Mathematics

Research article

Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions

Zeya Jia ${ }^{1}$, Nazar Khan ${ }^{2}$, Shahid Khan ${ }^{3}$ and Bilal Khan ${ }^{4, *}$
${ }^{1}$ School of Mathematics and Statistics, Huanghuai University, Zhumadian 463000, Henan, China
${ }^{2}$ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan
${ }^{3}$ Department of Mathematics and Statistics, Riphah International University Islamabad 44000, Pakistan
${ }^{4}$ School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
* Correspondence: Email: bilalmaths789@gmail.com; Tel: +8618521059849.

Abstract: In this paper, we introduce the q-analogus of generalized differential operator involving

 q-Mittag-Leffler function in open unit disk$$
E=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

and define new subclass of analytic and bi-univalent functions. By applying the Faber polynomial expansion method, we then determined general coefficient bounds $\left|a_{n}\right|$, for $n \geq 3$. We also highlight some known consequences of our main results.

Keywords: analytic functions; univalent functions; analytic and bi-univalent function; q-derivative; subordination; Faber polynomials; q-Mittag-Leffler function
Mathematics Subject Classification: Primary 05A30, 30C45; Secondary 11B65, 47B38

1. Introduction, definitions and motivation

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc

$$
E=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

and normalized under the conditions

$$
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=1 .
$$

Furthermore, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in E.
Let $f \in \mathcal{A}$ given by (1.1) and $g \in \mathcal{A}$ given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(z \in E),
$$

we define the convolution (or Hadamard product) of f and g as:

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \quad(z \in E) .
$$

Let $f, h \in \mathcal{A}, f$ is subordinate to h if there exists a Schwarz function u, where

$$
u(0)=0 \quad \text { and } \quad|u(z)|<1 \quad(z \in E),
$$

such that

$$
f(z)=h(u(z)) \quad(z \in E) .
$$

We denote this subordination by

$$
f<h \text { or } f(z)<h(z), \quad(z \in E) .
$$

In particular, if the function h is univalent in E, the above subordination is equivalent to

$$
f(0)=h(0) \quad f(E) \subset h(E) .
$$

We see that (see [24]) for the Schwarz function $u(z)$, we have

$$
\left|u_{n}\right| \leq 1 .
$$

The Koebe-one quarter Theorem (see [24]) shows that the image of E under every univalent function $f \in \mathcal{A}$ contains a disk $\left\{w:|w|<\frac{1}{4}\right\}$ of radius $\frac{1}{4}$. Every univalent function f has an inverse f^{-1} defined on some disk containing the disk $\left\{w:|w|<\frac{1}{4}\right\}$ and satisfying:

$$
f^{-1}(f(z))=z \quad(z \in E)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\ldots . \tag{1.2}
\end{equation*}
$$

A function f is said to be bi-univalent on E if both f and $g=f^{-1}$ are univalent on E. We denote the class of all such functions by Σ.

Lewin [50] studied the class of bi-univalent functions, in fact he obtained the bound

$$
\left|a_{2}\right| \leq 1.51 .
$$

Netanyahu [53] showed that max $\left|a_{2}\right|=\frac{4}{3}$. Brannan and Clunie [16] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. In recent years, the pioneering work of Srivastava et al. [67] essentially revived the investigation of various subclasses of the analytic and bi-univalent function class Σ. In fact, in a remarkably large number of sequels to the pioneering work of Srivastava et al. [67], several different subclasses of the analytic and bi-univalent function class were introduced and studied analogously by the many authors (see, for example, [11, 17-21, 29, 31, 38, 39, 64, 67].

In Geometric Function Theory (GFT), the quantum (or q-) calculus used as important tools to study different families of analytic function and due to the application in mathematics and some related areas it has inspired a number of well-known mathematicians.

The quantum (or q-) calculus is widely applied in various operators which include the q-difference (q-derivative) operators and these operators plays an important role in GFT as well as in the theory of hypergeometric series, quantum theory, number theory and statistical mechanics. Jackson [35, 36] was among the few researchers who defined the q-derivative and q-integral operator as well as provided some of their applications. Also Ismail et al. [34] introduced research work in connection with function theory and q-theory. Letter on, by using q-beta function Gupta [14] introduced q-Baskakov-Durrmeyer operator while q-Picard and q-Gauss-Weierstrass singular integral operators introduced and studied by Aral in [13].

