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Abstract: In this paper, the problem of optimized distributed fusion filtering is considered for a class
of multi-sensor singular systems in the presence of fading measurements and stochastic nonlinearity.
By utilizing the standard singular value decomposition, the multi-sensor stochastic singular systems
are simplified to two reduced-order nonsingular subsystems (RONSs). The local filters (LFs) with
corresponding error covariance matrices are proposed for RONSs via the innovation analysis approach.
Then, on the basis of the matrix-weighted fusion estimation algorithm, the distributed fusion filters
(DFFs) are designed for RONSs with multiple sensors in the linear minimum variance sense. Moreover,
the DFFs are obtained by utilizing the state transformation for original singular systems. It can be
observed that the DFFs have better accuracy in contrast with the LFs. Finally, an illustrate example is
put forward to verify the feasibility of the proposed fusion filtering scheme.
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1. Introduction

In recent years, increasing research attention has been devoted to the filtering or state estimation
problems for the singular systems. It should be noted that the singular systems have more extensive
description forms and widespread application domains compared with the normal systems, such as
the electronic networks, chemical industry, biomedical sciences, robots and economic systems, and so
on [1–6]. For example, the estimation problem for singular systems with single sensor has been studied
in [7, 8], including the filtering and smoothing problem. However, the estimation accuracy of the
systems with single sensor would be affected by external interference and self-influence. Accordingly,
the fusion estimation for singular systems with multiple sensors has long been one of the mainstream
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topics and a large number of literatures have been published to investigate the multi-sensor singular
systems (MSSSs) [9, 10].

At present, great efforts have been made to discuss the estimation problem for MSSSs. Generally,
most of the studies rely on the generalization of classical system theory. For example, the issues of
reduced-order fusion estimation for MSSSs have been studied in [11, 12], where the singular systems
have been converted into two subsystems with lower dimension than the original systems by means of
the standard singular value decomposition methods [13, 14]. In [15], the full-order fusion estimation
problem has also been investigated for stochastic singular systems by transforming the singular systems
into nonsingular systems. Furthermore, there are mainly two methods to estimate the system state,
including the Kalman filtering method and the modern time series analysis method. For example,
in [16–19], by utilizing the projection theory (PT) in [20], the optimal linear estimators have been
presented in the sense of linear minimum variance (LMV). In [21], the optimal state estimation problem
has been investigated for finite-field networks with stochastic disturbances in the sense of minimum
mean square error. In [22], the local optimal estimators for the singular systems have been given by
means of the autoregressive moving average innovation model method. For the sake of improving the
accuracy of estimation, it is quite common that we need to fuse all measurement data coming from
all sensors by employing the information fusion methods. In general, the information fusion methods
have been presented in [23], including the state fusion and measurement fusion. The schemes of state
fusion have the distributed fusion [24–26] and the centralized fusion [27]. In particular, the weighted
measurement fusion scheme [31] has fused and weighted directly all measurement information to a
lower-dimensional fusion measurement, then an individual fusion measurement information has been
used to receive the fusion estimator. In addition, the distributed fusion approach has the advantages
of expanding the communication and storage space requirements of the fusion center, and the input
data rates can be improved due to the parallel structure. Moreover, when one of the sensors fails, this
structure is convenient for detection and isolation. In view of the above advantages of distributed fusion
structures, the problem of distributed fusion filtering is investigated in this study.

In practical networked systems, sensor aging or imperfect communication channels usually lead to
fading measurements, which can lead to various distortions and information constraints [28–30, 32].
Generally, the measurement signals may fade in a probabilistic way [33, 34]. Obviously, the missing
measurements may be considered as a special shape of fading measurements. In [35], a random
variable obeying the Bernoulli distribution has been introduced to characterize the phenomenon of
missing measurements. The missing measurements considered in [36] have different forms in [35],
where the missing measurements have been modeled as a diagonal matrix that can be extensively
applied to describe the multi-channel systems. In [37], the recursive filter has been designed for a
stochastic system subject to multiple fading measurements, random parameter matrix and stochastic
nonlinearity, where a diagonal matrix has been used to describe the phenomenon of multi-channel
fading measurements. According to the methods in [35–37], a set of Bernoulli distributed random
variables has been used to model the missing/fading measurements. However, it should be noted
that only the case of single sensor has been considered. Recently, in [38], the issue of multi-
sensor information fusion state estimation has been considered for random uncertain systems in the
presence of unknown measurement disturbance and missing measurements, but it is only applicable for
handling the nonsingular case. So far, the filtering problem for multi-sensor systems subject to fading
measurements has not gained adequate attention, not to mention the singular systems with multiple
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sensors.
In addition, the nonlinearity inevitably exists in many practical systems, such as the

telecommunication, neural networks and economics systems [39, 40]. If not properly handled, the
nonlinearity would influence the performance of the systems. Hence, a great number of results
have been given to handle the nonlinear systems. For example, the problem of prescribed finite-
time H∞ has been investigated in [41] for nonlinear singular systems with and without actuator
saturation. In order to achieve prescribed finite-time stable for the closed-loop system, where the
saturation nonlinearity has been decomposed into a linear form consisting of the control signal and
its constant constraints. In addition, as a special kind of nonlinearity, the stochastic nonlinearity
has received considerable attention. In [42], the issue of estimation with regard to the multi-step
delays (MSDs) and packet dropouts (PDs) has been investigated for nonlinear stochastic systems.
Then, the optimal linear estimators have been obtained by employing the innovation analysis approach
(IAA). In [43], a distributed fusion filter (DFF), on the basis of the distributed matrix-weighted fusion
algorithm (MWFA), has been proposed for stochastic nonlinear systems in the presence of MSDs and
PDs, where the stochastic nonlinear effects come from the state equation and measurement equation.
Unfortunately, up to now, very little research effort has been made on the fusion filtering problem in
the presence of stochastic nonlinearity catering for multi-sensor circumstances, not to mention the case
where multiple sensors may undergo the fading measurements phenomenon in singular systems.

Motivated by the above discussion, in this paper, we aim to deal with the fusion filtering problem
for singular systems with fading measurements and stochastic nonlinearity. The problem seems to be
significant owing to the following substantial challenges: (1) how to characterize the phenomenon
of fading measurements with multiple channels; (2) how to select an appropriate way to convert
the original singular systems into nonsingular systems; (3) how to obtain the local filters (LFs) and
corresponding estimation error cross-covariances dependent on fading probability; (4) how to develop
an effective distributed fusion algorithm so as to improve the accuracy of LFs. Accordingly, the main
work of this paper is summarized as follows: (1) the fusion filtering issue is, for the first time, addressed
for MSSSs in the presence of both fading measurements and stochastic nonlinearity; (2) the proposed
LFs are optimal and unbiased in the sense of LMV; (3) the presented DFF weighted by matrices, which
has the property of robustness and flexibility due to the parallel structure, has better precision than the
LFs.

Notation In this paper, Is represents the unit matrix with dimension s. The superscript T represents
the transpose of a matrix. tr(A) is used to describe the trace of matrix A. ⊥ denotes orthogonality.
diag {A1, A2, · · · , AN} stands for a diagonal matrix with diagonal element Ai. δsh represents the
Kronecker delta function. � is the Hadamard product.

