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1. Introduction

Throughout this paper we consider simple, finite and connected graphs. We adopt the notation
G = (V, E), where V = V(G) represent vertex set of G and E = E(G) is an edge set of G. If |V(G)| = φ

then G is known as empty graph. The number of edges incident on a vertex b gives the degree of
a vertex b that is indicated through deg(b). Graph G is said to be r-regular, if deg(v) = r for every
v ∈ V(G). A path from vertex u to a vertex v is an alternating sequence of vertices and edges which
connects u and v, such that all vertices and edges in a sequence are distinct. The number of edges in a
path represent its length; which is denoted by Pk (a path of length k). A cycle is a path in which both
the end vertices are equal. The number of edges in a cycle represent its length; which is denoted by Cn

(cycle of length n). The length of the shortest cycle in G is called the girth of G, denoted by gr(G). A
chord of a graph G is an edge which connects two nonadjacent vertices in the cycle. For a graph G, a
subset I ⊆ V(G) is said to be independent, if the subgraph induced by vertex set of I has no edge. The
number of vertices in a maximum independent set is called as independence number which is denoted
by α(G). An independent set is said to be strong, if each vertex of G is in an independent set of G which
meets all maximal complete subgraphs of G. A clique of a graph is its maximal complete subgraph
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(“maximal” with respect to set-inclusion), and the minimum number of cliques required to cover all the
vertices of graph G is called the partition number, denoted by θ(G). The maximum size of clique gives
clique number; denoted by ω(G). Graph G with minimum number of colors, such that no two adjacent
vertices receives the same color called chromatic number which is denoted by χ(G). A graph G is said
to be perfect [4] if for every induced subgraph S of G, χ(S ) = ω(S ) and it is called strongly perfect
graph (SPG) [3] if, for every S there is an independent set meeting all maximal complete subgraphs of
S . Graph G is said to be co strongly perfect if both G and G are S PG. If for every induced subgraph
S of G, each vertex of S belongs to a strong independent set of S , then we say that G is very strongly
perfect graph (VS PG). ΓG(x) = {y/xy ∈ E}, denotes set of all neighbors of ‘x’ in G.

Let G1 = (V1, E1) and G2 = (V2, E2) be any two graphs. The Cartesian product of G1 and G2,
denoted by G = G1�G2 whose vertex set is V = V1 × V2 and AiA j ∈ E for Ai = (ai, bi), A j = (a j, b j) if
and only if either

(i) aia j ∈ E1 and bi = b j, or
(ii) ai = a j and bib j ∈ E2.
Ravindra et al. [8] studied the Cartesian products of a perfect graph and characterized various

sufficient conditions for perfect Cartesian products. They also proved perfect graph conjecture for
Cartesian product graphs. Meyniel [11] proved that a graph G is perfect if it has no induced subgraph
C2k+1 or C2k+1 + e, k ≥ 2. Nowadays such kind of graph is known as a Meyniel graph. Further
Hoàng [2] proved the Meyniel conjecture, a graph G is VS PG if and only if it is Meyniel. Gandal
et al. [10] studied the products of VS PG and they characterized various conditions on graphs to be
VS PG. Berge et al. [3] proved that every S PG is perfect, not conversely, as C2k, k > 2, is perfect
but not S PG. Some interesting classes of perfect graphs are summarized by S. Hougardy [16]. S PG
conjecture for (K4 − e)-free graph was studied by Tucker [1] and Parthasarathy et al. [12]. Kwasnik
et al. [13] proved the necessary and sufficient condition for the generalized Cartesian product graphs
to be S PG. Chudnovsky et al. [14] provides a polynomial time algorithm to determine the maximum
graph weight clique in perfect graphs with no induced Ck, k ≥ 5, and no induced cycle C6. The
independence number of triangle-free regular graphs are investigated by Ayat et al. [17]. Further, they
proved the result for 3-regular triangle-free graph whose independence ratio is more than 3/8.