Historically, Srivastava studied univalent function theory by using q-calculus, see for detail [62,63]. Moreover, Kanas and Raducanu [40] introduced the q-analogue of Ruscheweyh differential operator and Arif et al. [15] discussed some of its applications for multivalent functions. For detailed study about q-analogous of operators we may refer to $[1,33,42-49,59,66]$.
Definition 1.1. (see [36]) The q-number $[t]_{q}$ and q-factorial $[n]_{q}!$ for $q \in(0,1)$ is defined as:

$$
[t]_{q}=1+q+q^{2}+\ldots+q^{n-1}, \quad(t=n \in \mathbb{N})
$$

and

$$
[n]_{q}!=\prod_{k=1}^{n}[k]_{q},(n \in \mathbb{N})
$$

where

$$
[0]_{q}!=1 \quad \text { and } \quad[t]_{q}=\frac{1-q^{t}}{1-q} \quad(t \in \mathbb{C})
$$

Definition 1.2. (see [36]) The q-generalized Pochhammer symbol $[t]_{n, q}, t \in \mathbb{C}$, is defined as:

$$
[t]_{n, q}=[t]_{q}[t+1]_{q}[t+2]_{q} \cdots[t+n-1]_{q}, \quad(n \in \mathbb{N}) .
$$

and the q-Gamma function be given as:

$$
[t]_{q}=\frac{\Gamma_{q}(t+1)}{\Gamma_{q}(t)} \text { and } \Gamma_{q}(1)=1 .
$$

Definition 1.3. ([36]) For $f \in \mathcal{A}$, the q-derivative operator or q-difference operator be defined as:

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad z \in E . \tag{1.3}
\end{equation*}
$$

Combining (1.1) and (1.3), we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

Note that

$$
D_{q} z^{n}=[n]_{q} z^{n-1} \quad \text { and } \quad D_{q}\left\{\sum_{n=1}^{\infty} a_{n} z^{n}\right\}=\sum_{n=1}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

We can observe that

$$
\lim _{q \rightarrow 1-} D_{q} f(z)=f^{\prime}(z)
$$

Mittag-Leffler introduced Mittag-Leffler function $\mathcal{H}_{\alpha}(z)$ in [51, 52] as:

$$
\mathcal{H}_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{1}{\Gamma(\alpha n+1)} z^{n}, \quad(\alpha \in \mathbb{C}, \mathfrak{R}(\alpha))>0,
$$

and its generalization $\mathcal{H}_{\alpha, \beta}(z)$ introduced by Wiman [70] as:

$$
\mathcal{H}_{\alpha, \beta}(z)=\sum_{n=0}^{\infty} \frac{1}{\Gamma(\alpha n+\beta)} z^{n}, \quad(\alpha, \beta \in \mathbb{C}, \mathfrak{R}(\alpha), \mathfrak{R}(\beta))>0 .
$$

For more study about Mittag-Leffler function see article [?, 12, 54, 65, 68].
The q-Mittag-Leffler function is defined by (see [58])

$$
\begin{equation*}
\mathcal{H}_{\alpha, \beta}(z, q)=\sum_{n=0}^{\infty} \frac{1}{\Gamma_{q}(\alpha n+\beta)} z^{n} \quad(\alpha, \beta \in \mathbb{C}, \mathfrak{R}(\alpha), \mathfrak{R}(\beta))>0 . \tag{1.4}
\end{equation*}
$$

Note that q-Mittag-Leffler function is the specialized case of the q-Fox-Wright function ${ }_{r} \Phi_{s}(z, q)$, (see, for details, $[60,61]$). Since the q-Mittag-Leffler function $\mathcal{H}_{\alpha, \beta}(z, q)$ defined by (1.4) does not belong to the normalized analytic function class \mathcal{A}.

Now, we define the normalization of this q-Mittag-Leffler function $\mathcal{F}_{\alpha, \beta}(z)$ as:

$$
\begin{aligned}
& \mathcal{F}_{\alpha, \beta}(z, q)=z \Gamma_{q}(\beta) \mathcal{H}_{\alpha, \beta}(z) \\
& \mathcal{F}_{\alpha, \beta}(z, q)=z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(n-1)+\beta)} z^{n},
\end{aligned}
$$

where $z \in E, \mathfrak{R} \alpha>0, \beta \in \mathbb{C} \backslash\{0,-1,-2, \ldots\})$. Corresponding to $\mathcal{F}_{\alpha, \beta}(z, q)$ and for $f \in \mathcal{A}$, we define the following differential operator $\mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta): \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\mathcal{D}_{\delta, \mu}^{0, q}(\alpha, \beta) f(z)=f(z) * \mathcal{F}_{\alpha, \beta}(z, q),
$$

$$
\begin{align*}
\mathcal{D}_{\delta, \mu}^{1, q}(\alpha, \beta) f(z) & =(1-\delta+\mu)\left(f(z) * \mathcal{F}_{\alpha, \beta}(z, q)\right) \\
& +(\delta-\mu) z D_{q}\left(f(z) * \mathcal{F}_{\alpha, \beta}(z, q)\right)+\delta \mu z^{2} D_{q}^{2}\left(f(z) * \mathcal{F}_{\alpha, \beta}(z, q)\right), \tag{1.5}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) f(z)=\mathcal{D}_{\delta, \mu}^{q}\left(\mathcal{D}_{\delta, \mu}^{m-1}(\alpha, \beta) f(z)\right) . \tag{1.6}
\end{equation*}
$$

