr}
|u||c,,——ZMb2||u|| }

C(a)rkRei=1) 5 1 201112
Sl = 5 Z Mb il < r

M = H[\Fﬂ:

| =

-0

i=1

(@)K Ra; — 1) — b** 1 M,
2 e il

=

i=1

N
D= Z |2, < r}
2¢ i=1
I
5 Z (1) < Cr,Vt € J}

i=1

p—

sup Y(UU)= sup / G(t,u (1), ..., un(t))At

Ued~1(]-o0,r]) Ue®~!(]-co,r]) J JO

< sup /G(t,vl(t),...,vN(t))At

FeY(Cr) J JO

= / sup G(t’ Vl(t)a cees VN(I))AI
J

0 FeY(Cr)

=¥ (U,

together with (S3), one can obtain

AIMS Mathematics

sup

Y(U) sup / G(t,uy(2),...,un(t)At

Ued1(]-o0,r]) _ Ued!(J-oo,r]) J IO

r r

sup /G(t, vi(D),...,vn(D)At
Feren /s

r

2/ G(t,z1(0), ..., zy(0)At
]0

<N

N
Sl -3 / / £t T2 DATAL
i=1 i=1 JJjoJ Jo
WZ(0)
0
W)
D(U)’

(3.9)

(3.10)

(3.11)
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sup Y(U)

Consequently, UWI”_‘;""‘” ggglz That is to say, (H;) of Theorem 2.7 is verified.

In addition, with an eye to (S4), there exist two real constants u and € such that

sup /G(t,vl(t),...,VN(t))At

ﬁ < Fex(Cr) J JO

(3.12)

g r

and
u N

G, v(1),...,vy(r) < Ao ; V> +e, YF=,va...,vn)€RY, 1€ (3.13)

Hence, for fixed U = (u(t), ..., uxn(t)) € E, one has

N

G(t, (1), ..., uy(D) < ﬁ}_ 2_1: Wl +e  Viel (3.14)

According to (3.2), (3.3), |£i(t, T)| < M, the expression of o, (2.4), (2.5), (3.1) and (3.12), one gets

QU) - n¥(U)

N N
1 1
= — ||u,~||§_ - = / / &i(t, T)Mi(T)Mi(Z)ATAZ—I]/ G(t,u1(0), ..., un(@)At
2 IZZI ! 2 l:zl Jo J jo Jo
N N
! 2 _ 1 M.D?||u;|? G A
5 D Mlly, = 5 D Mb il = 7 | G, un®)A
i=1 i=1
1 1 u N
2 2 2 2
= 2, =5 Ml - 5 — (O | At —neb
2;”“”“’ 22 ugi| zAa/,O<;'”()'> ne
N N N
- 1Z||ui||2 —1ZM,-b2||ui||2 = TS R, — b
24 24 ¥ 240 & TTh

\%

\%

b2cri+1 Mz 5 nu N 2a; 5
> — ; s, — illg, — b
> ,Z;” 12, - Zrz(almz%_l)u I -5 AU;FZ(ai+1)Ellu||’ ne
N
1 2 nu 2ai 2
= = 12— A2 — neb
o N N
2
> Eg” w2, ;nuinm—nsb
1 r N
> 5 |o- £ > il - neb
sup /G(t, vi(0),...,vn(t)AL | i=1
Fex(Cr) J JO
— +oo, as ||U|| = +oo. (3.15)
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In other words, the functional ® — ¥ is coercive and so, (H,) of Theorem 2.7 is also testified.

Since the weak solutions of FBVPy (1.1) are exactly the solutions of the equation ®'(U)—-n¥'(U) =
0, by Theorem 2.7, we conclude that for € I,, FBVPy (1.1) has at least three distinct points in E. The
proof is complete. O

4. Example

In order to illustrate our theoretical results, we give a example as follows.