Graph theory results are applied to problems in communications which are increasingly used in
wireless multi-hop networks of military and civilian applications like Wireless Sensor Networks
(WS Ns), underwater sensor networks, vehicular networks, and mesh networks. Carlos-Mancilla
et al. [15] studied relevant work on WS N. It presents the evolution, design, and implementation of
some important WS N techniques and the most used protocols and standards to improve the sensor
applications. In this paper, for WS N, we introduce the strong independent set of master nodes which
receives the data from all the slave nodes and send it to the user.

As maintained above Ravindra et al. [8] proved that G1�G2 is perfect if and only if it has no
induced subgraph C2k+1, k ≥ 2. This result motivated us to verify the meyniel conjecture for the
Cartesian product of two graphs. In this paper we proved that G1�G2 is VS PG, if and only if it is
bipartite. Berge et al. [3] investigated some classifications of strongly perfect graphs and proved that
G is S PG, if it has no P4 as an induced subgraph. They also gave some examples of the graph that are
not S PG. The classes of perfectly orderable graphs were studied by Chavtal [18]. With these results,
we characterize the Cartesian product of graphs which can be realized as VS PG.

For more information on graph theory, the reader may refer [5, 7].
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2. Very strongly perfect graph (VS PG)

Definition 1. For every induced subgraph S of G, if each vertex of S belongs to a strong independent
set of S , then a graph G is called VS PG.

Example 1. The graph is shown in Figure 1 is a VS PG with strong independent sets, corresponding
to each vertex of the graph (see Table 1).

Figure 1. Very strongly perfect graph.

Table 1. Vertices and their corresponding strong independent set.

Vertices Strong Independent Sets
a {a, c, e, g}
b {b, f }
c {c, f , a}
d {d, g, a}
e {e, h, c}
f { f , a, c}
g {g, b, e}
h {h, d}
i {i}

From the definition of VS PG we get the simple corollary:

Corollary 2.1. If G1�G2 is VS PG then all its induced subgraphs are VS PG.

Proof. It is clear from the definition of VS PG. �

We essentially need following two Lemmas throughout this article.

Lemma 2.2. [2] G is VS PG if and only if it has no induced C2k+1 or C2k+1 + e, k ≥ 2.

Lemma 2.3. [6] G1 and G2 are bipartite if and only if G1�G2 is bipartite.

G. Ravindra [9] defines the concept of starter in graph G as follows. The starter in graph G means
a cycle C : wu0u1u2 · · · ukw such that

AIMS Mathematics Volume 7, Issue 2, 2634–2645.
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(i) u0 is non-adjacent to the vertices u2, u3, · · · , uk.
(ii) There is no edge between w and u1 (Triangle free).

(iii) There exists an independent set I, with u1 and uk which hits every maximal complete subgraph of
graph G − u0.

Lemma 2.4. [9] G has a starter then there is C2k+1 or C2k+1 + e, k ≥ 2.

For simplicity, in a graph G = G1�G2 we use the following notation. If

V1 = {a1, a2, a3, · · · , an}

and
V2 = {b1, b2, b3, · · · , bm}

where m, n ≥ 2, then Ap
q = (ap, bq) represent the vertex on pth floor and qth position in a graph G.

Therefore V(G) = {Ap
q/ 1 ≤ p ≤ n and 1 ≤ q ≤ m} which gives |V(G)| = mn. Vertices Ai

j and Ar
s are

said to be adjacent if either (ai, ar) ∈ E1 and b j = bs or (b j, bs) ∈ E2 and ai = ar.

Theorem 1. G1�G2 is VS PG if and only if G1�G2 is bipartite.

Proof. Suppose G = G1�G2 is VS PG. By definition of G, G1 and G2 are its induced subgraphs.
Further, by Corollary 2.1 graphs G1 and G2 are VS PG and by Lemma 2.2 they do not have induced
C2k+1, k ≥ 2. To prove that graphs G1 and G2 are bipartite it is sufficient to show that both G1 and G2

are K3 free. For, if not, then K3�K3 contains an induced C5 + e, illustrated in Figure 2 contradicting
the assumption. So, we proved that graphs G1 and G2 are bipartite. Thus, by Lemma 2.3, G = G1�G2

is bipartite.

Figure 2. K3�K3.

