
AIMS Mathematics, 7(2): 2479–2497.
DOI: 10.3934/math.2022139
Received: 16 July 2021
Accepted: 28 October 2021
Published: 12 November 2021

http://www.aimspress.com/journal/Math

Research article

��-ideal approximation spaces and their applications

Ashraf S. Nawar1, Mostafa A. El-Gayar2, Mostafa K. El-Bably3,* and Rodyna A. Hosny4

1 Department of Mathematics and Computer Science, Faculty of Science, Menoufia University,
Menoufia, Egypt

2 Department of Mathematics, Faculty of Science, Helwan University, Helwan, Egypt
3 Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
4 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

* Correspondence: Email: mkamel_bably@yahoo.com.

Abstract: The essential aim of the current work is to enhance the application aspects of Pawlak
rough sets. Using the notion of a � -neighborhood space and the related concept of �� -open sets,
different methods for generalizing Pawlak rough sets are proposed and their characteristics will be
examined. Moreover, in the context of ideal notion, novel generalizations of Pawlak’s models and
some of their generalizations are presented. Comparisons between the suggested methods and the
previous approximations are calculated. Finally, an application from real-life problems is proposed to
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1. Introduction

Rough set philosophy [1] deals with ambiguity. In fact, this methodology was based on an
equivalence relation which limited the application fields. Accordingly, to extend the application
scope of these approaches, the equivalence relation is generalized to a rough set model constructed
by any binary relation. Numerous proposals established in this line [2–31]. Nowadays, there are
many applications of topology and its extensions, for instance [5,11,13,17,32,33].

Abd El-Monsef et al. [19] presented a structure to generalize the standard rough set concept. In
fact, they presented the notion of a � -neighborhood space (briefly, � -NS) constructed by a binary
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relation. Moreover, they used a general topology generated from the binary relation to set up
generalized rough sets. This methodology paved the way for extra topological presentations in the
rough set contexts and helped to formalize various applications from daily-life problems. After then,
Amer et al. [20] applied some near open sets in a �-NS, and thus they managed to in generating new
generalized rough set approximations, namely �-near approximations. In 2018, Hosny [21] extended
these approximations to different approximations using the concepts of ��-open and ∧� -open sets.
Using the interesting notion “Ideal”, Hosny [22] proposed another idea for generalizing Pawlak’s
theory. She has introduced the ideas of �� -lower and �� -upper approximations as extensions for
Pawlak’s approximations and several of their generalizations.

Ideal represents an important notion in topological spaces and has a vital part in the study of
topological problems. This concept is very interesting in rough set theory since it is considered as a
bridge between rough sets and topological structures. Moreover, the ideal can be considered as a
class of some objects in the information system that has some conditions and the expert wants to
study and make a new granulation for the data collected from real-life problem according to this
class. Few authors have used the term “ideal” to describe and produce non-granular rough
approximations over general approximation spaces in recent years. These relation-based rough set
studies have aimed to obtain fine properties analogous to those of classical rough approximations.
The authors severely generalize these ideas in this research paper, and they investigate associated
semantic features. Granules are used implicitly in the building of approximations, and thus the idea
of ��� -ideal approximations are introduced. In other words, we suggested two different methods
depending on topological concepts, and hence the significance of these approaches was that they
were based on ideals, which were topological tools, and the two proposed methods represent two
opinions rather than one. Therefore, these techniques open the way for more topological applications
in the rough set context.

The fundamental contributions of the present work are to introduce different extensions of
Pawlak’s rough context and its generalizations. In fact, we suggest two different types to extend and
strengthen the already methods in the literature (namely, Abd El-Monsef et al. [19], Amer et al. [20],
and Hosny [21,22] techniques). Moreover, we illustrate that the proposed methods have extended the
application fields in real-life problems and help in extracting the data in the information system.

This paper is organized into five different sections besides the introduction and the conclusion.
Section 2 is devoted to state the main concepts, results, and methods that are used throughout the
paper. Additionally, we give a summary of previous methods which are compared with our
approaches. By using the new notion of ���-open sets, we proposed a new technique to generalize
Pawlak’s rough models and some of its generalizations in section 3. The central properties of this
method are examined and compared to Abd El-Monsef et al. [19], Amer et al. [20], and Hosny [21,22]
methods. Additionally, many results with counterexamples are investigated to reason that the
suggested method is stronger than the other methods. In setion 4, we present and examine the models
of ��� -ideal lower and ��� -ideal upper approximations for any subset. Some properties of these
operators will be examined and demonstrated that ���-ideal approximations are more accurate than
the other methods. Finally, in section 5, a practical example is presented to clarify the importance of
the proposed techniques in decision-making. Besides, the proposed methods are compared with the
previous methodologies. From real-life problems, we use an information system (with decision
attributes). This system depends on a binary relation which means that Pawlak’s rough sets can’t be
applied here. So, we apply our methods and will show that the recommended methods are stronger
than the other methods. Therefore, we can say that our methods extend the application fields for
rough sets from a topological point of view.
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2. Preliminaries

In the next, we give the basic ideas and consequences used in current research.
Definition 2.1. [34] A non-empty class � of subsets of a set � is called an ideal on �, if it satisfies
the subsequent conditions
1) If � ∈ � and � ⊆ �, then � ∈ � (hereditary),
2) If � ∈ � and � ∈ �, then �⋃� ∈ � (finite additivity).
Definition 2.2. [19] Suppose that � is an arbitrary binary relation on a non-empty finite set � .
Therefore, the �-neighborhoods of � ∈ � (Symbolically, �� � , ∀� ∈ {�, �, � , � , � , �, � , � }),
are given by:
(i) Right neighborhood (briefly, �-neighborhood):

�� � = � ∈ �: ���

(ii) Left neighborhood (briefly, �-neighborhood):

�� � = � ∈ �: ���

(iii) Minimal right neighborhood (briefly, � -neighborhood):

N r x = x∈Nr y Nr y�

(iv) Minimal left neighborhood (briefly, � -neighborhood):

� � � = �∈�� � �� �� .