If $f(z)$ is given by (1.1), then from (1.5) and (1.6), we have

$$
\mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) f(z)=z+\sum_{n=2}^{\infty} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} a_{n} z^{n},
$$

where

$$
\begin{align*}
\varphi(\delta, \mu, q, n) & =1+\left(\delta \mu[n]_{q}[n-1]_{q}+q(\delta-\mu)[n]_{q}\right) \tag{1.7}\\
\Psi(\alpha, \beta, q, n) & =\frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(n-1)+\beta)} . \tag{1.8}
\end{align*}
$$

Each of the following special case of the above-mentioned operator $\mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta): \mathcal{A} \rightarrow \mathcal{A}$ is worthy of noted.
(i) For $\mu=0, \alpha=0, \beta=1$, and $\delta=1$, we get Salagean q-differential operator introduced by Salagean in [27].
(ii) For $q \rightarrow 1-, \mu=0, \alpha=0, \beta=1$, and $\delta=1$, we get Salagean differential operator introduced by Salagean in [55].
(iii) For $q \rightarrow 1-, \mu=0, \alpha=0$, and $\beta=1$, we get Al-Oboudi operator [2].
(iv) For $q \rightarrow 1-$, and $m=0$, we have $E_{\alpha, \beta}(z)$ introduced in [65].
(v) For $q \rightarrow 1-, \alpha=0$, and $\beta=1$, we have Raducanu and Orhan differential operator [22] see also [23].

The Faber polynomials introduced by Faber [25] play an important role in various areas of mathematical sciences, especially in Geometric Function Theory see also [28,56,57]. Not much is known about the bounds on general coefficients $\left|a_{n}\right|$, for $n \geq 3$ of bi-univalent functions. In the literature only a few work determining the general coefficient $\left|a_{n}\right|$, for $n \geq 3$ for the analytic bi-univalent function given by (1.1). For more study see $[3,4,30,32,37,69]$.

Here in this paper we define new subclass of bi-univalent functions and determine estimates for the general coefficient bounds $\left|a_{n}\right|$ for $n \geq 3$, by using Faber polynomial expansions and newly defined q-analogue of differential operator. Throughout in this paper, we assume that

$$
0 \leq \mu \leq \delta, 0 \leq \delta, 0<q<1,-1 \leq B<A \leq 1, \lambda \geq 1, m \in N_{0}=N \cup\{0\} .
$$

Definition 1.4. A function $f \in \Sigma$ is said to be in the class $\mathcal{B}_{\Sigma}^{m, \lambda, \mu, \delta}(\alpha, \beta, q, A, B)$ if the following subordinations are satisfied:

$$
\frac{(1-\lambda) \mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) f(z)+\lambda \mathcal{D}_{\delta, \mu}^{m+1, q}(\alpha, \beta) f(z)}{z}<\frac{1+A z}{1+B z},
$$

and

$$
\frac{(1-\lambda) \mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) g(w)+\lambda \mathcal{D}_{\delta, \mu}^{m+1, q}(\alpha, \beta) g(w)}{w}<\frac{1+A w}{1+B w},
$$

where the function g is given by (1.2).
Remark 1.5. First of all, it ids easy to see that

$$
\lim _{q \rightarrow 1-}\left(\mathcal{B}_{\Sigma}^{m, \lambda, 0,1}(0,1, q, 1,-1)\right)=\mathcal{B}_{\Sigma}(m, \lambda, \varphi),
$$

where $\mathcal{B}_{\Sigma}(m, \lambda, \varphi)$ is the function class introduced and studied by Altinkaya and Yalcin [11]. Secindly, we have

$$
\lim _{q \rightarrow 1-} \mathcal{B}_{\Sigma}^{0, \lambda, 0,1}(0,1, q, 1,-1)=\mathcal{B}_{\Sigma}(\varphi, \lambda)
$$

where the class $\mathcal{B}_{\Sigma}(\varphi, \lambda)$ was introduced by Frasin and Aouf [26].
In this article, we defined certain new subclasses of analytic and bi-univalent functions which involve the differential operator of q-Mittag-Leffer functions. Then by applying the method of Faber polynomial expansions, we determined general coefficients bond $\left|a_{n}\right|$, for $n \geq 3$. We also highlight some known consequences of our main results.