2. Problem formulation and preliminaries

In this paper, we consider the following class of nonlinear singular systems with N sensors:

MXs+1 = ΦXs + f (Xs, ξs) + Υ$s, (2.1)
Yi,s = Ωi,sHiXs + ϑi,s, i = 1, 2, · · · ,N (2.2)

where Xs ∈ R
n represents the state vector of the system, Yi,s ∈ R

mi (i = 1, 2, · · · ,N) denote the
measurement outputs, $s ∈ R

r is the zero-mean process noise, ϑi,s ∈ R
mi (i = 1, 2, · · · ,N) are the
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zero-mean measurement noises. The subscript i represents the ith sensor. Ωi,s = diag{αi1,s, · · ·, αimi,s}

(i = 1, 2, · · · ,N) characterize the phenomenon of fading measurements with multiple channels, where
αik,s (k = 1, 2, · · · ,mi) are mi random variables, which are uncorrelated in s as well as k. The random
variable αik,s represents the fading situation of the kth measurement channel, and the probability density
function pik,s(l) is on the interval [0,1] with known mathematical expectation µik,s and variance σ2

ik,s.
The function f (Xs, ξs) is the stochastic nonlinearity, where ξs is a zero-mean Gaussian white noise.M,
Φ, Υ andHi are constant matrices with proper dimensions.

To begin, the following assumptions are introduced.

Assumption 1. M is a singular square matrix, i.e., rank(M) = n1 < n.

Assumption 2. System (2.1) is regular, i.e., det(κM−Φ) , 0, where κ is an arbitrary complex number.

Assumption 3. rank(Φ) ≥ n2 and n1 + n2 = n.

Assumption 4. $s and ϑi,s (i = 1, 2, · · · ,N) have the following statistical properties:

E

{[
$s

ϑi,s

] [
$T

h ϑT
i,h

]}
=

[
Q$,s 0

0 Qϑi,s

]
δsh,

E
{
ϑi,sϑ

T
j,h

}
= 0, (i, j,∀s, h),

where δsh is Kronecker function, that is to say

δsh =

1 s = h

0 s,h
.

Assumption 5. The initial stateX0, $s, ϑi,s, ξs and αik,s (i = 1, 2, · · · ,N; k = 1, 2, · · · ,mi) are mutually
independent, moreover, E {X0} = π0 and E

{
(X0 − π0)(X0 − π0)T

}
= P0.

Assumption 6. The function f (Xs, ξs) satisfies

E { f (Xs, ξs)|Xs} = 0, E
{
f (Xs, ξs) f T (Xh, ξh)|Xs

}
=

m∑
l=1

ΠlX
T
s ΓlXsδsh,

where m is a known positive integer, Πl and Γl (l = 1, 2, · · · ,m) are given matrices with appropriate
dimensions.

Next, the key idea is to transform the original singular systems into two reduced-order nonsingular
subsystems (RONSs) by using the singular value decomposition method. Then, the LFs for each sensor
are presented in the sense of LMV via the PT. In the fusion center, the DFFs are presented for RONSs
by utilizing the MWFA. Finally, we get the DFF for original singular systems.

For the convenience of subsequent developments, we introduce the following Lemma.

Lemma 1. [44] LetA =
[
ai j

]
p×p

be a real matrix and Q = diag
{
%1, %2, · · · , %p

}
be a diagonal random

matrix. Then

E
{
QAQT

}
=


E

{
%2

1

}
E {%1%2} · · · E

{
%1%p

}
E {%2%1} E

{
%2

2

}
· · · E

{
%2%p

}
...

...
. . .

...

E
{
%p%1

}
E

{
%p%2

}
· · · E

{
%2

p

}
�A,

where � is the Hadamard product.

AIMS Mathematics Volume 7, Issue 2, 2543–2567.



2547

3. Main results

In this section, our goal is to provide an innovative scheme to deal with the fusion filtering problem
for singular systems with fading measurements and stochastic nonlinearity, that is to say, we need to
find the DFF X̂0,s|s on the basis of the measurements (Yi,s, · · · ,Yi,0) (i = 1, · · · ,N).

For systems (2.1) and (2.2) under Assumptions 1-3, according to [14], there exists nonsingular
matrices U and R such that

UMR =

[
M1 0
M2 0

]
,UΦR =

[
Φ1 0
Φ2 Φ3

]
,UΥ =

[
Υ1

Υ2

]
,HiR =

[
H

(1)
i H

(2)
i

]
,U =

[
U1

U2

]
,

whereM1 ∈ R
n1×n1 is nonsingular lower-triangular, Φ1 ∈ R

n1×n1 is quasi-lower-triangular, Φ3 ∈ R
n2×n2

is nonsingular lower-triangular, other matrix blocks have corresponding dimensions. By using the
transformation Xs = R

[
XT

1,s X
T
2,s

]T
with X1,s ∈ R

n1 and X2,s ∈ R
n2 , the singular systems (2.1) and

(2.2) are converted into the following systems:

X1,s+1 = Φ̄X1,s + Ū f (Xs, ξs) + Γ̄$s, (3.1)
X2,s = BX1,s + C f (Xs, ξs) + D$s, (3.2)
Yi,s = Ωi,sH̄iX1,s + Ωi,sEi f (Xs, ξs) + ηi,s, i = 1, 2, · · · ,N (3.3)

with

Φ̄ = M−1
1 Φ1, Ū =M−1

1 U1, Γ̄ =M−1
1 Υ1,

B = Φ−1
3 M2M

−1
1 Φ1 − Φ−1

3 Φ2, C = Φ−1
3 M2M

−1
1 U1 − Φ−1

3 U2,

D = Φ−1
3 M2M

−1
1 Υ1 − Φ−1

3 Υ2, H̄i = H
(1)
i +H

(2)
i (Φ−1

3 M2M
−1
1 Φ1 − Φ−1

3 Φ2),
Ei = H

(2)
i (Φ−1

3 M2M
−1
1 U1 − Φ−1

3 U2), Fi = H
(2)
i (Φ−1

3 M2M
−1
1 Υ1 − Φ−1

3 Υ2),
ηi,s = Ωi,sFi$s + ϑi,s.

The noise sequences $s and ηi,s obey

E

{[
$s

ηi,s

] [
$T

h ηT
j,h

]}
=

[
Q$,s S j,s

S T
i,s Qηi j,s

]
δsh,

especially when i = j, we define Qηii,s = Qηi,s, where

S j,s = E
{
$sη

T
j,s

}
= Q$,sFT

j Ω̄T
j,s,

Qηi,s = E
{
ηi,sη

T
i,s

}
= Ω̃i,s �

(
FiQ$,sFT

i
)

+ Qϑi,s,

Qηi j,s = E
{
ηi,sη

T
j,s

}
= ~Ωi j,s �

(
FiQ$,sFT

j
)
, (i, j)

with

Ω̄i,s = E
{
Ωi,s

}
= diag

{
µi1,s, µi2,s, · · · , µimi,s

}
,

Ω̃i,s =


σ2

i1,s + µ2
i1,s µi1,sµi2,s · · · µi1,sµimi,s

∗ σ2
i2,s + µ2

i2,s · · · µi2,sµimi,s
...

...
. . .

...