(v) Intersection of right and left neighborhoods (briefly, �-neighborhood):

�� � = �� � ∩ �� � .

(vi) Union of right and left neighborhoods (briefly, �-neighborhood):

�� � = �� � ∪ �� � .

(vii) Intersection of minimal right and minimal left neighborhoods (briefly, � -neighborhood):

� � � = � � � ∩ � � � .

(viii) Union of minimal right and minimal left neighborhoods (briefly, � -neighborhood):

� � � = � � � ∪ � � � .

Definition 2.3. [19] Suppose that � is an arbitrary binary relation on a non-empty finite set � and
��: � ⟶ � � is a mapping which assigns an �-neighborhood for each � ∈ � in � � . The triple
�, �, �� is named a �-neighborhood space (in briefly, �-NS).
Theorem 2.1. [19] If �, �, �� is a � -NS, then ∀� ∈ �, �, � , � , �, �, � , � the family �� =
� ⊆ �: ∀ � ∈ �, �� � ⊆ � forms a topology on �.
Definition 2.4. [19] Let (�, �, ��) be a �-NS. A subset � ⊆ � is said to be a �-open set if � ∈ �� ,
the complement of a �-open set is called a �-closed set. A class Γ� of all �-closed sets is given by
Γ� = {� ⊆ �: �� ∈ ��}, such that �� represents a complement of �.
Definition 2.5. [19] Let (�, �, ��) be a �-NS, and � ⊆ �. Then, ∀� ∈ �, �, � , � , �, �, � , � , we
define the �-lower and the �-upper approximations, the �-boundary regions and the �-accuracy of
approximations of �, respectively, by:
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�� � = ⋃ � ∈ ��: � ⊆ � = ����(�), where ����(�) represents �-interior of �.

�� � = � � ∈ ��: � ⊇ � = ���(�), where ���(�) represents �-closure of �.

�� � = �� � − �� � .

�� � =
�� �

�� �
, where �� � ≠ 0.

Definition 2.6. [19] Suppose that (�, �, ��) is a � -NS, and � ⊆ � , then for each � ∈
�, �, � , � , �, �, � , � , the subset � is named a � -exact set if �� � = �� � = � . Else, � is
called a �-rough set.

Definition 2.7. [20] Suppose that (�, �, ��) is a �-NS. A subset � ⊆ � is named

(1) �-regular open (��∗-open), if � = ����(���(�));
(2) �-preopen (��-open), if � ⊆ ����(���(�));
(3) �-semi open (��-open), if � ⊆ ���(����(�));
(4) ��-open (��-open), if � ⊆ ����(���(�)) ⋃ ���(����(�));
(5) ��-open, if � ⊆ ����[���(����(�))];
(6) ��-open (semi preopen), if � ⊆ ���[����(���(�))];
(7) ���-open, if � ⊆ ���[����(����(�))].
Remark 2.1. [20]
(i) The previous types of sets are called �-near open sets and the families of �-near open sets of �
symbolized by ���(�), ∀� ∈ {�∗, �, �, �, �, �, ��}.
(ii) The complements of the �-near open sets are called �-near closed sets and the families of �-near
closed sets of � symbolized by ���(�), ∀� ∈ {�∗, �, �, �, �, �, ��}.
Definition 2.8. [21] Let (�, �, ��) be a �-NS, and � ⊆ �. A subset ⋀��(�) is assumed as follows:
⋀��(�) = �{�: � ⊆ �, � ∈ ���(�)}. The complement of ⋀��(�)-set is called ⋁��(�)-set.
Definition 2.9. [21] Let (�, �, ��) be a �-NS, and � ⊆ �. A subset � is said to be a ⋀��-set if � =
⋀��(�) . The family of all ⋀�� -sets and ⋁��

-sets are symbolized by ⋀���(�) and ⋁���(�) ,

respectively.
Definition 2.10. [20,21] Let (�, �, ��) be a � -NS, and � ⊆ � . Then, for each � ∈
�, �, � , � , �, �, � , � and � ∈ {�∗, �, �, �, �, �, ��, ⋀β} , the � -near lower, � -near upper
approximations, � -near boundary regions and � -near accuracy of the approximations of � are
assumed respectively by:

�
�
� � = ⋃ � ∈ ��� � : � ⊆ � .

��
�
� = � � ∈ ��� � : � ⊇ � .

��� � = ��
�
� − �

�
� � .

��� � =
��
� �

��
�
�
, where ��

�
� ≠ 0.



2483

AIMS Mathematics Volume 7, Issue 2, 2479–2497.