2. Main results

By using the Faber polynomial expansion of functions f of the form (1.1), the coefficients of its inverse map $g=f^{-1}$ are given by,

$$
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right) w^{n},
$$

where

$$
\begin{aligned}
K_{n-1}^{-n} & =\frac{(-n)!}{(-2 n+1)!(n-5)!} a_{2}^{n-1}+\frac{(-n)!}{[2(-n+1)]!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \\
& +\frac{(-n)!}{[2(-n+2)]!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right] \\
& +\sum_{j \geq 7} a_{2}^{n-j} V_{j}
\end{aligned}
$$

and $g=f^{-1}$ given by (1.2), V_{j} with $7 \leq j \leq n$ is a homogeneous polynomial in the variables $\left|a_{2}\right|,\left|a_{3}\right|, \ldots,\left|a_{n}\right|$ (see [5]). In particular, the first three terms of K_{n-1}^{-n} are

$$
\frac{1}{2} K_{1}^{-2}=-a_{2}
$$

$$
\begin{gathered}
\frac{1}{3} K_{2}^{-3}=2 a_{2}^{2}-a_{3} \\
\frac{1}{4} K_{3}^{-4}=-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
\end{gathered}
$$

In general, for any $p \in \mathbb{N}$ and $n \geq 2$, an expansion of K_{n-1}^{p} (see [4]) is,

$$
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} E_{n-1}^{2}+\frac{p!}{(p-3)!3!} E_{n-1}^{3}+\ldots+\frac{p!}{(p-n+1)!(n-1)!} E_{n-1}^{n-1},
$$

where $E_{n-1}^{p}=E_{n-1}^{p}\left(a_{2}, a_{3}, \ldots\right)$ (see [6]) given by

$$
E_{n-1}^{m}\left(a_{2}, \ldots, a_{n}\right)=\sum_{n=2}^{\infty} \frac{m!\left(a_{2}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n-1}}}{\mu_{1}!\ldots \mu_{n-1}!}, \quad \text { for } m \leq n
$$

While $a_{1}=1$, and the sum is taken over all nonnegative integer μ_{1}, \ldots, μ_{n} satisfying:

$$
\mu_{1}+\mu_{2}+\ldots+\mu_{n}=m,
$$

and

$$
\mu_{1}+2 \mu_{2}+\ldots+(n-1) \mu_{n-1}=n-1 .
$$

Evidently, (see [3])

$$
E_{n-1}^{n-1}\left(a_{2}, \ldots, a_{n}\right)=a_{2}^{n-1}
$$

or equivalently,

$$
E_{n}^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{n=1}^{\infty} \frac{m!\left(a_{1}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n}}}{\mu_{1}!\ldots \mu_{n}!}, \quad \text { for } m \leq n
$$

again $a_{1}=1$, and the taking the sum over all nonnegative integer μ_{1}, \ldots, μ_{n} satisfying:

$$
\begin{aligned}
\mu_{1}+\mu_{2}+\ldots+\mu_{n} & =m, \\
\mu_{1}+2 \mu_{2}+\ldots+(n) \mu_{n} & =n .
\end{aligned}
$$

It is clear that

$$
E_{n}^{n}\left(a_{1}, \ldots, a_{n}\right)=E_{1}^{n}
$$

the first and last polynomials are

$$
E_{n}^{n}=a_{1}^{n} \quad \text { and } \quad E_{n}^{1}=a_{n} .
$$

Theorem 2.1. Let $f \in \mathcal{B}_{\Sigma}^{m, \lambda, \mu, \delta}(\alpha, \beta, q, A, B)$. If $a_{i}=0 ; 2 \leq i \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{A-B}{\{1+(\varphi-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m}}, \quad n \geq 3,
$$

where φ is given by (1.7).

Proof. Let f be given by (1.1), we have

$$
\begin{aligned}
& \frac{(1-\lambda) \mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) f(z)+\lambda \mathcal{D}_{\delta, \mu}^{m+1, q}(\alpha, \beta) f(z)}{z} \\
& =1+\sum_{n=2}^{\infty}\{1+(\varphi-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} a_{n} z^{n-1}
\end{aligned}
$$

and for its inverse map $g=f^{-1}$, we have

$$
\begin{aligned}
& \frac{(1-\lambda) \mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) g(w)+\lambda \mathcal{D}_{\delta, \mu}^{m+1, q}(\alpha, \beta) g(w)}{w} \\
& =1+\sum_{n=2}^{\infty}\{1+(\varphi-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} \\
& \cdot \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3} \ldots, a_{n}\right) w^{n-1} \\
& =1+\sum_{n=2}^{\infty}\{1+(\varphi-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} b_{n} w^{n-1},
\end{aligned}
$$

where

$$
b_{n}=\frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3} \ldots, a_{n}\right) .
$$

Since, both the functions f and its inverse map $g=f^{-1}$ are in $\mathcal{B}_{\Sigma}^{m, \lambda, \mu, \delta}(\alpha, \beta, q, A, B)$, by the definition of subordination, for $z, w \in E$, there exist two Schwarz functions