Example 4.1. Let T = Z N = 3, a; = 075, a» = 0.8, a3 = 09, k(1) = 1 + 12, ko(t) = 0.5 + ¢,
k3(t) = 1+t &(t,1) = mt‘r, &t 1) = mm’, &(t,1) = Wtr, a =25 b =50, sowe can

consider the following nonlinear system of over-determined Fredholm fractional integro-differential
equations on time scales with periodic boundary condition:

(,A°~75 (1 + ) AYPu®)) = nG.(t, u(t), v(t), w(r)) + f% trru(T), A—-ae. te[25,50]z;
u(r) = i trru(T), _ A-ae. t€[2.5,50];
A" ((0_.5 + 0 AYEV(D)) = nG(t, u(t), v(), w(D)) + f; Lirv(o), A—ae.te[2.5,50];
(1) = 4293 $1Tv(7), _ A—ae. t€[2.5,50];
A% ((1_ + 1) AY2Iw(D)) = nG,u(t, u(®), v(t), w(t)) + 4293 HrTw(D)AT, A—a.e. t€[25,50];;
w(t) = % HrTw(T)AT, _ A—ae. t€[25,50];

Lu(3) = 5(350) =0, v(3)=w(50)=0, w(3) =w50)=0,

where A} and A are the left and right Riemann-Liouville delta fractional difference of order 0 <y < 1
respectively.

u? +v* + wh?, W+ v+ w? <2.20550 x 10°;

Gt,u,v,w) = (1 + %)
2VIZ + 2 + w2 — 2+ V2 +wh),  ud+vE+w? > 220550 x 10°.

It is easy for us to know that G is continuous with respect to t and continuously differentiable with
respect to u, v, w. Moreover, G(t,0,0,0) = 0 and by simple calculations, we get M| =~ 8.33333 X 1078,
M, =3.12500 x 1078, M3 = 6.25000 x 1078,

K=ess inf k() =ess inf (1+7)=1+3%>=10,
1€[2.5,50];, 1€[2.5,50],

kK =ess Inf k(t)=ess inf (05+1)=05+3=3.5,
1€[2.5,50], 1€[2.5.50];

k3 =ess Inf Kk(t)=ess inf (1+0)=1+3=4,
1€[2.5.50]; 1€[2.5.50]7
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b+t p SOPOT5+1 8 33333 x 10°8
T AL . e ~0.99980,
Pla)ka —1)  T20.75)x 10X (2 x0.75 - 1)
bty SOPX08+1 x 312500 x 10-°
T [ A E—— . X 099942,
P)GRa—1) 208 x35x2x08- 1)
2a3+1 2x0.9+1 —8
i PTTML SO 625000 x 10 o
P(a)GRas—1) 209 x4x2x09-1)

o = min 0; = min{o, 07, 03} = min{0.99980, 0.99942, 0.99902} = 0.99902,

1<i<3

bza;—l
¢ = max {FZ(a,.)z.(za,. “ 1) = bRl p, }
502><O.75—1
= max ’
{F2 (0.75) X 10 X (2 X 0.75 — 1) — 5020751 % 8 33333 x 10-5
502><0.8—1
2(0.8) X 3.5 x (2 X 0.8 — 1) — 50%05+1 x 312500 x 10~
502><O.9—1
2(0.9) x 4 x (2 X 0.9 — 1) — 50209+ % 6.25000 x 108 }
max{0.94196, 3.67460, 6.26321)

= 6.26321,

X

bZQ,-
A = max —_—
1<i<3 {0'1“2(% + l)K,}
{ 502><0.75 502><0.8 502><0.9 }
max

oT2(0.75+ 1) x 10" oT2(0.8 + 1) x 3.5 0T2(09+ 1) x4
~ max{41.89765,172.36593, 309.29445}

= 309.29445.

Furthermore, we can define

1 49 1 49 1 49
Hi(u(?)) = T ;rru(‘r), H>(v()) = TexTon g tv(t),  Hs(w(1)) = 100 ;ITW(T).