Definition 2.11. [20,21] Let (�, �, ��) be a � -NS, and � ⊆ � . Then, for each � ∈
�, �, � , � , �, �, � , � and � ∈ {�∗, �, �, �, �, �, ��, ⋀β}, � is called a �-near definable (�-near

exact) set if �
�
� � = ��

�
� . Else, � is called a �-near rough set.

Proposition 2.1. [20,21] If (�, �, ��) is a � -NS, and � ⊆ � , then for each � ∈
�, �, � , � , �, �, � , � and � ∈ {�, �, �, �, �, ��, ⋀β}, � ≠ �∗:

��(�) ⊆ �
�
� � ⊆ � ⊆ ��

�
� ⊆ �� � .

Proposition 2.2. [20,21] Consider (�, �, ��) is a �-NS, and � ⊆ �. Then, the following properties
are satisfied:

1) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
�� � .

2) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
⋀β � .

3) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
�� � .

4) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
⋀β � .

5) ��
��

� ⊆ ��
�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

6) ��
⋀β � ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

7) ��
��

� ⊆ ��
�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

8) ��
⋀β � ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

Proposition 2.3. [20,21] Let (�, �, ��) be a �-NS, and � ⊆ � . Then, the following statements are
verified:

1) ��
�� � ⊆ ��

� � ⊆ ��
� � ⊆ ��� � ⊆ ��� � .

2) ��
⋀β � ⊆ ��

� � ⊆ ��
� � ⊆ ��� � ⊆ ��� � .

3) ��
�� � ⊆ ��

� � ⊆ ��
� � ⊆ ��� � ⊆ ��� � .

4) ��
⋀β � ⊆ ��

� � ⊆ ��
� � ⊆ ��� � ⊆ ��� � .

5) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
�� � .

6) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
⋀β � .

7) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
�� � .

8) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
⋀β � .

Theorem 2.2. [22] Assume that (�, �, ��) is a �-NS, � ⊆ � and � is an ideal on �, then for each
� ∈ �, �, � , � , �, �, � , � the collection ��� = � ⊆ �: ∀ � ∈ �, �� � � �� ∈ � is a topology
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on �.
Definition 2.12. [22] Let (�, �, ��) be a �-NS, and � be an ideal on �. A subset � ⊆ � is named
an ��-open set if � ∈ ��� , the complement of an ��-open set is named an ��-closed set. A family �j

I

of all �j-closed sets is given by ��
� = {� ⊆ �: �� ∈ ���}, such that �� represents a complement of �.

Definition 2.13. [22] Consider (�, �, ��) is a � -NS, � is an ideal on � and � ⊆ � . ∀� ∈
{�, �, � , � , �, �, � , � } , the �� -lower, �� -upper approximations, �� -boundary regions and
��-accuracy of the approximations of � are assumed, respectively, by:

�
�
� � = ⋃ � ∈ ���: � ⊆ � = �����(�), where �����(�) represents �-�-interior of �.

��
�
� = � � ∈ ��

�: � ⊇ � = ����(�), where ����(�) represents �-�-closure of A.

��� � = ��
�
� − �

�
� � .

��� � =
��
� �

��
�
�
, where ��

�
� ≠ 0.

3. ���-rough sets by using ���-open sets

A new method for defining generalized rough sets using the idea of ���-open sets is proposed.
The current method’s properties are investigated and compared to those of Abd El-Monsef et al. [19],
Amer et al. [20], and Hosny [21].
Definition 3.1. Consider (�, �, ��) is a �-NS, � ⊆ � and for each � ∈ �, �, � , � , �, �, � , � .
The �� -closure of � is defined by ���� � = {� ∈ �: � ���� (�) ≠ ∅, ∀� ∈ �� and � ∈ �} .
Moreover, � is called a ��-closed if � = ���� � . The complement of a ��-closed set is ��-open.
Note that: ����� � = � − ���� � − � .
Definition 3.2. Consider (�, �, ��) is a �-NS and � ⊆ �. A subset � is called a ���-open, if � ⊆
���[����(����(�))]. � is a ��� -closed set if its complement is a ��� -open set and the family of all
���-open and ���-closed sets are symbolized by ����(�) and ����(�), respectively.
Example 3.1. Let � = {�, �, �, �, �} and = { �, � , �, � , �, � , �, � , �, � , �, � , �, � , �, � ,
�, � , (�. �)} be a binary relation given on �. Then, we get

�� � = {�, �}, �� � = {�, �, �}, �� � = �� � = {�, �}, �� � = {�}.

Therefore, the topology associated with this relation is
�� = {�, ∅, � , �, � , �, � , �, �, � , �, �, �, � , {�, �, �, �}, and hence we obtain ���� � = �(�).

The next results demonstrate that ��� -open sets are more accurate than ��� -open sets and
⋀��-open sets. Therefore, ���-open sets are stronger than other �-near open sets such as ��∗ -open,
��-open, �� -open, ��-open, �� -open and �� -open sets. Moreover, by appling the characteristics of
the definitions of �-interior, �-closure, ��-closure and ��-closure operators, it is easy to prove these
results, so we omit the proof.
Proposition 3.1. Each ���-open set is ���-open.
Proposition 3.2. Each ⋀��-open set is ���-open.