$$
\psi(z)=\sum_{n=1}^{\infty} c_{n} z^{n}
$$

and

$$
\phi(w)=\sum_{n=1}^{\infty} d_{n} w^{n},
$$

such that

$$
\begin{equation*}
\frac{(1-\lambda) \mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) f(z)+\lambda \mathcal{D}_{\delta, \mu}^{m+1, q}(\alpha, \beta) f(z)}{z}=\frac{1+A(\psi(z))}{1+B(\psi(z))} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) \mathcal{D}_{\delta, \mu}^{m, q}(\alpha, \beta) g(w)+\lambda \mathcal{D}_{\delta, \mu}^{m+1, q}(\alpha, \beta) g(w)}{w}=\frac{1+A(\phi(w))}{1+B(\phi(w))}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1+A(\psi(z))}{1+B(\psi(z))}=1-\sum_{n=1}^{\infty}(A-B) K_{n}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n}, B\right) z^{n} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+A(\phi(w))}{1+B(\phi(w))}=1-\sum_{n=1}^{\infty}(A-B) K_{n}^{-1}\left(d_{1}, d_{2}, \ldots, d_{n}, B\right) w^{n} \tag{2.4}
\end{equation*}
$$

In general [3,4] for any $p \in \mathbb{N}$ and $n \geq 2$, an expansion of $K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B\right)$,

$$
\begin{aligned}
K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B\right) & =\frac{p!}{(p-n)!n!} k_{1}^{n} B^{n-1}+\frac{p!}{(p-n+1)!(n-2)!} k_{1}^{n-2} k_{2} B^{n-2} \\
& +\frac{p!}{(p-n+2)!(n-3)!} \times k_{1}^{n-3} k_{3} B^{n-3} \\
& +\frac{p!}{(p-n+3)!(n-4)!} k_{1}^{n-4}\left[k_{4} B^{n-4}+\frac{p-n+3}{2} k_{3}^{2} B\right] \\
& +\frac{p!}{(p-n+4)!(n-5)!} k_{1}^{n-5}\left[k_{5} B^{n-5}+(p-n+4) k_{3} k_{4} B\right] \\
& +\sum_{j \geq 6} k_{1}^{n-1} X_{j},
\end{aligned}
$$

where X_{j} is a homogeneous polynomial of degree j in the variables $k_{1}, k_{2}, \ldots, k_{n}$.
Comparing the corresponding coefficients of (2.1) and (2.3) yields

$$
\begin{align*}
& \{1+(\varphi(\delta, \mu, q, n)-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} a_{n} \\
& =-(A-B) K_{n-1}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n-1}, B\right) \tag{2.5}
\end{align*}
$$

and similarly, from (2.2) and (2.4) yields

$$
\begin{align*}
& \{1+(\varphi(\delta, \mu, q, n)-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} b_{n} \\
& =-(A-B) K_{n-1}^{-1}\left(d_{1}, d_{2}, \ldots, d_{n-1}, B\right) \tag{2.6}
\end{align*}
$$

Note that for $a_{i}=0 ; 2 \leq i \leq n-1$, we have

$$
b_{n}=-a_{n}
$$

and so

$$
\begin{align*}
& \{1+(\varphi(\delta, \mu, q, n)-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} a_{n} \\
& =-(A-B) c_{n-1}, \tag{2.7}\\
& \{1+(\varphi(\delta, \mu, q, n)-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} a_{n} \\
& =(A-B) d_{n-1} . \tag{2.8}
\end{align*}
$$

Now taking the absolute values of (2.7) and (2.8) and using the fact that

$$
\left|c_{n-1}\right| \leq 1 \quad \text { and } \quad\left|d_{n-1}\right| \leq 1,
$$

we obtain

$$
\begin{aligned}
\left|a_{n}\right| & =\frac{1-(A-B))_{n-1} \mid}{\| 1+(\varphi(\delta, \mu, q, n)-1) \lambda\left|\Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m}\right|} \\
& =\frac{\mid A-B))_{n-1} \mid}{\| 1+(\varphi(\delta, \mu, q, n)-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m} \mid} \\
& \leq \frac{A-B}{\{1+(\varphi(\delta, \mu, q, n)-1) \lambda\} \Psi(\alpha, \beta, q, n)(\varphi(\delta, \mu, q, n))^{m}} .
\end{aligned}
$$

If in Theorem 2.1, we take

$$
\mu=0=\alpha \quad \text { and } \quad \beta=\delta=1=A=-B
$$

and let $q \rightarrow 1$-, we have the following known result.
Corollary 2.2. ([11]). Let $f \in \mathcal{B}_{\Sigma}(m, \lambda, \varphi)$. If $a_{i}=0 ; 2 \leq i \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{2}{n^{m}\{1+(n-1) \lambda\}} ; \quad n \geq 3 .
$$

Theorem 2.3. Let $f \in \mathcal{B}_{\Sigma}^{m, \lambda, \mu, \delta}(\alpha, \beta, q, A, B)$. Then

$$
\begin{aligned}
& \left|a_{3}-a_{2}^{2}\right| \leq \frac{A-B}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}},
\end{aligned}
$$

and

$$
\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{|A-B|\{1+|B|\}}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} .
$$