Conversly, suppose G = G1�G2 is bipartite. Thus G has no Kp, p ≥ 3 as an induced subgraph; that
implies, G has only K2 as an maximal complete subgraph.

Now to prove that graph G is a VS PG. We prove the result by induction on the number of vertices
of graph G. Suppose the result holds for every graph of the order less than ‘mn’. If there exists a
vertex Ai

j in a graph G which hits all maximal complete subgraphs of graph G, then I = {Ai
j} is a strong

independent set of G. If not, then choose a vertex Ap
q not adjacent to Ai

j with the condition that they
have the maximum number of vertices common in their neighborhoods. By the induction hypothesis,
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H = G − Ai
j is VS PG; thus there is a strong independent set F of H which includes Ap

q . Let M be a
connected component of G such that V(M) = V(G) − V(ΓG(Ai

j)) − (Ai
j).

Consider a set I = {Ai
j} ∪ (F ∩ M). Clearly, there is no edge which has one end in Ai

j and the other
in M. That implies I is an independent set. Now it is enough to prove that I is a strong independent
set of G. We will prove this result by contradiction. Assume some maximal complete subgraph K2 in
G which is disjoint from I i.e. K2 ∩ I = φ. From assumption, clearly K2 ∩ M , φ · · · (1). If not, then
K2 ⊆ G −M, as G −M is VS PG with independent set {Ai

j} gives K2 ∩ {Ai
j} , φ, contradicts K2 ∩ I = φ.

Also (1) gives K2 ⊆ M∪ΓG(Ai
j) Finally, K2∩ΓG(Ai

j) , φ, Otherwise K2 ⊆ M and G−{Ai
j}. As G−{Ai

j}

is VS PG with strong independent set F, which yeilds K2 ∩ (F ∩ M) , φ; contradicts K2 ∩ I = φ. Also
from (1), K2 ∩ M , φ. Thus we conclude that, K2 = (Ai

a, Ab
a) has one end in ΓG(Ai

j) and other is in M.
Consider Ai

a ∈ ΓG(Ai
j) and Ab

a ∈ M but not in F, otherwise Ab
a ∈ (F ∩M) and so K2 ∩ (F ∩M) , φ, that

implies K2 ∩ I , φ; contradicts the assumption K2 ∩ I = φ. Clearly ΓG(Ai
j) and M are distinct set of

vertices. Thus Ab
a < ΓG(Ai

j) at all. As H = G−ΓG(Ai
j) is connected and VS PG with strong independent

set F. That implies K2 ∩ F , φ; since Ab
a < F, that implies Ai

a ∈ F.
Set, A = ΓG(Ai

a) ∩ M, by (1) we have A , φ. Otherwise, K2 is contained in ΓG(Ai
a) only, Gives

K2 ∩ M = φ; contradicts Eq (1). Also Ap
q does not lie in A, since F contains both Ap

q and Ai
a. As H is

a connected subgraph, there exists a shortest path p from a vertex Ap
q to a vertex in A. We may assume

the vertices of path p as Ab
a Ab

d · · · A
p
q with only Ab

a ∈ A and Ab
d, · · · , A

p
q do not lie in A.

Further by the condition, Ai
j and Ap

q have a maximum number of vertices common in their
neighborhood. Therefore we get a vertex Ai

q that lies in ΓG(Ap
q) and ΓG(Ai

j) but not in ΓG(Ab
a). Also

there must be an edge between Ai
q and Ai

a [that is e = Ai
qAi

a]. If not, then the cycle
Ai

j Ai
a Ab

a Ab
d · · · Ap

q Ai
q [with Ai

a = u0] would satisfy all conditions of Lemma 2.4, which yields
C2k+1, k ≥ 2, illustrated in Figure 3. This contradicts the assumption.

Figure 3. Odd cycle with atmost one chord.