Remark 3.1. The reverse of Propositions 3.1 and 3.2 is not essentially correct as showing in Example 3.1.
Definition 3.3. Let (�, �, ��) be a � -NS, and � ⊆ � . Then, the ��� -lower, ��� -upper
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approximations, ��� -boundary regions and ��� -accuracy of the approximations of � are defined,
respectively, by:

�
�
�� � = ⋃ � ∈ ����(�): � ⊆ � = ���- interior of �.

��
��

� = � � ∈ ����(�): � ⊇ � = ���- closure of �.

��
�� � = ��

��
� − �

�
�� � .

��
�� � =

��
�� �

��
��

�
, where ��

��
� ≠ 0.

To illustrate the connections among the existing approaches in Definition 3.3 and the preceding
one in Definitions 2.5 [19] and 2.10 [20,21], we present the following results.
Theorem 3.1. Let (�, �, ��) be a �-NS, and � ⊆ �. Then, the next statements are verified:

1) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
�� � ⊆ �

�
�� � .

2) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
⋀β � ⊆ �

�
�� � .

3) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
�� � ⊆ �

�
�� � .

4) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
⋀β � ⊆ �

�
�� � .

5) �� � ⊆ �
�
�� � .

6) ��
��

� ⊆ ��
��

� ⊆ ��
�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

7) ��
��

� ⊆ ��
⋀β � ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

8) ��
��

� ⊆ ��
��

� ⊆ ��
�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

9) ��
��

� ⊆ ��
⋀β � ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� ⊆ ��

�
� .

10) ��
��

� ⊆ �� � .

Proof.
1) �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
�� � , by Proposition 2.2 (1) and �

�
�� � = ⋃ � ∈

���� � : � ⊆ � ⊆ ⋃ � ∈ ���� � : � ⊆ � = �
�
�� � (Proposition 3.1).

2) �
�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
� � ⊆ �

�
⋀β � , by Proposition 2.2 (2) and

�
�
⋀� � = ⋃ � ∈ ⋀��� � : � ⊆ � ⊆ ⋃ � ∈ ���� � : � ⊆ � = �

�
�� � (Proposition 3.2).

3) Similar to (1).
4) Similar to (2).
5) By Proposition 2.1, �� ⊆ �

�
� � , and � ∈ {�, �, �, �, �, ��, ⋀β}, such that � ≠ �∗, and from (1)

�
�
� � ⊆ �

�
�� � . Therefore, �� ⊆ �

�
�� � .
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(6)–(9) Similar to (1) and (2).
10) By Proposition 2.1, ��

�
� ⊆ �� � , and � ∈ {�, �, �, �, �, ��, ⋀β} , � ≠ �∗ , and by (6)

��
��

� ⊆ ��
�
� . Therefore, ��

��
� ⊆ �� � .

Corollary 3.1. If (�, �, ��) is a �-NS, and � ⊆ �, then the following statements are satisfied:

1) ��
�� � ⊆ ��

�� � ⊆ ��
� � ⊆ ��

� � ⊆ ��� � ⊆ ��� � .

2) ��
�� � ⊆ ��

⋀β � ⊆ ��
� � ⊆ ��

� � ⊆ ��� � ⊆ ��� � .

3) ��
�� � ⊆ ��

�� � ⊆ ��
� � ⊆ ��

� � ⊆ ��� � ⊆ ��� � .

4) ��
�� � ⊆ ��

⋀β � ⊆ ��
� � ⊆ ��

� � ⊆ ��� � ⊆ ��� � .

5) ��
�� � ⊆ ��(�).

6) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
�� � ≤ ��

�� � .

7) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
⋀β � ≤ ��

�� � .

8) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
�� � ≤ ��

�� � .

9) ��� � ≤ ��� � ≤ ��
� � ≤ ��

� � ≤ ��
⋀β � ≤ ��

�� � .

10) ��(�) ≤ ��
�� � .

Remark 3.2. According to Theorem 3.1, we noted that the proposed technique decreases the
boundary region by enhancing the ��� -lower approximation and reducing the ��� -upper
approximation comparing them with the methods of Abd El-Monsef et al. (in Definition 2.5), Amer
et al. and Hosny (in Definition 2.10). Furthermore, the accuracy that given by Definition 3.3 is
higher than the other accuracies in Definitions 2.5 and 2.10. In Example 3.1 as demonstrated by
Corollary 3.1. To this end, we compute the approximations, boundary regions, and the accuracy
measure using the proposed method in Definition 3.3 and compare them with the previous
techniques “Abd El-Monsef et al., Amer et al., Hosny” as exposed in Table 1.
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Table 1. Comparison of the boundary and accuracy methods of Abd El-Monsef et al. [19],
Amer et al. [20], and Hosny [21], as well as the existing technique (Definition 3.3).