∗ ∗ · · · σ2
imi,s + µ2

imi,s

 ,
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~Ωi j,s =


µi1,sµ j1,s µi1,sµ j2,s · · · µi1,sµ jm j,s

∗ µi2,sµ j2,s · · · µi2,sµ jm j,s
...

...
. . .

...

∗ ∗ · · · µimi,sµ jm j,s

 .
Remark 1. For the filtering problem of singular systems, the usual way is to convert the singular
systems into nonsingular systems under the different assumptions. In [9], the full-order nonsingular
systems have been introduced under the assumption that the systems are completely observable.
Furthermore, a singular value decomposition method has been presented in [13], where the RONS have
been obtained under the causal assumption. In addition, it should be noted that a fast-slow subsystem
decomposition approach has been employed in [45] when the system is not causal. Accordingly, similar
to [14] without the causal assumption and observability assumption, the singular systems (2.1) and
(2.2) in this paper are converted into RONSs (3.1), (3.2) and (3.3). Moreover, it should be noted that it
is not easy to estimate the system state due to the existence of the stochastic nonlinear effects.

To proceed, we introduce the following assumption.

Assumption 7. Matrices Γi, Π j(i, j = 1, 2, · · · ,m), C and R satisfy det(Ψ − Im) , 0, where

Ψ =
[
tr(ΓiΘ j)

]
m×m

,Θ j = R
[
0 0
0 CΠ jCT

]
RT .

Lemma 2. For the original systems (2.1) and (2.2) under the conditions of Assumptions 1-6, the
second-order moment matrix qXs+1 = E

{
Xs+1X

T
s+1

}
of state Xs+1 can be calculated by:

qXs+1 = R

E
{
X1,s+1X

T
1,s+1

}
E

{
X1,s+1X

T
2,s+1

}
E

{
X2,s+1X

T
1,s+1

}
E

{
X2,s+1X

T
2,s+1

} RT , (3.4)

where

qX1,s+1 = E
{
X1,s+1X

T
1,s+1

}
= Φ̄qX1,sΦ̄

T + Ū
m∑

l=1

Πltr(qXsΓl)ŪT + Γ̄Q$,sΓ̄
T , (3.5)

qX12,s+1 = E
{
X1,s+1X

T
2,s+1

}
= qX1,s+1 BT , (3.6)

qX2,s+1 = E
{
X2,s+1X

T
2,s+1

}
= BqX1,s+1 BT + C

m∑
l=1

Πltr(qXs+1Γl)CT + DQ$,s+1DT . (3.7)

The initial value is qX0 = π0π
T
0 + P0.

Proof. Substituting Xs+1 = R
[
XT

1,s+1 X
T
2,s+1

]T
into the qXs+1 = E

{
Xs+1X

T
s+1

}
, we can obtain (3.4).

Then, substituting (3.1) into the qX1,s+1 = E
{
X1,s+1X

T
1,s+1

}
and using Assumptions 4-6 and X1,s⊥$s, we

can obtain

qX1,s+1 = Φ̄E
{
X1,sX

T
1,s

}
Φ̄T + ŪE

{
f (Xs, ξs) f T (Xs, ξs)

}
ŪT + Γ̄E

{
$s$

T
s

}
Γ̄T

+
{
Φ̄E

{
X1,s f T (Xs, ξs)

}
ŪT + Φ̄E

{
X1,s$

T
s

}
Γ̄T + ŪE

{
f (Xs, ξs)$T

s

}
Γ̄T

}
+

{
∗
}T
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= Φ̄qX1,sΦ̄
T + Ū

m∑
l=1

Πltr(qXsΓl)ŪT + Γ̄Q$,sΓ̄
T . (3.8)

In the equation (3.8), the term {∗} represents the same item as the front neighboring term. Similarly,
substituting (3.1) and (3.2) into qX12,s+1 = E

{
X1,s+1X

T
2,s+1

}
and substituting (3.2) into qX2,s+1 =

E
{
X2,s+1X

T
2,s+1

}
, we can obtain (3.6) and (3.7). �

Remark 2. From Lemma 2, we can see that the second-order moment matrix qXs can not computed
recursively due to the fact that qX2,s contains

∑m
l=1 Πltr(qXsΓl). But in the subsequent calculations, it

only needs to iterate
∑m

l=1 Πltr(qXsΓl), therefore, our objective is to solve it from equation (3.4). The
calculation process is shown in the Appendix.

Lemma 3. For the ith RONSs (3.1), (3.2) and (3.3) under the conditions of Assumptions 4-6, the
innovation ei,s = Yi,s − Ŷi,s|s−1 is calculated by

ei,s = (Ωi,s − Ω̄i,s)H̄iX1,s + Ωi,sEi f (Xs, ξs) + ηi,s + Ω̄i,sH̄iX̃
(1)
i,s|s−1. (3.9)

The covariance Qei,s = E
{
ei,seT

i,s

}
of the innovation ei,s is calculated by

Qei,s = Ω̆i,s �
(
H̄iqX1,s H̄

T
i
)

+ Ω̃i,s �
(
Ei

m∑
l=1

Πltr(qXsΓl)ET
i
)

+ Qηi,s + Ω̄i,sH̄iP
(1)
i,s|s−1H̄T

i Ω̄T
i,s, (3.10)

where Ω̆i,s = diag
{
σ2

i1,s, · · · , σ
2
imi,s

}
. The cross-covariance Qei j,s = E

{
ei,seT

j,s

}
(i , j) of the innovation

ei,s and e j,s is computed by

Qei j,s = ~Ωi j,s �
(
Ei

m∑
l=1

Πltr(qXsΓl)ET
j
)

+ Qηi j,s + Ω̄i,sH̄iP
(1)
i j,s|s−1H̄T

j Ω̄T
j,s. (3.11)

Proof. According to the PT, we can easily obtain η̂i,s|s−1 = 0. Then, we have

ei,s = Yi,s − Ŷi,s|s−1

= Ωi,sH̄iX1,s + Ωi,sEi f (Xs, ξs) + ηi,s − Ω̄i,sH̄iX̂
(1)
i,s|s−1

= (Ωi,s − Ω̄i,s)H̄iX1,s + Ωi,sEi f (Xs, ξs) + ηi,s + Ω̄i,sH̄iX̃
(1)
i,s|s−1. (3.12)

Substituting (3.12) into Qei,s = E
{
ei,seT

i,s

}
yields

Qei,s = E
{
(Ωi,s − Ω̄i,s)H̄iX1,sX

T
1,sH̄

T
i (Ωi,s − Ω̄i,s)T

}
+ E

{
Ωi,sEi f (Xs, ξs) f T (Xs, ξs)ET

i ΩT
i,s

}
+E

{
ηi,sη

T
i,s

}
+ E

{
Ω̄i,sH̄iX̃

(1)
i,s|s−1X̃

(1)T
i,s|s−1H̄T

i Ω̄T
i,s

}
+

{
E

{
(Ωi,s − Ω̄i,s)H̄iX1,s f T (Xs, ξs)ET

i ΩT
i,s

}
+E

{
(Ωi,s − Ω̄i,s)H̄iX1,sη

T
i,s

}
+ E

{
(Ωi,s − Ω̄i,s)H̄iX1,sX̃

(1)T
i,s|s−1H̄T

i Ω̄T
i,s

}
+ E

{
Ωi,sEi f (Xs, ξs)ηT

i,s

}
+E

{
Ωi,sEi f (Xs, ξs)X̃

(1)T
i,s|s−1H̄T

i Ω̄T
i,s

}
+ E

{
ηi,sX̃

(1)T
i,s|s−1H̄T

i Ω̄T
i,s

} }
+

{
∗
}T
. (3.13)

By utilizing E
{
Ωi,s − Ω̄i,s

}
= 0, Assumptions 4-6 and E

{
X̃i,s|s−1η

T
i,s

}
= 0, we can obtain (3.10).