Proof. Replacing n by 2 and 3 in (2.5) and (2.6), respectively, we find that

$$
\begin{gather*}
\{1+(\varphi(\delta, \mu, q, 2)-1) \lambda\} \Psi(\alpha, \beta, q, 2)(\varphi(\delta, \mu, q, 2))^{m} a_{2}=-(A-B) c_{1}, \tag{2.9}\\
\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m} a_{3} \\
=(A-B) c_{2}+B(B-A) c_{1}^{2}, \tag{2.10}\\
\{1+(\varphi(\delta, \mu, q, 2)-1) \lambda\} \Psi(\alpha, \beta, q, 2)(\varphi(\delta, \mu, q, 2))^{m} a_{2}=(A-B) d_{1} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{align*}
& \{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}\left(2 a_{2}^{2}-a_{3}\right) \\
& =(A-B) d_{2}+B(B-A) d_{1}^{2} . \tag{2.12}
\end{align*}
$$

From (2.9) and (2.11) we obtain

$$
\begin{aligned}
\left|a_{2}\right| & =\frac{\left|-(A-B) c_{1}\right|}{\{1+(\varphi(\delta, \mu, q, 2)-1) \lambda\} \Psi(\alpha, \beta, q, 2)(\varphi(\delta, \mu, q, 2))^{m}} \\
& =\frac{\left|(A-B) d_{1}\right|}{\{1+(\varphi(\delta, \mu, q, 2)-1) \lambda\} \Psi(\alpha, \beta, q, 2)(\varphi(\delta, \mu, q, 2))^{m}}
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{A-B}{\{1+(\varphi(\delta, \mu, q, 2)-1) \lambda\} \Psi(\alpha, \beta, q, 2)(\varphi(\delta, \mu, q, 2))^{m}} . \tag{2.13}
\end{equation*}
$$

Adding (2.10) and (2.12) implies

$$
\begin{aligned}
& 2\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m} a_{2}^{2} \\
& =(A-B)\left(c_{2}+d_{2}\right)+B(B-A)\left(c_{1}^{2}+d_{1}^{2}\right),
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{(A-B)\{1+|B|\}}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}}} . \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14) we get required assertion.
Now from (2.10), one can easily see that

$$
\begin{aligned}
\left|a_{3}\right| & =\frac{\left|(A-B) c_{2}+B(B-A) c_{1}^{2}\right|}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} \\
& \leq \frac{(A-B)\{1+|B|\}}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} .
\end{aligned}
$$

Next in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.12) from (2.10), we thus obtain

$$
\begin{align*}
& 2\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}\left(a_{3}-a_{2}^{2}\right) \\
& =(A-B)\left(c_{2}-d_{2}\right)+B(B-A)\left(c_{1}^{2}-d_{1}^{2}\right) . \tag{2.15}
\end{align*}
$$

Using the fact that $c_{1}^{2}=d_{1}^{2}$ and taking the absolute values of both sides of (2.15), we obtain the desired inequality

$$
\begin{align*}
\left|a_{3}\right| & \leq\left|a_{2}\right|^{2}+\frac{\left|(A-B)\left(c_{2}-d_{2}\right)\right|}{2\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} \\
& \leq\left|a_{2}\right|^{2}+\frac{A-B}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} . \tag{2.16}
\end{align*}
$$

Substituting the value of a_{2}^{2} from (2.13) into (2.16), we obtain

$$
\begin{aligned}
\left|a_{3}\right| & \leq \frac{(A-B)^{2}}{\left\{\{1+(\varphi(\delta, \mu, q, 2)-1) \lambda\} \Psi(\alpha, \beta, q, 2)(\varphi(\delta, \mu, q, 2))^{m}\right\}^{2}} \\
& +\frac{A-B}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} .
\end{aligned}
$$

Additionally, substituting the value of a_{2}^{2} from (2.14) into (2.16), we obtain

$$
\left|a_{3}\right| \leq \frac{(A-B)\{2+|B|\}}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} .
$$

Solving the equation (2.15) for $a_{3}-a_{2}^{2}$, we get the desired inequality as:

$$
\begin{aligned}
\left|a_{3}-a_{2}^{2}\right| & =\left|\frac{(A-B)\left(c_{2}-d_{2}\right)+B(B-A)\left(c_{1}^{2}-d_{1}^{2}\right)}{2\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}}\right| \\
& \leq \frac{A-B}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} .
\end{aligned}
$$

Finally we rewrite (2.12) as

$$
\begin{aligned}
& \{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}\left(a_{3}-2 a_{2}^{2}\right) \\
& =-\left\{(A-B) d_{2}+B(B-A) d_{1}^{2}\right\}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\left|a_{3}-2 a_{2}^{2}\right| & =\left|\frac{-\left\{(A-B) d_{2}+B(B-A) d_{1}^{2}\right\}}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}}\right| \\
& \leq \frac{|A-B|\{1+|B|\}}{\{1+(\varphi(\delta, \mu, q, 3)-1) \lambda\} \Psi(\alpha, \beta, q, 3)(\varphi(\delta, \mu, q, 3))^{m}} .
\end{aligned}
$$