� ⊆ �

Abd El Monsef et
al. method

Amer et al.
method

Hosny methods
The current
method

�� � �� � ��
� � ��

� � ��
�� � ��

�� � ��
⋀β � ��

⋀β � ��
�� � ��

�� �

{�} {�} 0 {�} 0 ∅ 1 {�} 0 ∅ 1
{�} {�} 0 {�} 0 {�} 0 ∅ 1 ∅ 1
{�} {�, �, �} 0 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�} {�, �, �} 0 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�} {�, �} 1/3 {�} 1/2 ∅ 1 {�} 1/2 ∅ 1
{�, �} {�, �} 0 {�, �} 0 ∅ 1 {�} 1/2 ∅ 1
{�, �} {�, �, �, �} 0 {�} 1/2 ∅ 1 {�} 1/2 ∅ 1
{�, �} {�, �, �, �} 0 {�} 1/2 ∅ 1 {�} 1/2 ∅ 1
{�, �} {�} 2/3 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �} {�, �, �} 0 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �} {�, �, �} 0 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �} {�, �} 1/3 {�} 2/3 ∅ 1 {�} 2/3 ∅ 1
{�, �} {�} 2/3 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �} {�, �, �, �} 1/5 {�} 2/3 ∅ 1 {�} 2/3 ∅ 1
{�, �} {�, �, �, �} 1/5 {�} 2/3 ∅ 1 {�} 2/3 ∅ 1
{�, �, �} {�, �, �, �} 0 {�} 2/3 ∅ 1 {�} 2/3 ∅ 1
{�, �, �} {�, �, �, �} 0 {�} 2/3 ∅ 1 {�} 2/3 ∅ 1
{�, �, �} {�} 2/3 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �, �} {�, �} 1/2 {�} 2/3 ∅ 1 {�} 2/3 ∅ 1
{�, �, �} {�, �, �} 2/5 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �, �} {�, �, �} 2/5 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �, �} {�} 2/3 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �, �} {�, �, �, �} 1/5 {�} 3/4 ∅ 1 {�} 3/4 ∅ 1
{�, �, �} {�, �, �, �} 1/5 {�} 3/4 ∅ 1 {�} 3/4 ∅ 1
{�, �, �} {�, �} 3/5 {�, �} 3/5 ∅ 1 {�} 3/4 ∅ 1
{�, �, �, �} {�, �} 1/2 {�} 3/4 ∅ 1 {�} 3/4 ∅ 1
{�, �, �, �} {�, �, �} 2/5 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �, �, �} {�, �, �} 2/5 ∅ 1 ∅ 1 ∅ 1 ∅ 1
{�, �, �, �} {�} 4/5 {�} 4/5 {�} 4/5 ∅ 1 ∅ 1
{�, �, �, �} {�} 4/5 {�} 4/5 ∅ 1 {�} 4/5 ∅ 1
� ∅ 1 ∅ 1 ∅ 1 ∅ 1 ∅ 1

4. ���- ideal approximation spaces

We present the ideas of ���-ideal lower and ���-ideal upper approximations for any subset in
this section. Some of the related characteristics of them will be examined; demonstrating that the
���-ideal approximations represent the finest ones and precise than the other approaches.
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Definition 4.1. If (�, �, ��) is a � -NS, � be an ideal on � . Then a subset � in � is called an
�-��� -open, if � ⊆ ���[����(���∗�(�))]. A complement of an �-��� -open set is an �-��� -closed. A
family of all � -��� -open and � -��� closed sets are denoted by � − ����(�) and � − ����(�) ,
respectively.
Note that: ���∗� � = �⋃��∗�, where ��∗� = {� ∈ �: � ���� (�) ∉ �, ∀� ∈ �� and � ∈ �}.
Definition 4.2. Consider (�, �, ��) is a � -NS, � is an ideal on � and � ⊆ � . For all � ∈
�, �, � , � , �, �, � , � , �-���-lower, �-���-upper approximations, �-���-boundary regions and
�-���-accuracy of the approximations of � are defined respectively, by:

�
�
�−�� � = ⋃ � ∈ � − ����(�): � ⊆ � =����

�−��(�), where ����
�−��(�) represents �-���-interior

of �.

��
�−��

� = � � ∈ � − ����(�): � ⊇ � = ���
�−��(�), where ���

�−��(�) represents �-���-closure of
�.

��
�−�� � = ��

�−��
� − �

�
�−�� � .

��
�−�� � =

��
�−�� �

��
�−��

�
, where ��

�−��
� ≠ 0.

The following proposition proposes the essential properties of the existing � -��� -lower and
�-���-upper approximations.

Proposition 4.1. Let (�, �, ��) be a �-NS, � be an ideal on � and �, � ⊆ �. Then:

(i) �
�
�−�� � ⊆ � ⊆ ��

�−��
� .

(ii) �
�
�−�� ∅ = ��

�−��
∅ = ∅ and �

�
�−�� � = ��

�−��
� = �

(iii) If � ⊆ �, then �
�
�−�� � ⊆ �

�
�−�� � and ��

�−��
� ⊆ ��

�−��
�

(iv) �
�
�−�� � ⋃�

�
�−�� � ⊆ �

�
�−�� �⋃�

(v) ��
�−��

� ⋃��
�−��

� ⊆ ��
�−��

�⋃�

(vi) �
�
�−�� ��� ⊆ �

�
�−�� � ��

�
�−�� �

(vii) ��
�−��

��� ⊆ ��
�−��

� ���
�−��

�

(viii) �
�
�−�� �� = (��

�−��
� )�

(ix) ��
�−��

�� = (�
�
�−�� � )�

(x) �
�
�−�� �

�
�−��(�) = �

�
�−��(�)
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(xi) ��
�−��

��
�−��

(�) = ��
�−��

(�)

(xii) �
�
�−�� �

�
�−��(�) ⊆ ��

�−��
(�

�
�−��(�))

(xiii) �
�
�−�� ��

�−��
(�) ⊆ ��

�−��
(��

�−��
(�))

The proof of this proposition is simple using the properties of �-���-interior and �-���-closure
operators, so we omit it.
Remark 4.1. In the next example, we explain that the relation of implication in parts (i), (iv), (v),
(vi), (vii), (xii), and (xiii) of Proposition 4.1 cannot be replaced by equality relation:
Example 4.1. Let � = �, �, �, �, � , � = { �, � , �, � , �, � , �, � , �, � , �, � , �, � , �, � ,
�, � , �, � , (�. �)} and � = {∅, � , � , {�, �}}.