Let there exist an edge between the vertices Ai
q and Ai

a, that is, e = Ai
qAi

a. As Ai
q lies in ΓG(Ai

j), there
exist an edge between vertices Ai

q and Ai
j, that is, e = Ai

qAi
j. Also we have Ai

a in the ΓG(Ai
j) that gives

an edge between the vertices Ai
a and Ai

j. This results into the odd induced cycle of length three, i.e, C3

illustrated in Figure 3. Again contradicts the assumption that G is bipartite. Thus we conclude that I is
a strong independent set of G. That implies G is VS PG. �

Remark. Theorem 1, asserts the validity of the VS PG conjecture for Cartesian product graphs.
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Algorithm to find strong independent set (G, I).
Inuput : G(V, E) has no induced C2k+1 and C2k+1 + e, k ≥ 2.
Output: G is VS PG with independent set I.
Complexity: O (n6)
begin
for H, H subgraph of G.
1. If H = G − u is empty then I = {u} and stop.
2. While H is non empty do
Call (select vertex, v)
For H, H is VS PG.
Select independent set F, includes v.
Choose a connected component M of G.
Let V(M) = V(G) − V(N(u)) − {u}.
G − M is VS PG.
Select independent set S , includes u.
Get, I= {u} ∪ (F ∩ M).
end
select vertex, (given graph H, node u)
begin
For (1 to n vertex).
Select v from H, with d(u, v) ≥ 2.
Get value; maxneighbourhoods of u and v, stop.
end

Open access: This article is distributed under the terms of Github. Github Inc is a provider of Internet
hosting for software development. Free GitHub accounts are commonly used to host open-source
projects.

The code that uses the above algorithm can be found by the link given below. (Available from:
https://github.com/GaneshGandal/Maths_Phd).

Chvatal [18] characterized the classes of strongly perfect graphs which include all comparability
graphs. A graph G is said to be a comparability graph, if its vertices are linearly ordered in such a way
that no subgraph is induced with the vertices a, b, c and edges ab, bc such that a < b < c. They are
also perfectly orderable, given the correct order by the topographic sequence of the graph’s transition
orientation. In [18], the subsequent proposition was proved on the perfectly orderable graph G with C
being the set of all complete subgraphs (not dominating clique) of G.

Lemma 2.5. [18] C is a set of pairwise adjacent vertices in graph G such that each w ∈ C has a
neighbour p(w) < C. So the vertices of p(w) are pairwise nonadjacent. If there is perfect order < with
p(w) < w for all w ∈ C then some p(w) are adjacent to all the vertices in C.

Lemma 2.6. [3] If G is strongly perfect, then G does not have C2k+1, for each k ≥ 2 and C̄2n, for n ≥ 3
as induced subgraphs.

Lemma 2.7. [6] G1�G2 strongly perfect if and only if both G1 and G2 are bipartite.

Now, we characterize the Cartesian product of graphs which can be realized as VS PG.

AIMS Mathematics Volume 7, Issue 2, 2634–2645.
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Theorem 2. The following properties are equivalent.

(i) G1�G2 is S PG.
(ii) G1�G2 is VS PG.

(iii) G1�G2 is bipartite.
(iv) G1�G2 is perfectly orderable.

Proof. Let G1�G2 be strongly perfect. By Lemma 2.7, both G1 and G2 do not have induced
C2k+1, k ≥ 1. Therefore, by Theorem 1, G1�G2 is VS PG. Let G1�G2 be VS PG. Since G1 and G2 are
induced subgraphs of G1�G2, by Corollary 2.1, both G1 and G2 are VS PG. As every VS PG is S PG,
by Lemma 2.6, G1 and G2 do not contain C2k+1, k ≥ 2 as an induced subgraph. For G1 and G2 to be
bipartite, it is sufficient to prove that both G1 and G2 are free from induced C3. Suppose G2 has
induced C3 which includes the vertices, say va, vb and vd. Since G1 is connected, there is an edge, say
(ui, u j) ∈ E(G1). For simplicity, set Ek = (uk, va), Fk = (uk, vb), Mk = (uk, vd), for k = i, j. Let H be
the subgraph of a graph G1�G2 induced by the vertices Ek, Fk, Mk. Since G1�G2 is VS PG, H is also
VS PG. Let Ih be a strong independent set of H. Note that the sets {Ei, Fi, Mi}, {E j, F j, M j} and the
sets with two vertices that forms an edges are all maximal complete subgraphs of H (shown in
Figure 4). Without loss of generality, we may assume that Ei ∈ Ih which implies that Fi, Mi < Ih.
Since {Fi, F j} is a maximal clique there must be F j ∈ Ih which implies that E j,M j < Ih. But then,
Ih ∩ {Mi, M j} = φ, which contradicts the assumption of Ih. Thus we conclude that G1 and G2 have no
induced subgraph C3.