Similarly, we also obtain (3.11). �
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Remark 3. Based on the above discussion, we see that the Hadamard product has been mainly used
in Lemma 3. Note that the covariance Qei,s and the cross-covariance Qei j,s of innovation can not
be derived directly since the innovation ei,s contains a diagonal-matrix with random variable that is
different from the single random variable. Before the derivation of the LFs, we give the Lemma 3 firstly
by the following Lemma 1, where the Hadamard product makes the expression more concise in taking
the expectations on the products of some random matrices.

Lemma 4. For the convenience of subsequent computations, we get

E
{
X1,seT

i,s

}
= P(1)

i,s|s−1H̄T
i Ω̄T

i,s, (3.14)

E
{
$seT

i,s

}
= S i,s, (3.15)

E
{
f (Xs, ξs)eT

i,s

}
=

m∑
l=1

Πltr(qXsΓl)ET
i Ω̄T

i,s. (3.16)

Proof. Substituting (3.9) into E
{
X1,seT

i,s

}
and using E

{
Ωi,s − Ω̄i,s

}
= 0, X1,s⊥ηi,s and X̂(1)

i,s|s−1⊥X̃
(1)
i,s|s−1, we

can obtain

E
{
X1,seT

i,s

}
= E

{
X1,sX

T
1,sH̄

T
i (Ωi,s − Ω̄i,s)T

}
+ E

{
X1,s f T (Xs, ξs)ET

i ΩT
i,s

}
+E

{
X1,sη

T
i,s

}
+ E

{
X1,sX̃

(1)T
i,s|s−1H̄T

i Ω̄T
i,s

}
= E

{
X̃

(1)
i,s|s−1X̃

(1)T
i,s|s−1

}
H̄T

i Ω̄T
i,s

= P(1)
i,s|s−1H̄T

i Ω̄T
i,s.

Substituting (3.9) into E
{
$seT

i,s

}
and using $s⊥X̃

(1)
i,s|s−1, we can easily get (3.15). Similarly, we can

prove (3.16). �

Lemma 5. For the RONSs (3.1), (3.2) and (3.3) under the conditions of Assumptions 4-6, the
covariance matrices P(1)

iX$,s|s, P(1)
i jX$,s|s, (i, j), Pi$,s|s and Pi j$,s|s, (i, j) between the noise and the state

are, respectively, computed by

P(1)
iX$,s|s = E

{
X̃

(1)
i,s|s$̃

T
i,s|s

}
= −K(1)

i,s|sQei,sK
T
i$,s|s, (3.17)

P(1)
i jX$,s|s = E

{
X̃

(1)
i,s|s$̃

T
j,s|s

}
= K(1)

i,s|sQei j,sK
T
j$,s|s − K(1)

j,s|sQe j,sK
T
j$,s|s − K(1)

i,s|sQei,sK
T
i$,s|s, (3.18)

Pi$,s|s = E
{
$̃i,s|s$̃

T
i,s|s

}
= Q$,s − Ki$,s|sQei,sK

T
i$,s|s, (3.19)

Pi j$,s|s = E
{
$̃i,s|s$̃

T
j,s|s

}
= Q$,s − Ki$,s|sQei,sK

T
i$,s|s − K j$,s|sQe j,sK

T
j$,s|s

+Ki$,s|sQei j,sK
T
j$,s|s, (3.20)

where the noise estimator $̂i,s|s is calculated by

$̂i,s|s = Ki$,s|sei,s, (3.21)

the gain matrix is expressed as follows:

Ki$,s|s = S i,sQ−1
ei,s. (3.22)
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Proof. Let PXY,◦|• be the covariance among errors X̃◦|• and Ỹ◦|•. Based on the PT, we obtain X̂◦|•⊥Ỹ◦|•
and Ŷ◦|•⊥X̃◦|•. We have PXY,◦|• = E

{
X̃◦|•Ỹ

T
◦|•

}
= E

{
X◦Ỹ

T
◦|•

}
= E

{
X̃◦|•Y

T
◦

}
. So, by using X1,s⊥$s, we

have

P(1)
iX$,s|s = E

{
X̃

(1)
i,s|s$̃

T
i,s|s

}
= E

{
X1,s$̃

T
i,s|s

}
= −E

{
X1,s$̂

T
i,s|s

}
. (3.23)

Then, we obtain (3.21) easily, where Ki$,s|s = E
{
$seT

i,s

}
Q−1

ei,s. Substituting (3.21) into (3.23), and using

K(1)
i,s|s = E

{
X1,seT

i,s

}
Q−1

ei,s, we obtain (3.17). Similarly, we can prove (3.18), (3.19) and (3.20). �

Theorem 1. For the RONSs (3.1), (3.2) and (3.3) under the conditions of Assumptions 4-6, the LFs
and one-step predictors for the states X1,s and X2,s are given by

X̂
(1)
i,s|s = X̂

(1)
i,s|s−1 + K(1)

i,s|sei,s, (3.24)

X̂
(1)
i,s+1|s = Φ̄X̂

(1)
i,s|s + ŪKi f ,s|sei,s + Γ̄$̂i,s|s, (3.25)

X̂
(2)
i,s|s = X̂

(2)
i,s|s−1 + K(2)

i,s|sei,s, (3.26)

X̂
(2)
i,s+1|s = BX̂(1)

i,s+1|s, (3.27)

where the gain matrices K(1)
i,s|s, K(2)

i,s|s and Ki f ,s|s are, respectively, expressed by

K(1)
i,s|s = P(1)

i,s|s−1H̄T
i Ω̄T

i,sQ
−1
ei,s, (3.28)

Ki f ,s|s =

m∑
l=1

Πltr(qXsΓl)ET
i Ω̄T

i,sQ
−1
ei,s, (3.29)

K(2)
i,s|s =

[
BP(1)

i,s|s−1H̄T
i Ω̄T

i,s + C
m∑

l=1

Πltr(qXsΓl)ET
i Ω̄T

i,s + DS i,s

]
Q−1

ei,s. (3.30)

The filtering error covariance (FEC) P(1)
i,s|s and the prediction error covariance (PEC) P(1)

i,s+1|s for
state X1,s are computed as

P(1)
i,s|s = P(1)

i,s|s−1 − K(1)
i,s|sQei,sK

(1)T
i,s|s , (3.31)