Thus �� � = {�, �}, �� � = {�, �, �, �}, �� � = �� � = {�, �}, �� � = {�}.
Then, �-���� � = {�, ∅, � , � , � , �, � , �, � , �, � , �, � , �, � , �, � , �, � , �, �, � ,
�, �, � , �, �, � , �, �, � , �, �, � , �, �, � , �, �, � , �, �, � , �, �, �, � , �, �, �, � , �, �, �, � ,

{�, �, �, �}, {�, �, �, �}}.
Thus we have

(1) For part (i), assume that � = {�} . Therfore, �
�
�−�� � = ∅ and thus � ⊈ �

�
�−�� � . Also, if

� = {�, �}, then ��
�−��

� = {�, �, �} and hence ��
�−��

� ⊈ �.
(2) For part (iv), assume that � = {�} and � = {�}. Therfore, �

�
�−�� � = ∅, �

�
�−�� � = {�}, and

�
�
�−�� �⋃� = {�, �}.

(3) For part (v), assume that � = {�} and � = {�} . Therfore, ��
�−��

� = {�} , ��
�−��

� = {�} ,
and ��

�−��
�⋃� = {�, �, �}.

(4) For part (vi), if � = {�, �} and � = {�, �} , then �
�
�−�� � = {�, �} , �

�
�−�� � = {�, �} , and

�
�
�−�� ��� = ∅.

(5) For part (vii), if � = {�, �} and � = {�, �}, then ��
�−��

� = {�, �}, ��
�−��

� = {�, �, �}, and
��
�−��

��� = {�}.
(6) For part (xii), if � = {�, �}, then �

�
�−�� �

�
�−��(�) = {�, �} and ��

�−��
�
�
�−�� � = {�, �, �},

and therefore ��
�−��

(�
�
�−��(�)) ⊈ �

�
�−�� �

�
�−��(�) .

(7) For part (xiii), if � = {�} , then ��
�−��

��
�−��

(�) = {�} and �
�
�−�� ��

�−��
� = ∅ , and

therefore ��
�−��

��
�−��

(A) ⊈ �
�
�−�� ��

�−��
� .

Definition 4.3. Let (�, �, ��) be a � -NS, � be an ideal on � . The subset � in � is named an

�-���-definable (�-���-exact) set if ��
�−��

� = �
�
�−��(�). Else, � is an �-���-rough set.

Note that: In Example 4.1, � = {�} is an �-���-exact set, while � = {�} is an �-���-rough set.
Remark 4.2. Consider (�, �, ��) is a � -�� , � is an ideal on � , and � ⊆ � . Then a finite
intersection of two � -��� -rough sets essentially not to be an � -��� -rough set as in Example 4.1
{�, �} and {�, �} are �-���-rough sets, �, � � �, � = {�} is not an �-���-rough set.

The subsequent theorem and its corollaries explain the relations amongst the present
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approximations in Definition 4.2 and the others in Definitions 2.5 [21] and 2.13 [22].
Theorem 4.1. Consider (�, �, ��) is a �-NS, � is an ideal on �, and � ⊆ �. Then:

(i) ��(�) ⊆ �
�
� � ⊆ �

�
�−��(�).

(ii) ��
�−��

� ⊆ ��
�
� ⊆ �� � .

Proof:

(i) �� � = ⋃ � ∈ ��: � ⊆ � ⊆ ⋃ � ∈ ���: � ⊆ � = �
�
� � ⊆ ⋃ � ∈ � − ���� � :� ⊆ � = �

�
�−��(�).

(ii) Similar to (i).
Corollary 4.1. Assume that (�, �, ��) is a �-NS, � is an ideal on �, and � ⊆ �. Then:

(i) ��
�−��(�) ⊆ ��� � ⊆ ��(�).

(ii) ��(�) ≤ ��� � ≤ ��
�−��(�).

Corollary 4.2. Suppose that (�, �, ��) is a �-NS, � is an ideal on �, and � ⊆ �. Then:
(1) Each �-exact subset in � is �-���-exact.
(2) Each �-�-exact subset in � is �-���-exact.
(3) Each �-���-rough subset in � is �-rough.
(4) Each �-���-rough subset in � is �-�-rough.
Remark 4.3. Example 4.1 confirms that the opposite of parts of Corollary 4.2 is not necessarily true.
(1) if � = {�}, then it is �-���-exact, but it is not �-exact.
(2) if � = {�}, then it is �-���-exact, but it is not �-�-exact.
(3) if � = {�}, then it is �- rough, but it is not �-���- rough.
(4) if � = {�, �}, then it is �-�-rough, but it is not �-���- rough.