Figure 4. C3�K2.

Therefore G1 and G2 are bipartite graphs with a bipartition, say V(G1) = V11 ∪ V12 and V(G2) =

U21 ∪ U22 of G1 and G2 respectively. That implies, (V11 × U21 ∪ V12 × U22) ∪ (V11 × U22 ∪ V12 × U21)
yields bipartition of V(G1�G2).

Let G1�G2 be a bipartite graph with bipartition V = V1 ∪V2, such that every edge has one end in V1

and other in V2. It implies every induced subgraph of G1�G2 is free from the linearly ordered relation
< with vertices a, b, c and edges ab, bc such that a < b < c. That implies G1�G2 is a comparability
graph which is the class of perfectly orderable graph.

We wish to prove that G1�G2 with perfect order < is strongly perfect. That means to prove that
there is an independent set I which meets all the maximal complete subgraphs in a graph G1�G2. As
G1�G2 is a perfectly orderable, there is a perfect ordering of sequences of vertices from v1 to vn, say
v1v2 · · · vn. Set I = {v j/ p(v j) = vi ∈ I for all i < j}. Let Q be any maximal complete subgraph in
G1�G2. we need to prove that Q ∩ I , φ. We prove result by contradiction, suppose Q ∩ I = φ. As Q

AIMS Mathematics Volume 7, Issue 2, 2634–2645.
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is a maximal, for each u ∈ Q its neighbour p(u) ∈ I with p(u) < u. By Lemma 2.5, there exist a vertex
vk ∈ I which is adjacent to all vertices in Q. Thus Q can be extended to Q∪{vk} as a maximal complete
subgraph, which contradicts that Q is maximal. Hence G is strongly perfect. �

Berge and Dutch [3] present a characterization of strongly perfect graphs. Complement of S PG
need not be a S PG, For example, an even cycle of length more than four is S PG however; its
complement need not be a S PG. By definition of S PG, it is simple to see that every induced subgraph
of a graph G is S PG. A graph G is said to be co strongly perfect if both G and G are S PG.

Theorem 3. G1�G2 is co strongly perfect if and only if G1 or G2 is K2 and the other is a tree.

Proof. Suppose G1�G2 is co strongly perfect. Therefore by Lemma 2.6, G1�G2 does not contain
C2n, n ≥ 3. Also by Lemma 2.7, if G1�G2 is strongly perfect, then both G1 and G2 are bipartite.
Further, by Lemma 2.3, if G1 and G2 are bipartite then G1�G2 is also bipartite. Finally, we get G1�G2

is C2n, n ≥ 3, free bipartite graph. Now to prove that G1 or G2 is K2 and the other is a tree. We prove
the result by contradiction, suppose G2 is not a tree. Let G2 be a connected cyclic graph. Since G2

is bipartite it has no odd cycle. Without loss of generality, we may consider, G1 = K2 and G2 = C4

then K2�C4 gives induced C6 : A1A2A3B3B4B1, illustrated in Figure 5. Contradicts the assumption that
G1�G2 is a C2n, n ≥ 3, free bipartite graph.

Figure 5. C4�K2.