P(1)
i,s+1|s = Φ̄P(1)

i,s|sΦ̄
T + Ū

m∑
l=1

Πltr(qXsΓl)ŪT + Γ̄Pi$,s|sΓ̄
T + ŪKi f ,s|sQei,sK

T
i f ,s|sŪ

T

+
{
− Φ̄K(1)

i,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)ŪT + Φ̄P(1)
iX$,s|sΓ̄

T − Ū
m∑

l=1

Πltr(qXsΓl)ET
i Ω̄T

i,sK
T
i$,s|sΓ̄

T

−Ū
m∑

l=1

Πltr(qXsΓl)ET
i Ω̄T

i,sK
T
i f ,s|sŪ

T
}

+
{
∗
}T
. (3.32)

The filtering error cross-covariance (FECC) P(1)
i j,s|s and the prediction error cross-covariance

(PECC) P(1)
i j,s+1|s among the ith and the jth sensor (i , j) for state X1,s are computed as

P(1)
i j,s|s = P(1)

i j,s|s−1 − P(1)
i j,s|s−1H̄T

j Ω̄T
j,sK

(1)T
j,s|s − K(1)

i,s|sΩ̄i,sH̄iP
(1)
i j,s|s−1 + K(1)

i,s|sQei j,sK
(1)T
j,s|s , (3.33)
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P(1)
i j,s+1|s = Φ̄P(1)

i j,s|sΦ̄
T + Ū

m∑
l=1

Πltr(qXsΓl)ŪT + Γ̄Pi j$,s|sΓ̄
T + ŪKi f ,s|sQei j,sK

T
j f ,s|sŪ

T

−Φ̄K(1)
i,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)ŪT + Φ̄P(1)
i jX$,s|sΓ̄

T − Φ̄P(1)
i j,s|s−1H̄T

j Ω̄T
j,sK

T
j f ,s|sŪ

T

+Φ̄K(1)
i,s|sQei j,sK

T
j f ,s|sŪ

T − Ū
m∑

l=1

Πltr(qXsΓl)ET
j Ω̄T

j,sK
T
j$,s|sΓ̄

T

−Ū
m∑

l=1

Πltr(qXsΓl)ET
j Ω̄T

j,sK
T
j f ,s|sŪ

T − Γ̄K j$,s|sQe j,sK
T
j f ,s|sŪ

T + Γ̄Ki$,s|sQei j,sK
T
j f ,s|sŪ

T

−Ū
m∑

l=1

Πltr(qXsΓl)ET
j Ω̄T

j,sK
(1)T
j,s|s Φ̄T + Γ̄P(1)

i j$X,s|sΦ̄
T − ŪKi f ,s|sΩ̄i,s|sH̄iP

(1)
i j,s|s−1Φ̄

T

+ŪKi f ,s|sQei j,sK
(1)T
j,s|s Φ̄T − Γ̄Ki$,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)ŪT − ŪKi f ,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)ŪT

−ŪKi f ,s|sQei,sK
T
i$,s|sΓ̄

T + ŪKi f ,s|sQei j,sK
T
j$,s|sΓ̄

T . (3.34)

The FEC P(2)
i,s|s and the FECC P(2)

i j,s|s among the ith and the jth sensor (i , j) for state X2,s are
computed as

P(2)
i,s|s = BP(1)

i,s|s−1BT + C
m∑

l=1

Πltr(qXsΓl)CT + DQ$,sDT + K(2)
i,s|sQei,sK

(2)T
i,s|s +

{
− BK(1)

i,s|sQei,sK
(2)T
i,s|s

−C
m∑

l=1

Πltr(qXsΓl)ET
i Ω̄T

i,sK
(2)T
i,s|s − DS i,sK

(2)T
i,s|s

}
+

{
∗
}T
, (3.35)

P(2)
i j,s|s = BP(1)

i j,s|s−1BT + C
m∑

l=1

Πltr(qXsΓl)CT + DQ$,sDT + K(2)
i,s|sQei j,sK

(2)T
j,s|s − BP(1)

i j,s|s−1H̄T
j Ω̄T

j,sK
(2)T
j,s|s

−C
m∑

l=1

Πltr(qXsΓl)ET
j Ω̄T

j,sK
(2)T
j,s|s − DS j,sK

(2)T
j,s|s − K(2)

i,s|sΩ̄i,sH̄iP
(1)
i j,s|s−1BT

−K(2)
i,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)CT − K(2)
i,s|sS

T
i,sD

T . (3.36)

The correlation matrices P(1,2)
i,s|s and P(1,2)

i j,s|s (i , j) between the X̃(1)
i,s|s and the X̃(2)

j,s|s are computed as

P(1,2)
i,s|s = P(1)

i,s|s−1BT − K(1)
i,s|sQei,sK

(1)T
i,s|s BT + P(1)

iX$,s|sD
T − K(1)

i,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)CT , (3.37)

P(1,2)
i j,s|s = P(1)

i j,s|s−1BT − K(1)
i,s|sΩ̄i,sH̄iP

(1)
i j,s|s−1BT + P(1)

iX$,s|sD
T − K(1)

i,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl)CT

−P(1)
i j,s|s−1H̄T

j Ω̄T
j,sK

(2)T
j,s|s + K(1)

i,s|sQei j,sK
(2)T
j,s|s . (3.38)

The initial values are X̂(1)
i,0|−1 =

[
In1 0

]
R−1π0 and P(1)

i,0|−1 = P(1)
i j,0|−1 =

[
In1 0

]
R−1P0(RT )−1 [

In1 0
]T .
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Proof. According to the PT, we obtain (3.24), (3.25), (3.26) and (3.27), where K(1)
i,s|s, Ki f ,s|s, K(2)

i,s|s are
gain matrices. Substituting (3.14) and (3.16) into the gain matrices K(1)

i,s|s = E
{
X1,seT

i,s

}
Q−1

ei,s and Ki f ,s|s =

E
{
f (Xs, ξs)eT

i,s

}
Q−1

ei,s, respectively, we obtain (3.28) and (3.29) immediately. Substituting (3.2) into

K(2)
i,s|s = E

{
X2,seT

i,s

}
Q−1

ei,s, we can obtain

K(2)
i,s|s =

[
BE

{
X1,seT

i,s

}
+ CE

{
f (Xs, ξs)eT

i,s

}
+ DE

{
$seT

i,s

} ]
Q−1

ei,s, (3.39)

then, substituting (3.14), (3.15) and (3.16) into (3.39), we can easily obtain (3.30).
From (3.25), the prediction error can be obtained for the state X1,s as follows:

X̃
(1)
i,s+1|s = Φ̄X̃

(1)
i,s|s + Ū f (Xs, ξs) + Γ̄$̃i,s|s − ŪKi f ,s|sei,s. (3.40)

Substituting (3.40) into the PEC P(1)
i,s+1|s = E

{
X̃

(1)
i,s+1|sX̃

(1)T
i,s+1|s

}
for state X1,s, we get

P(1)
i,s+1|s = Φ̄P(1)

i,s|sΦ̄
T + ŪE

{
f (Xs, ξs) f T (Xs, ξs)

}
ŪT + Γ̄Pi$,s|sΓ̄

T + ŪKi f ,s|sQei,sK
T
i f ,s|sŪ

T

+
{
Φ̄E

{
X̃

(1)
i,s|s f T (Xs, ξs)