For example, take � = {�}: By using the present technique in Definition 4.2, the boundary and
accuracy of � are ∅ and 1 respectively. Whereas, the boundary and accuracy by using Abd
El-Monsef et al.’s method in Definition 2.5 are {�, �, �} and 0 respectively, and by using Hosny
method in Definition 2.13 are {�, �} and 1/3 respectively.

The next propositions and corollaries show some the relationships among the � -��� -lower,
�-���-upper approximations, �-���-boundary regions and �-���-accuracy.
Proposition 4.2. Assume that (�, �, ��) is a � -NS, � is an ideal on � , and � ⊆ � . Then, the
following properties are true.

(i) �
�
�−��(�) ⊆ �

�
�−��(�) ⊆ �

�
�−��(�).

(ii) �
�
�−��(�) ⊆ �

�
�−��(�) ⊆ �

�
�−��(�).

(iii) �
<�>
�−��(�) ⊆ �

<�>
�−��(�) ⊆ �

<�>
�−��(�).

(iv) �
<�>
�−��(�) ⊆ �

<�>
�−��(�) ⊆ �

<�>
�−��(�).

Now, using Example 4.1, Table 2 represents a comparison between the boundary regions and
the accuracy of the approximations using different methods.
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Table 2. A comparison between the boundary regions and the accuracy of
approximations, in Example 4.1, using different methods.

� ⊆ �
Abd El-Monsef method Hosny method Current method
�� � �� � ���(�) ��� � ��

�−��(�) ��
�−�� �

{�} {�, �} 0 {�} 0 {�} 0
{�} {�} 0 {�} 0 ∅ 1
{�} {�, �, �} 0 {�} 0 {�} 0
{�} {�, �, �} 0 {�, �} 1/3 ∅ 1
{�} {�, �} 1/3 {�, �} 1/3 ∅ 1
{�, �} {�, �} 0 {�, �} 0 ∅ 1
{�, �} {�, �, �, �} 0 {�, �} 0 {�, �} 0
{�, �} {�, �, �, �} 0 {�, �, �} 1/4 {�} 1/2
{�, �} {�} 2/3 {�} 2/3 ∅ 1
{�, �} {�, �, �} 0 {�, �} 0 ∅ 1
{�, �} {�, �, �} 0 {�, �} 1/3 {�} 2/3
{�, �} {�, �} 1/3 {�, �} 1/3 {�} 2/3
{�, �} {�} 2/3 {�} 2/3 ∅ 1
{�, �} {�, �, �, �} 1/5 {�, �, �} 1/4 {�} 1/2
{�, �} {�, �, �, �} 1/5 {�, �, �} 2/5 ∅ 1
{�, �, �} {�, �, �, �} 0 {�, �, �} 0 ∅ 1
{�, �, �} {�, �, �, �} 0 {�, �, �} 1/4 {�} 3/4
{�, �, �} {�} 2/3 {�} 2/3 ∅ 1
{�, �, �} {�, �} 1/2 {�, �} 1/2 {�} 2/3
{�, �, �} {�, �, �} 2/5 {�, �} 1/2 {�} 2/3
{�, �, �} {�, �, �} 2/5 {�, �} 3/5 ∅ 1
{�, �, �} {�} 2/3 {�} 2/3 ∅ 1
{�, �, �} {�, �, �, �} 1/5 {�, �, �} 1/4 {�} 3/4
{�, �, �} {�, �, �, �} 1/5 {�, �} 3/5 {�, �} 3/5
{�, �, �} {�, �} 3/5 {�, �} 3/5 ∅ 1
{�, �, �, �} {�, �} 1/2 {�, �} 1/2 ∅ 1
{�, �, �, �} {�, �, �} 2/5 {�, �} 1/2 ∅ 1
{�, �, �, �} {�, �, �} 2/5 {�} 4/5 {�} 4/5
{�, �, �, �} {�} 4/5 {�} 4/5 ∅ 1
{�, �, �, �} {�, �} 3/5 {�} 4/5 {�} 4/5
� ∅ 1 ∅ 1 ∅ 1

Proposition 4.3. Suppose that (�, �, ��) is a �-NS, � is an ideal on �, and � ⊆ �. Then, ∀� ∈
�, �, � , � , �, �, � , � , the following statements are valid.

(i) ��
�−��

� ⊆ ��
�−��

� ⊆ ��
�−��

� .

(ii) ��
�−��

� ⊆ ��
�−��

� ⊆ ��
�−��

� .

(iii) �<�>
�−��

� ⊆ �<�>
�−��

� ⊆ �<�>
�−��

� .
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(iv) �<�>
�−��

� ⊆ �<�>
�−��

� ⊆ �<�>
�−��

� .

The proof of Propositions 4.2 and 4.3 was omitted since it is obvious.
Corollary 4.3. Let (�, �, ��) be a � -NS, � be an ideal on � , and � ⊆ � . Then, ∀� ∈
�, �, � , � , �, �, � , � , we have

(i) ��
�−��(�) ⊆ ��

�−��(�) ⊆ ��
�−��(�).

(ii) ��
�−��(�) ⊆ ��

�−��(�) ⊆ ��
�−��(�).

(iii) �<�>
�−��(�) ⊆ �<�>

�−��(�) ⊆ �<�>
�−��(�).