Conversely, Suppose G1 is K2 and G2 is a tree of n vertices. Therefore G2 is a connected acyclic
graph with (n − 1) edges. We prove result by contradiction, suppose G1�G2 is not co strongly perfect.
That implies G1�G2 contains C2n for, n ≥ 3. Since we have G1 is K2 = (u1, u2), define T = {v j ∈

V(G2) : (ui, v j) ∈ V(G1�G2), for some ui ∈ V(G1)} where i = 1, 2. As G1 = K2, clearly if G1�G2 have
C2n, n ≥ 3, then it is easy to see that V(C2n) ⊆ T × {ui}, for some ui ∈ V(G1), which is an induced
subgraph of G2. Contradicts the assumption that G2 is acyclic. �

3. Wireless sensor network-(WS N)

The development of WS N application is essential, as it is a sustainable and accurate solution in
monitoring different environmental parameters that would affect crop development. The various
parameters that affect crop development are temperature, humidity of the surroundings, soil moisture,
PH value and electrical conductivity. The farming decisions are majorly dependent on close
monitoring of these parameters. To achieve low cost and sustainable reproduction of crops, the
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development of a sensor-based communication model is required. The strong independent set
algorithm presented in this work is useful to find the optimal set of master nodes to communicate with
the slave nodes and user.

The bidirection communication between the nodes is handled by the Xbee module. Xbee operates
over a range of 100–200 meters. The slave nodes never transmit data without receiving a request from
the master node. A master node is a node that receives the data from slave nodes and then sends it
to the user. Now we aim to find the optimal set of master nodes that receives the data from all slave
nodes and control the given system of network. The mathematical model of range-based cooperative
localization is described as follows. As is shown in Figure 6, consider a sensor network consisting of N
sensor nodes that represents vertex set of graph G i.e | V(G) |= N. The different nodes in the range are
joined by an edge i.e, if the nodes fi and f j are in the range, then join them by an edge Ei, j where Ei, j

represents the edge between the ith and jth node in the network. Since the given graph is undirected,
order of Ei, j and E j,i is not important i.e. Ei, j = E j,i. Let S T

i and S F
i represent the temperature and

fertility sensors respectively corresponding to the ith node fi.

Figure 6. WSN.

Various methods are used in WS N to select the set of master nodes e.g. cluster method, the grid
method, etc. The random network considered in this application is shown in Figure 6 and their ranges
are represented in Table 2. The optimized set of master nodes is selected from clusters using the
proposed strong independent set algorithm. The clusters are formed considering the slave nodes that
can communicate with master nodes.

Now we formulate the data represented in Table 2, into a graph. The vertex set and edges set must
be determined within the problem. In the graphical model presented for WS N, the vertex set represents
a specific sensor node and the edge set represents the corresponding range. Table 3, is a representation
of different sensor nodes which are in the same range.

In Table 3, the (*) sign illustrates the sensor node with the corresponding range. Now establish the
data graphically as follows. A graph G can be effectively implemented in finding master nodes that
receive (collect) the data from slave nodes. Further, these master nodes send the collective information
to the user through WS N to control the given system. That is using a minimum number of master nodes
we control the entire system smoothly. Let V(G) represents the sensor node in WS N. The different
nodes recorded at the same range are joined by an edge for graphical representation.

AIMS Mathematics Volume 7, Issue 2, 2634–2645.
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Table 2. Slave nodes and their corresponding range.

Vertices Slave nodes Range
f1 SN1 E1,2, E1,4

f2 SN2 E2,1, E2,3, E2,4

f3 SN3 E3,2, E3,4, E3,14

f4 SN4 E4,1, E4,2, E4,3, E4,5

f5 SN5 E5,4, E5,6, E5,7, E5,8

f6 SN6 E6,5, E6,7, E6,9

f7 SN7 E7,5, E7,6, E7,8, E7,9

f8 SN8 E8,5, E8,7, E8,9

f9 SN9 E9,6, E9,7, E9,8

f10 SN10 E10,11, E10,12, E10,13, E1O,14

f11 SN11 E11,10, E11,12, E11,13, E11,14

f12 SN12 E12,10, E12,11, E12,13, E12,14

f13 SN13 E13,10, E13,11, E13,12, E13,14

f14 SN14 E14,3, E14,10, E14,11, E14,12, E14,13

Method to find master nodes:
An algorithm is developed for Theorem 2.6, which is discussed in this work and is applied for the

case study as shown in Figure 6. Select any arbitrary vertex, say v = f4 from the graph G. If the
vertex f4 hits all maximal complete subgraphs of G then I = f4. Otherwise, select a vertex f7 from
S = G − f4 which is nonadjacent to f4 with the condition that f4 and f7 shares maximum numbers of
vertices in their neighborhoods. As S = G − f4 is VS PG, that implies there is a strong independent set
F which includes f7 and hits all maximal complete subgraphs of S . Let M be a connected component
of G such that V(M) = V(G) − V(ΓG( f4)) − f4. Thus, from Figure 6, we get F = { f7, f14} and
M = { f6, f7, f8, f9, f10, f11, f12, f13, f14}; that implies

I = { f4} ∪ (F ∩ M).