Hence, in view of

- (ki a; — 1) B I2(0.75) x 10 x (2x0.75 - 1)

- -4
pRen+1 502x0.75+1 ~ 4.24710x 107,

8.33333x 107% ~ M,
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(@) 2as — 1) 3 I2(0.8) x3.5x(2x0.8-1)

~ -4
Laant] = 0eT ~ 1.08887 x 107*,

3.12500 x 1078 = M, <

and

- [ (a3)k32a; — 1) B I20.9)x4x2x09-1)

~ -5
D TS ~ 6.39275 x 1075,

6.25000 x 1078 = M,

we see that the hypothesis (Sy) of Theorem 3.1 holds.
Consider 7,(t) = (t — 1), z,(¢) = (t — 1.5)%, z3(t) = (t — 0.5)% and r = 0.0001 to use Theorem 3.1,
one obtains that 7,(3) = z1(50) = z,(3) = 22(50) = z3(3) = z3(50) = 0 and more

AFan = MTE-1

T(1.5+ 1) sons
— — 1)L3=0.
rs-075+n" Y
1.5T(1.5) s
= _— — 1 ——
raqs &b
15%050(05) T(—1+1)
0.7500.75) T(-1-075+1)

1.5 x 0.5I(0.5) I'(»
0.751'(0.75) I'(r—0.75)
0.75I'(0.5) I'(¢)
0.75I°(0.75)I'(r — 0.75)
VI T
I'0.75) T - 0.75)°

AdSaa(n) = AS(- 1.5
r'a+1)

_ _ 1-0.8
B F(1—0.8+1)(t 1.5)
- & _ 0.2

B r(1.2)(t 1.5)

1 T¢-15+1)
02T(t-15-02+1)
I(t - 0.5)
I(t-0.7)

A7) = A3t —-0.5)
r©0.5+1) 509
= t—0.5~—=
I'0.5-0.9+ 1)( )
0.5
= t—0.5)4
F(O.6)( )
0.5 I'c-05+1)

I0.6)r#-05-11+1)
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0.5 T'(z+0.5)
r©0.6)T'(-0.6)’

then, some simple calculations yield that

49
2 0.75
lillbss = D k@A Pz (o)
t=3

B f:(1+t2)x{ vr_ T r
=3 ['(0.75)I'(t - 0.75)

1.89815 x 107,

X

Izl sz(t)mo S0P

49 2
[(r-0.5)
= 0.5 5— =7
;( T { r(z—0.7)}
~ 1.21632x 10°,

2
||za] |o,9

Zm(t)lAzsm)F

i { 0.5 r(t+0.5)]2
T0.6)T(r — 0.6)

3.49403 x 10°,

Il
|
SOE
—
+
=
X

Q

As a result, ||z1]2 55 + 1zl g + l|z31l3 0 = 1.89815x 107 +1.21632 X 10° + 3.49403 x 10° = 1.94526 x 107,
also one gets

49
1
Hi(z1(1) = ——— Y 1121(7)
6 x 1010
. » r(r- 1t
10
6x 10 =
49
1 Tr—1+1)
= t
6% 1010 Z Ta-1-15+1)

~ 1 I
6% 1010 Z r(r— 1.5)

3.84937 x 10 ,

X

49
1
Hy () = ———— ) 1125(7)
16X 107 2
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49

1 1
— o Z tr(t — 1.5
1.6 x 10 —

1 49
Texion Zl‘T(T— 1.5)
=3

2.41168 x 107t

&

49
1
Hy(z3(t) = c——= Y 1125(7)
8 x 1010 p—

49

1
= 3% 1010 Z tr(t — 0.5);

1

= leowztm 0.5)(r=0.5-1)

1

= — Z tt(r = 0.5)(t — 1.5)
8 x 1010 <

1.77586 x 107°1.