If in Theorem 2.3, we take

$$
\mu=0=\alpha \quad \text { and } \quad \beta=\delta=1=A=-B
$$

and let $q \rightarrow 1$-, we have the following known result.
Corollary 2.4. ([11]). Let $f \in \mathcal{B}_{\Sigma}(p, \lambda, \varphi)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \min \left\{\frac{1}{(1+\lambda) 2^{m-1}}, \frac{2}{\sqrt{(1+2 \lambda) 3^{m}}}\right\}, \\
\left|a_{3}\right| \leq \min \left\{\frac{1}{(1+\lambda)^{2} 2^{2 m-2}}+\frac{2}{(1+2 \lambda) 3^{m}}, \frac{2}{(1+2 \lambda) 3^{m-1}}\right\}, \\
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2}{(1+2 \lambda) 3^{m}}
\end{gathered}
$$

and

$$
\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4}{(1+2 \lambda) 3^{m}}
$$

3. Conclusions

Basic (or q-) Calculus is particularly applicable in many deserve areas of mathematics and physics. In our present investigations, we have first introduced the q-analogus of generalized differential operator involving q-Mittag-Leffler function in open unit disk

$$
E=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

and then defined certain new subclasses of analytic and bi-univalent functions. Furthermore, By applying the Faber polynomial expansion method, we have determined general coefficient bounds $\left|a_{n}\right|$, for $n \geq 3$. We have also highlight some known consequences of our main results.

Acknowledgment

This work was supported by The Key Scientific Research Project of the Colleges and Universities in Henan Province (NO. 19A110024), Natural Science Foundation of Henan Province (CN) (NO. 212300410204).