}
ŪT + Φ̄P(1)

iX$,s|sΓ̄
T − Φ̄E

{
X̃

(1)
i,s|se

T
i,s

}
KT

i f ,s|sŪ
T

+ŪE
{
f (Xs, ξs)$̃T

i,s|s

}
Γ̄T − ŪE

{
f (Xs, ξs)eT

i,s

}
KT

i f ,s|sŪ
T − Γ̄E

{
$̃i,s|seT

i,s

}
KT

i f ,s|sŪ
T
}

+
{
∗
}T
. (3.41)

From (3.24), we have the local filtering error equation for state X1,s as follows:

X̃
(1)
i,s|s = X1,s − X̂

(1)
i,s|s = X̃

(1)
i,s|s−1 − K(1)

i,s|sei,s. (3.42)

Therefore, by using (3.16) and (3.42), we obtain

E
{
X̃

(1)
i,s|s f T (Xs, ξs)

}
= −K(1)

i,s|sΩ̄i,sEi

m∑
l=1

Πltr(qXsΓl). (3.43)

Moreover, by using (3.21), we have

E
{
f (Xs, ξs)$̃T

i,s|s

}
= −

m∑
l=1

Πltr(qXsΓl)ET
i Ω̄T

i,sK
T
i$,s|s. (3.44)

Then, by using (3.14), X̂(1)
i,s|s−1⊥ei,s and K(1)

i,s|s = E
{
X1,seT

i,s

}
Q−1

ei,s, we obtain

E
{
X̃

(1)
i,s|se

T
i,s

}
= 0. (3.45)

Similarly, by using (3.15) and (3.22), we arrive at

E
{
$̃i,s|seT

i,s

}
= 0. (3.46)

Subsequently, substituting (3.16), (3.43), (3.44), (3.45) and (3.46) into (3.41), we get (3.32).
Substituting (3.42) into the FEC P(1)

i,s|s = E
{
X̃

(1)
i,s|sX̃

(1)T
i,s|s

}
, we have

P(1)
i,s|s = P(1)

i,s|s−1 − E
{
X̃

(1)
i,s|s−1eT

i,s

}
K(1)T

i,s|s − K(1)
i,s|sE

{
ei,sX̃

(1)T
i,s|s−1

}
+ K(1)

i,s|sQei,sK
(1)T
i,s|s . (3.47)

AIMS Mathematics Volume 7, Issue 2, 2543–2567.



2554

Next, by using X̂(1)
i,s|s−1⊥ei,s and K(1)

i,s|s = E
{
X1,seT

i,s

}
Q−1

ei,s, we obtain (3.31) from (3.47). Similarly, we can
prove (3.33) and (3.34).

From (3.2) and (3.26), we get the local filtering error of state X2,s as follows:

X̃
(2)
i,s|s = BX̃(1)

i,s|s−1 + C f (Xs, ξs) + D$s − K(2)
i,s|sei,s. (3.48)

Then, substituting (3.48) into the FEC P(2)
i,s|s = E

{
X̃

(2)
i,s|sX̃

(2)T
i,s|s

}
, and utilizing E

{
X̃

(1)
i,s|s−1eT

j,s

}
=

P(1)
i j,s|s−1H̄T

j Ω̄T
j,s, we get (3.35) easily. Similarly, we can prove (3.36).

Substituting (3.48) into P(1,2)
i,s|s = E

{
X̃

(1)
i,s|sX̃

(2)T
i,s|s

}
, we can obtain

P(1,2)
i,s|s = E

{
X̃

(1)
i,s|sX̃

(1)T
i,s|s−1

}
BT + E

{
X̃

(1)
i,s|s f T (Xs, ξs)

}
CT + E

{
X̃

(1)
i,s|s$

T
s

}
DT − E

{
X̃

(1)
i,s|se

T
i,s

}
K(2)T

i,s|s . (3.49)

Moreover, by using (3.42), X̂(1)
i,s|s−1⊥ei,s and X̃(1)

i,s|s⊥$̂i,s|s, we can easily get

E
{
X̃

(1)
i,s|sX̃

(1)T
i,s|s−1

}
= P(1)

i,s|s−1 − K(1)
i,s|sQei,sK

(1)T
i,s|s , (3.50)

E
{
X̃

(1)
i,s|s$

T
s

}
= P(1)

iX$,s|s. (3.51)

Then, substituting (3.43), (3.45), (3.50) and (3.51) into (3.49), we get (3.37).
Substituting (3.48) into P(1,2)

i j,s|s = E
{
X̃

(1)
i,s|sX̃

(2)T
j,s|s

}
, we can get

P(1,2)
i j,s|s = E

{
X̃

(1)
i,s|sX̃

(1)T
j,s|s−1

}
BT + E

{
X̃

(1)
i,s|s f T (Xs, ξs)

}
CT + E

{
X̃

(1)
i,s|s$

T
s

}
DT − E

{
X̃

(1)
i,s|se

T
j,s

}
K(2)T

j,s|s . (3.52)

Then, we have

E
{
X̃

(1)
i,s|sX̃

(1)T
j,s|s−1

}
= P(1)

i j,s|s−1 − K(1)
i,s|sΩ̄i,sH̄iP

(1)
i j,s|s−1, (3.53)

E
{
X̃

(1)
i,s|se

T
j,s

}
= P(1)

i j,s|s−1H̄T
j Ω̄T

j,s − K(1)
i,s|sQei j,s. (3.54)

Therefore, substituting (3.43), (3.51), (3.53) and (3.54) into (3.52), we can prove (3.38). �

Remark 4. From Theorem 1, we have derived the optimal LFs on the basis of the IAA, which is
a common method to obtain the optimal linear estimate in the sense of LMV. The existing results
in [37], [43] and [46] with stochastic nonlinearity and fading measurements have been generalized
in this paper. We can see that the proposed LFs are dependent on the noise filters, which is different
from the suboptimal Kalman-type recursive filter in [37]. Moreover, it should be noted that the filters
in [43] and [46] also have been presented by utilizing the IAA. However, the above literatures only
take normal systems into consideration. Hence, in this paper, we have considered the fusion filtering
problem for MSSSs with stochastic nonlinearity and fading measurements by employing the IAA.

In the fusion center, based on the LFs and covariance matrices proposed above, we have the
following reduced-order DFFs for two RONSs (3.1), (3.2) and (3.3) by using the MWFA.

Theorem 2. For RONSs (3.1), (3.2) and (3.3), we have the reduced-order DFFs as follows:

X̂
(k)
0,s|s = Λk,sℵ̂k,s|s, k = 1, 2
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2555

where Λk,s = (εT
nk

Σ−1
k,s|sεnk)

−1εT
nk

Σ−1
k,s|s, ℵ̂k,s|s =

[
X̂

(k)T
1,s|s X̂

(k)T
2,s|s · · · X̂

(k)T
N,s|s

]T
εnk =

[
Ink · · · Ink

]T
, Σk,s|s =[

P(k)
i j,s|s

]
Nnk×Nnk

, whose nk×nk sub-block in the (i, j) place is P(k)
i j,s|s. The covariance of X̂(k)

0,s|s are computed
by

P(k)
0,s|s = (εT

nk
Σ−1

k,s|sεnk)
−1,

and we have P(k)
0,s|s ≤ P(k)

i,s|s(i = 1, 2, · · · ,N).