X

Therefore, one has

49

2 Z(Hl (z1(1)) + Ha(22(2)) + H3(z3(1))) = 2(0.00470, 0.00029, 0.021701) = 0.05340.

t=3

And we see that

1.94526 x 10’

3
2
~ Z Iz,

49 49
> 2r + Z PR CI=0)
149] t493 - 49 49 49 49
=2r+ ) > &EDa@a0+ Y D EHED@a®+ Y Y &t DB
t=3 1=3 =3 1=3 t=3 1=3
¢ @ I
=2r+ Z Z = 1010 P Z Z OIOZ‘T(T ~1.5)(t - 1.5)
49 49 )
+ZZ IOIOtT(T 0.5)(r — 1.5)(t — 0.5)(t — 1.5)
t=3 1=3
~ 2% 0.0001 + 5223916
= 52.23936.
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Hence, clearly the hypothesis (S,) of Theorem 3.1 holds.

2
In light of the expression of G and the fact that 73(t) + 73(t) + z3() = [F(tr_(?j)} +[t-15)7 +

[(r — 0.5)(t — 1.5)]* < 2.20550 x 10° for all t € [2.5,50]z, we obtain the following inequality

49
Z sup G(t7 V1, V2, V3)

t=3 (v1,v2,v3)€Y(Cr)

r
49
S5 osup (1+2)A+v3+0v3)?
_ 1=3 (v1,v2,v3)€Y(Cr)

49 ’
S+ 2)(2Cr)?

< t=3

r

49
=4Cry (1+7)

t=3

~ 634.97309
< 3.56496 x 10'°

49
23 (1 + )20 + B3 + Z3(1))?
=3

~

T3 49
; llzill2, — 2 Z;(Hl (z1(9) + Ha(z2(0)) + H3(z3(1)))

49
2 ; G(t,71(2), z2(1), z3(2))

3 49
D lIzill3, = 2 2 (Hi(zi(0) + Ha(za(1) + Hi(z3(1))

i=1 t=3

49
2 z_; G(t,z1(2), 22(2), 23(2))

K 3 49 49
Do llzilly, = 22 >0 >0 &t Dzi(m)zi(D)
i=1 i=1 1=3 7=3
Consequently, the hypothesis (S3) of Theorem 3.1 is satisfied as well.
Actually,
.. G(t,v,v2,v3)
liminf ————
Viz|vi| =400 3
Z vil?
i=1
_ lminf G(1,v1,v2,v3)

Vil=-+00, [yl —>+00, [ysl=+oo |V [ + Vo] + |v3]?

(1 +7) [2 v§+v§+v§—(v%+v§+v§)]

= lim inf
V1]—>-+00, [val—>-+00, [v3—-+o0 vil2 + val? + [vs?
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2(1 + 2
= lim inf 2+ lim inf 1+ 1)

[vil=+e0, [va|>+00, [v3|—+00 /V% + V% + V% [Vil=+00, [va|—+00, [v3|—>+00

=-10
< 1.02649
49
2Cr Y (1 + 1)
t=3
A
49
AC?P S (1 + 1)
=3
2Ar

49
>+ )(2Cr)?
t=3

2Ar

Q

49

S5 sup (14202 +vs+3)?
t=3 (v1,v2,v3)eY(Cr)

2Ar
49

>, sup  G(t,vi,v2,v3)

t=3 (v1,v2,v3)eY(Cr)
2Ar

Therefore, the hypothesis (S4) of Theorem 3.1 holds.
Based on Theorem 3.1, the above nonlinear system has at least three distinct weak solutions in

3 3 49 49
Il =30 32 3 &t Dz(Dze)

0.75,2 0.8 i=1 i=1 =3 7=3 r ~
the space W, 25+><W25+>< A25+f0rany17e = D ~
237 G(t,21(0),22(0),23(0)) > sup G(t,v1,2,v3)
=3 1=3 (v1,v9,v3)€T(Cr)

12.80508 x 107!, 1.574870 x 1073[.
5. Conclusions

In this work, several sufficient conditions ensuring the existence of three distinct solutions of a
system of over-determined Fredholm fractional integro-differential equations on time scales are derived
by variational methods, which shows that variational methods are powerful and effective methods for
studying fractional boundary value problems on time scales.
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