References

1. Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, 33 (2019), 3385-3397. Available from: https://doi.org/10.2298/FIL1911385A.
2. F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27 (2004), 1429-1436. Available from: https://doi.org/10.1155/S0161171204108090.
3. H. Airault, Remarks on Faber polynomials, Int. Math. Forum., 3 (2008), 449-456.
4. H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179-222. doi:10.1016/j.bulsci.2005.10.002.
5. H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126 (2002), 343-367. Available from:
https://doi.org/10.1016/S0007-4497(02)01115-6.
6. H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Conference, Groups and Symmetries Montreal Canada, April 2007.
7. R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344-351. Available from: https://doi.org/10.1016/j.aml.2011.09.012.
8. S. Altınkaya, S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), Article ID: 145242. Available from: doi.org/10.1155/2015/145242.
9. S. Altınkaya, S. Yalçın, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Acta Univ. Apulensis, Mat. Inform., 40 (2014), 347-354.
10. S. Altınkaya, S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, Int. J. Anal., (2014), Article ID: 867871.
11. S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I., 353 (2015), 1075-1080. Available from: https://doi.org/10.1016/j.crma.2015.09.003.
12. A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075-2081.
13. A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl., 8 (2006), 249-261.
14. A. Aral, V. Gupta, On q-Baskakov type operators, Demon-str. Math., 42 (2009), 109-122.
15. M. Arif, H. M. Srivastava, S. Uma, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221. Available from: https://doi.org/10.1007/s13398-018-0539-3.
16. D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Instute Held at University of Durham, New York, Academic Press, 1979.
17. S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic biunivalent functions, C. R. Acad. Sci. Paris. Ser. I., 352 (2014), 479-484. Available from: https://doi.org/10.1016/j.crma.2014.04.004.
18. E. Deniz, J. M. Jahangiri, S. K. Kina, S. G. Hamidi, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12 (2018), 645-653. Available from: dx.doi.org/10.7153/jmi-2018-12-49.
19. E. Deniz, H. T. Yolcu, Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Math., 5 (2020), 640-649.
20. M. Çağlar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. Al Math. Stat., 66 (2017), 8591. Available from: https://doi.org/10.1501/Commua1_0000000777.
21. E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), 49-60. Available from: dx.doi.org/10.7153/jca-02-05.
22. D. Raducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal., 4 (2010), 1-15.
23. E. Deniz, H. Orhan, The Fekete-Szegö Problem for A Generalized Subclass of Analytic Functions, Kyungpook Math. J., 50 (2010), 37-47.
24. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
25. G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389-408. Available from: https://doi.org/10.1007/BF01444293.
26. B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573. Available from: https://doi.org/10.1016/j.aml.2011.03.048.
27. M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475-487. Available from:
https://doi.org/10.1007/s10476-017-0206-5.
28. H. Grunsky, Koffizientenbedingungen fur schlict abbildende meromorphe funktionen, Math. Zeit., 45 (1939), 29-61.
29. S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-toconvex functions, C. R. Acad. Sci. Paris. Ser. I, 352 (2014), 17-20. Available from: https://doi.org/10.1016/j.crma.2013.11.005.
30. S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser. I, 354 (2016), 365-370. Available from:
https://doi.org/10.1016/j.crma.2016.01.013.
31. S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103-1119. Available from: https://doi.org/10.1007/s41980-018-0011-3.
32. S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, J. Complex Anal., Article ID 2826514. Available from: https://doi.org/10.1155/2017/2826514.
33. S. Hussain, S. Khan, M. A. Zaighum, D. Darus, Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator, AIMS Math., 2 (2017), 622-634. doi: 10.3934/Math.2017.4.622.
34. M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84. Available from: https://doi.org/10.1080/17476939008814407.
35. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
36. F. H. Jackson, On q-functions and a certain difference operator, T. Royal Soc. Edinburgh, 46 (1908), 253-281. doi: https://doi.org/10.1017/S0080456800002751.
37. J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., 17 (1986), 1140-1144.
38. J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., (2013), Article ID 190560. Available from: https://doi.org/10.1155/2013/190560.
39. J. M. Jahangiri, S. G. Hamidi, S. Abd Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., 3 (2014), 633-640.
40. S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196. Available from: https://doi.org/10.2478/s12175-014-0268-9.
41. S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some subclasses of bi-univalent functions associated with Srivastva-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37-44.
42. B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, 8 (2020), Article ID 1470, 1-12. Available from: https://doi.org/10.3390/math8091470.
43. B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent q-starlike functions, Maejo Internat. J. Sci. Technol., 15 (2021), 6172.
44. B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2021), 1024-1039. doi:10.3934/math. 2021061.
45. B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), Article ID 1334, 1-15. Available from: https://doi.org/10.3390/math8081334.
46. W. S. Chung, T. Kim, H. I. Kwon, On the q-analog of the Laplace transform, Russ. J. Math. Phys., 21 (2014), 156-168. Available from: https://doi.org/10.1134/S1061920814020034.
47. V. Gupta, T. Kim, On a q-analog of the Baskakov basis functions, Russ. J. Math. Phys., 20 (2013), 276-282. Available from: https://doi.org/10.1134/S1061920813030035.
48. T. Kim, D. S. Kim, W. S. Chung, H. I. Kwon, Some families of q-sums and q-products, Filomat, 31 (2017), 1611-1618. Available from: https://doi.org/10.2298/FIL1706611K.
49. T. Kim, Some identities on the q-integral representation of the product of several q-Bernstein-type polynomials, Abstr. Appl. Anal., 2011 (2011), Article ID 634675, 11.
50. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68. Available from: https://doi.org/10.2307/2035225.
51. G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x), C$ R Acad. Sci. Paris, 137 (1903), 554-558.
52. G. M. Mittag-Leffler, Sur la representation analytique dune branche uniforme dune fonction monogene, Acta Math., 29 (1905), 101-181.
53. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. An., 32 (1969), 100-112. Available from: https://doi.org/10.1007/BF00247676.
54. H. Rehman, M. Darus, J. Salah, Coefficient properties involving the generalized k-Mittag-Leffler functions, Transyl. J. Math. Mech.(TJMM), 9 (2017), 155-164.
55. G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362-372.
56. M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc., 44 (1938), 432-449. Available from: https://doi.org/10.1112/plms/s2-44.6.432.
57. A. C. Schaeffer, D. C. Spencer, The coefficients of schlict functions, Duke Math. J., 10 (1943), 611-635. doi: 10.1215/S0012-7094-43-01056-7.
58. S. K. Sharma, R. Jain, On some properties of generalized q-Mittag Leffler function, Math. Aeterna, 4 (2014), 613-619.
59. L. Shi, M. Raza, K. Javed, S. Hussain, M. Arif, Class of analytic functions defined by q-integral operator in a symmetric region, Symmetry, 11 (2019), 1042. Available from: https://doi.org/10.3390/sym11081042.
60. H. M. Srivastava, Certain q-polynomial expansions fot functions of several variables. I and II, IMA J. Appl. Math., 30 (1983), 315-323. Available from: https://doi.org/10.1093/imamat/30.3.315.
61. H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, (1985).
62. H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Univalent functions, fractional Calculus, and Their Applications, John Wiley \& Sons, New York, etc. (1989).
63. H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. Available from: https://doi.org/10.1007/s40995-019-00815-0.
64. H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. Available from:
https://www.jstor.org/stable/24898346.
65. H. M. Srivastava, B. A. Frasin, V. Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11 (2017), 635-641.
66. H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babe s-Bolyai Math., 63 (2018), 419-436. doi: 10.24193/subbmath.2018.4.01.
67. H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. Available from: https://doi.org/10.1016/j.aml.2010.05.009.
68. H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210. Available from: https://doi.org/10.1016/j.amc.2009.01.055.
69. P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1991), 268-276. Available from: https://doi.org/10.1016/0022-247X(91)90193-4.
70. A. Wiman, Uber den fundamentalsatz in der teorie der funktionen $E(x)$, Acta Math., 29 (1905), 191-201. doi: 10.1007/BF02403202.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