Proof. From the optimal fusion estimation algorithm [26], the proof is complete. �

Theorem 3. For the original systems (2.1) and (2.2), the DFF has the following form:

X̂0,s|s = R
[
X̂

(1)T
0,s|s X̂

(2)T
0,s|s

]T
.

The covariance of X̂0,s|s is calculated by

P0,s|s = R
P(1)

0,s|s P(1,2)
0,s|s

P(2,1)
0,s|s P(2)

0,s|s

 RT ,

where the FEC P(1,2)
0,s|s between X̃(1)

0,s|s and X̃(2)
0,s|s is calculated by

P(1,2)
0,s|s = (εT

n1
Σ−1

1,s|sεn1)
−1εT

n1
Σ−1

1,s|sΣ12,s|sΣ
−1
2,s|sεn2(ε

T
n2

Σ−1
2,s|sεn2)

−1,

where P(1,2)
0,s|s = P(2,1)T

0,s|s , Σ12,s|s =
[
P(1,2)

i j,s|s

]
Nn1×Nn2

.

Proof. From the transformation Xs = R
[
XT

1,s X
T
2,s

]T
, we can prove it easily. �

Remark 5. So far, we have encountered some obstacles in deriving the distributed matrix-weighted
fusion filter. For example, (1) how to handle the diagonal-matrix with random variable exists in the
measurement equations; (2) how to derive the FECC between any two LFs by using the IAA. In order
to overcome these difficulties, the Hadamard product has been introduced to make the calculation more
convenient in taking the expectations on the products of some random matrices. In addition, the FECCs
are obtained by solving the cross-covariance matrices between state and noises, innovation and state.

The distributed fusion filtering algorithm for the singular systems can be given by the following
steps:
Step 1. Set the initial values X̂(1)

i,0|−1 =
[
In1 0

]
R−1π0 and P(1)

i,0|−1 = P(1)
i j,0|−1 =

[
In1 0

]
R−1P0(RT )−1 [

In1 0
]T ,

where i, j = 1, 2, · · · ,N; i , j, qX0 = π0π
T
0 + P0.

Step 2. Compute the second-order moment matrix qXs by Lemma 2, and the innovation ei,s by (3.9).
Step 3. Compute the innovation covariance matrices Qei,s and Qei j,s by Lemma 3, the gain matrices
K(1)

i,s|s by (3.28), Ki f ,s|s by (3.29), K(2)
i,s|s by (3.30), the covariance matrices P(1)

iX$,s|s, P(1)
i jX$,s|s, Pi$,s|s and

Pi j$,s|s by Lemma 5.
Step 4. Compute the FECs P(1)

i,s|s by (3.31), P(2)
i,s|s by (3.35), the FECCs P(1)

i j,s|s by (3.33), P(2)
i j,s|s by (3.36),

the PEC P(1)
i,s+1|s by (3.32), the PECC P(1)

i j,s+1|s by (3.34), the correlation matrices P(1,2)
i,s|s by (3.37), P(1,2)

i j,s|s
by (3.38).
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Step 5. Compute the LFs X̂(1)
i,s|s by (3.24), X̂(2)

i,s|s by (3.26), the local predictors X̂(1)
i,s+1|s by (3.25), X̂(2)

i,s+1|s
by (3.27).
Step 6. Compute the reduced-order fusion filters X̂(k)

0,s|s (k = 1, 2) by Theorem 2.
Step 7. Compute the DFF X̂0,s|s for original singular systems by Theorem 3.
Step 8. Let s = s + 1, return step 2.

4. An illustrative example

In this section, we provide a simulation example to illustrate the validity of the proposed distributed
fusion filtering algorithm.

As we all know, the nonlinear RLC circuits can be molded by the nonlinear singular systems as
in [47]. we consider the class of singular systems (2.1) and (2.2) with three sensors, where the related
parameters are

M =


−1.8 0 0 0
1.2 0 2 0
−2.38 0 −1 0
−1.44 0 1.4 0

 ,Φ =


0.6 0 −0.5 0
−2.8 0 1 0
5.22 −2 −1.45 0
−3.36 −1 0.2 2

 ,Υ =


−4 −1
0.8 3.2

0.08 −2.38
0.96 −4.66

 ,

H1 =

[
1 1 0.5 0
0 0 1 1

]
,H2 =

[
1 0 0 1
0 1 1 0

]
,H3 =

[
1 1 0 1
1 0.1 1 1

]
.

We choose the nonsingular matrices

U =


−2 0 0 0
1 0.5 0 0

0.5 0.9 1 0
0 −1.2 0 1

 ,R =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Then, we have the standard form as follows:[

M1 0
M2 0

] [
X1,s+1

X2,s+1

]
=

[
Φ1 0
Φ2 Φ3

] [
X1,s

X2,s

]
+

[
U1

U2

]
f (Xs, ξs) +

[
Υ1

Υ2

]
$s,

Yi,s = Ωi,s

[
H

(1)
i H

(2)
i

] [X1,s

X2,s

]
+ ϑi,s, i = 1, 2, 3

where

M1 =

[
3.6 0
−1.2 1

]
,M2 =

[
−2.2 0.8

0 −1

]
,Φ1 =

[
−1.2 1
−0.8 0

]
,Φ2 =

[
3 −0.8
0 −1

]
,Φ3 =

[
−2 0
−1 2

]
,

Υ1 =

[
0.8 2
0 0.6

]
,Υ2 =

[
0.6 0
0 −0.82

]
,H (1)

1 =

[
1 0.5
0 1

]
,H (2)

1 =

[
1 0
0 1

]
,H (1)

2 =

[
1 0
0 1

]
,H (2)

2 =

[
0 1
1 0

]
,
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H
(1)
3 =

[
1 0
1 1

]
,H (2)

3 =

[
1 1

0.1 1

]
,U1 =

[
−2 0 0 0
1 0.5 0 0

]
,U2 =

[
0.5 0.9 1 0
0 −1.2 0 1

]
.

We set Q$,s = I2, Qϑ1,s = 5I2, Qϑ2,s = 10I2, Qϑ3,s = 15I2. The function f (Xs, ξs) is given as follows:

f (Xs, ξs) =


0.1
0.2
0.3
0.5


[
0.2sign(X̄1,s)X̄1,sξ1,s + 0.3sign(X̄2,s)X̄2,sξ2,s + 0.4sign(X̄3,s)X̄3,sξ3,s

+0.5sign(X̄4,s)X̄4,sξ4,s
]
,

where X̄i,s and ξi,s (i = 1, 2, 3, 4) represent the ith component of Xs and ξs, respectively. ξi,s are
uncorrelated Gaussian white noises with zero-mean and unity variances. We can easily get

Π1 =


0.1
0.2
0.3
0.5



0.1
0.2
0.3
0.5


T

,Γ1 = diag {0.04, 0.09, 0.16, 0.25} .