I = { f4} ∪ [{ f7, f14}] ∩ { f6, f7, f8, f9, f10, f11, f12, f13, f14}].

I = { f4, f7, f14}.

Thus there exists a strong independent set I = { f4, f7, f14} which meets all the maximal complete
subgraphs of a graph G. From the above analysis, it is observed that nodes f4, f7, and f14 are the most
affecting conditions in the case of WS N. We call them master nodes, as they receive the data from all
slave nodes. The master node f4, receives the data from slave nodes f1, f2, f3, and f5. Also, the master
node f7, receives the data from slave nodes f5, f6, f8, and f9. Similarly, the master node f14 receives
the data from slave nodes f10, f11, f12, and f13. While finding the master nodes there may exist the case
that, a slave node can communicate with multiple master nodes. We observe that the slave node f5 can
establish communication with master nodes f4 or f7. Since the master node f7 shares more number of
slave nodes than f4, we assign f5 to f4. Similarly we assign f3 to f4. If some disturbance occurs in the
circuit corresponding to master node f4, then in emergency master node f7 will take care of f5.
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Table 3. Different nodes representing the same range.

Range/Vertices f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

E1,2 * * - - - - - - - - - - - -
E1,4 * - - * - - - - - - - - - -
E2,3 - * * - - - - - - - - - - -
E2,4 - * - * - - - - - - - - - -
E3,4 - - * * - - - - - - - - - -
E3,14 - - * - - - - - - - - - - *
E4,5 - - - * * - - - - - - - - -
E5,6 - - - - * * - - - - - - - -
E5,7 - - - - * - * - - - - - - -
E5,8 - - - - * - - * - - - - - -
E6,7 - - - - - * * - - - - - - -
E6,9 - - - - - * - - * - - - - -
E7,8 - - - - - - * * - - - - - -
E7,9 - - - - - - * - * - - - - -
E8,9 - - - - - - - * * - - - - -

E10,11 - - - - - - - - - * * - - -
E10,12 - - - - - - - - - * - * - -
E10,13 - - - - - - - - - * - - * -
E10,14 - - - - - - - - - * - - - *
E11,12 - - - - - - - - - - * * - -
E11,13 - - - - - - - - - - * - * -
E11,14 - - - - - - - - - - * - - *
E12,13 - - - - - - - - - - - * - -
E12,14 - - - - - - - - - - - * - *
E13,14 - - - - - - - - - - - - * *

4. Conclusions

In this paper, the structural properties of very strongly perfect graphs, odd cycles, perfectly
orderable, bipartite, and strongly perfect graphs are discussed. We gave an algorithm for the strong
independent set on C2k+1 or C2k+1 + e, k ≥ 2 free graphs. We believe that these methods could be used
to develop a mathematical model for a real situation, wherein an optimal set of leaders from a given
set of people can be chosen. Moreover, in the wireless sensor network, we also extended our
techniques to find the optimal set of master nodes that receive the data from all slave nodes and
control the given system of the network. The work carried out in this paper will serve as a base for
further studies on the remaining graph classes as well.
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15. M. Carlos-Mancilla, E. López-Mellado, M. Siller, Wireless sensor networks formation:
Approaches and techniques, J. Sensors, 2016 (2016), 2081902. doi: 10.1155/2016/2081902.

16. S. Hougardy, Classes of perfect graphs, Discrete Math., 306 (2006), 2529–2571. doi:
10.1016/j.disc.2006.05.021.

17. S. M. Ayat, S. M. Ayat, M. Ghahramani, The independence number of circulant triangle-free
graphs, AIMS Math., 5 (2020), 3741–3750. doi: 10.3934/math.2020242.
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