Let Ω1,s = diag
{
α11,s, α12,s

}
, Ω2,s = diag

{
α21,s, α22,s

}
, Ω3,s = diag

{
α31,s, α32,s

}
, where the probability

density functions pik,s(l) (i = 1, 2, 3; k = 1, 2) in the interval [0, 1] for αik,s (i = 1, 2, 3) satisfy

p1k,s(l) =


0.05, l = 0
0.1, l = 0.5
0.85, l = 1

, p2k,s(l) =


0.05, l = 0
0.1, l = 0.2
0.35, l = 0.6
0.5, l = 1

, p3k,s(l) =



0.05, l = 0
0.1, l = 0.2
0.2, l = 0.5
0.3, l = 0.8
0.35, l = 1

,

with the mathematical expectations and variances µ1 = 0.9, µ2 = 0.73, µ3 = 0.71, σ2
1 = 0.065,

σ2
2 = 0.0971 and σ2

3 = 0.0919. In the simulation, we chose the collection of 80 data points, the
initial value is a zero-mean Gaussian variable with P0 = 0.1I4. For every RONS, applying Theorem
1, we have the LFs X̂(1)

i,s|s and X̂(2)
i,s|s, where i = 1, 2, 3. Then applying Theorem 2, we obtain the DFFs

weighted by matrices as follows: X̂(1)
0,s|s and X̂(2)

0,s|s. Subsequently, by applying Theorem 3, we can obtain
DFF X̂0,s|s of the original systems. The simulation results are given in Figures 1–9.

The proposed DFF is shown in Figures 1–4. As we can see, it has the effective estimation
performance, where the true value is represented by solid curves, and the dashed curves denote the
DFF. To show the performance of DFF algorithm, in Figures 5–8, the precision is compared by plotting
the mean square errors (MSEs), where the MSEs of 1000 times (i.e., 1

1000

∑1000
l=1 (Xl

s − X̂
l
i,s|s)

2 with
i = 0, 1, 2, 3) are for LFs when i = 1, 2, 3 and DFF when i = 0. From Figures 5–8, we can easily obtain
that the DFF has better precision than the LFs. Thereby, it is easy to see that the proposed fusion
algorithm in this paper has better estimation performance from the simulation results.
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Figure 1. The first component of the true state Xs and its fusion filter X̂0,s|s.
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Figure 2. The second component of the true state Xs and its fusion filter X̂0,s|s.
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Figure 3. The third component of the true state Xs and its fusion filter X̂0,s|s.
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Figure 4. The fourth component of the true state Xs and its fusion filter X̂0,s|s.
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Figure 5. MSEs of the first component of state Xs for LFs and DFF.
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Figure 6. MSEs of the second component of state Xs for LFs and DFF.
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Figure 7. MSEs of the third component of state Xs for LFs and DFF.
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Figure 8. MSEs of the fourth component of state Xsfor LFs and DFF.

In addition, in order to illustrate the impacts from the fading measurements, Figure 9 shows the
comparison of MSEs (i.e., 1

1000

∑1000
l=1

∑4
k=1(Xl,k

s − X̂
l,k
0,s|s)

2) for DFF under different fading cases, where
X

l,k
s and X̂l,k

0,s|s represent the kth component of Xl
s and X̂l

0,s|s, respectively. Then, we consider the

AIMS Mathematics Volume 7, Issue 2, 2543–2567.



2562

following different cases: Case 1: µ1 = 0.2, µ2 = 0.4, µ3 = 0.5; Case 2: µ1 = 0.5, µ2 = 0.5, µ3 = 0.5;
Case 3: µ1 = 0.5, µ2 = 0.5, µ3 = 0.97. It is obviously observed that Case 3 is better than Case 2, while
Case 1 is the worst. Owing to the dependence between the filtering error and fading probabilities, we
can derive that the better estimations are obtained when the values µi (i = 1, 2, 3) increase. Hence, we
further illustrate the effectiveness of the proposed fusion filtering scheme.
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Figure 9. MSEs for DFF under different fading probabilities.

5. Conclusions

In this paper, we have investigated the fusion filtering problem for MSSSs in the presence of
fading measurements and stochastic nonlinearity. The phenomenon of fading measurements has
been described by a diagonal matrix with a set of random variables. By using the nonsingular
transformations, the singular systems have been converted into two RONSs. For subsystems, the
distributed optimal fusion filters have been presented on the basis of the matrices weighted fusion
criterion. It is worth pointing out that the matrices weighted fusion filter is unbiased and optimal, and
the computation burden of fusion center is reduced by using the parallel structure. In simulation, by
comparing the DFF with LFs, we can easily obtain the DFF with better precision. In some special
fields, the nonsingular matrixM is a non-square matrix. In future work, we will consider the research
of non-square networked singular systems.
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Appendix

From (3.7), we can see that qX2,s+1 contains
∑m

l=1 Πltr(qXs+1Γl), then substituting qX2,s+1 into (3.4), we
get

qXs+1 = R
[
qX1,s+1 qX12,s+1

qX21,s+1 BqX1,s+1 BT + DQ$,s+1DT

]
RT + R

[
0 0
0 C

∑m
l=1 Πltr(qXs+1Γl)CT

]
RT

= ∆s+1 + tr(qXs+1Γ1)Θ1 + tr(qXs+1Γ2)Θ2 + · · · + tr(qXs+1Γm)Θm, (5.1)

where

∆s+1 = R
[
qX1,s+1 qX12,s+1

qX21,s+1 BqX1,s+1 BT + DQ$,s+1DT

]
RT ,

Θl = R
[
0 0
0 CΠlCT

]
RT , l = 1, 2, · · · ,m.

Then, multiplying the right side of Γl (l = 1, 2, · · · ,m) to (5.1), we obtain m equations as follows:
qXs+1Γ1 =∆s+1Γ1 + tr(qXs+1Γ1)Θ1Γ1 + · · · + tr(qXs+1Γm)ΘmΓ1

...

qXs+1Γm =∆s+1Γm + tr(qXs+1Γ1)Θ1Γm + · · · + tr(qXs+1Γm)ΘmΓm

. (5.2)

Calculating the trace of equations (5.2), we get
tr(Γ1Θ1) − 1 tr(Γ1Θ2) · · · tr(Γ1Θm)

tr(Γ2Θ1) tr(Γ2Θ2) − 1 · · · tr(Γ2Θm)
...

...
. . .

...

tr(ΓmΘ1) tr(ΓmΘ2) · · · tr(ΓmΘm) − 1



tr(qXs+1Γ1)
tr(qXs+1Γ2)

...

tr(qXs+1Γm)

 =


−tr(∆s+1Γ1)
−tr(∆s+1Γ2)

...

−tr(∆s+1Γm)

 . (5.3)

According to Assumption 7, we obtain that the coefficient matrix of (5.3) is invertible, so we get
tr(qXs+1Γ1)
tr(qXs+1Γ2)

...

tr(qXs+1Γm)

 = (Ψ − Im)−1


−tr(∆s+1Γ1)
−tr(∆s+1Γ2)

...

−tr(∆s+1Γm)

 , (5.4)

then, multiplying the left side of
[
Π1 Π2 · · · Πm

]
to (5.4), we obtain

m∑
l=1

Πltr(qXs+1Γl) =
[
Π1 Π2 · · · Πm

]
(Ψ − Im)−1


−tr(∆s+1Γ1)
−tr(∆s+1Γ2)

...

−tr(∆s+1Γm)

 . (5.5)

From the above discussion, we can see that the right-hand side of Eq (5.5) contains
∑m

l=1 Πltr(qXsΓl),
and the Eq (5.5) can be computed recursively.
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