(iv) �<�>
�−��(�) ⊆ �<�>

�−��(�) ⊆ �<�>
�−��(�).

Corollary 4.4. Consider (�, �, ��) is a � -NS, � is an ideal on � , and � ⊆ � . Then, ∀� ∈

�, �, � , � , �, �, � , � , we have

(i) ��
�−��(�) ≤ ��

�−��(�) ≤ ��
�−��(�).

(ii) ��
�−��(�) ≤ ��

�−��(�) ≤ ��
�−��(�).

(iii) �<�>
�−��(�) ≤ �<�>

�−��(�) ≤ �<�>
�−��(�).

(iv) �<�>
�−��(�) ≤ �<�>

�−��(�) ≤ �<�>
�−��(�).

5. Some applications of ���- ideal approximations in chemistry

Here, a practical example in the arena of chemistry is provided, using the current method in
“Definition 4.2” to explain the concepts with an illustrative manner. The main goal is to present the
benefits of the proposed methodologies for improving the accuracy measure. This is evident from the
comparisons provided between our approaches and previous methods such as those presented via
Abd El-Monsef et al. and M. Hosny.
Example 5.1. [35,36] Suppose that � = {�1, �2, �3, �4, �5} represents five amino acids (AAs). The
(AAs) are described in terms of five attributes: �1 = PIE, �2 = SAC = surface area, �3 = MR =
molecular refractivity, �4= LAM = the side chain polarity and �5 = Vol = molecular volume as
showed in Table 3.

Table 3. Lists all of the quantitative characteristics of the five AAs.

�1 �2 �3 �4 �5
�1 0.23 254.2 2.126 −0.02 82.2
�2 −0.48 303.6 2.994 −1.24 112.3
�3 −0.61 287.9 2.994 −1.08 103.7
�4 0.45 282.9 2.993 −0.11 99.1
�5 −0.11 335.0 3.458 −0.19 127.5

Assume the following five reflexive relations on � are defined:
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�� = c�, c� ∈ � × �: c� �� − c� �� <
��
2
, �, �, � = 1,2, …, 5 .

Where �� is the standard deviation of the quantitative attributes �� , and � = 1,2, …, 5 . The right
neighbourhoods for all elements �� of � where � = 1,2, …, 5 , with respect to the relations ��
shown in Table 4.

Table 4. Right Neighborhood of five relations.

c��1 c��2 c��3 c��4 c��5
�1 {�1, �4} � � {�1, �4, �5} �
�2 � {�2, �5} {�2, �3, �4, �5} � {�2, �5}
�3 � {�2, �3, �4, �5} {�2, �3, �4, �5} � {�2, �3, �4, �5}
�4 {�4} {�2, �3, �4, �5} {�2, �3, �4, �5} {�1, �4, �5} {�2, �3, �4, �5}
�5 {�1, �4, �5} {�5} {�5} {�1, �4, �5} {�3, �5}

As a result, in order to demonstrate the set of all condition attributes, we compute the
intersections of all right neighborhoods for each element of � as follows:
�1� = �=1

5 �1��� = {�1, �4} , �2� = �=1
5 �2��� = {�2, �5} , �3� = �=1

5 �3��� = {�2, �3, �4, �5} ,
�4� = �=1

5 �4��� = {�4} and �4� = �=1
5 �4��� = {�5}.

Hence, the topology generated by these right neighborhoods is given by:

�� = {�, ∅, �4 , �5 , �1, �4 , �2, �5 , �4, �5 , �1, �4, �5 , �2, �4, �5 , �1, �2, �4, �5 , �2, �3, �4, �5 }.

By Chemistry’s expert, if � = {∅, �1 , �4 , �1, �4 } is the selected ideal, then the topology
generated by this ideal is:

��� = {�, ∅, �1 , �4 , �5 , �1, �4 , �1, �5 , �2, �5 , �4, �5 , �1, �2, �5 , �1, �4, �5 , {�2, �3, �5},

�2, �4, �5 , �1, �2, �3, �5 , �1, �2, �4, �5 , �2, �3, �4, �5 }.

Therefore, �-���� � = {�, ∅, �2 , �3 , �4 , �5 , �1, �3 �1, �4 , �2, �3 , �2, �4 , �2, �5 ,
�3, �4 , �3, �5 , �4, �5 , �1, �2, �3 , �1, �2, �4 , �1, �3, �4 , �1, �3, �5 , �1, �4, �5 , �2, �3, �4 , �2, �3, �5 ,
�2, �4, �5 , �3, �4, �5 , �1, �2, �3, �4 , �1, �2, �3, �5 , �1, �2, �4, �5 , �1, �3, �4, �5 , �2, �3, �4, �5 }.

Now, Table 5 presents a comparison between the boundary (resp. accuracy) using the current
technique in Definition 4.2 and the other approaches.

Table 5. A comparison between the boundary and accuracy using the techniques of Abd
El-Monsef et al. [19], Hosny [22] and the proposed technique in Definition 4.2.

� ⊆ � Abd El-Monsef method Hosny method Current method
�� � �� � ���(�) ��� � ��

�−��(�) ��
�−�� �

�1 �1 0 ∅ 1 �1 0
�2 �2, �3 0 �2, �3 0 ∅ 1
�3 �3 0 �3 0 ∅ 1
�4 �1, �3 1/3 ∅ 1 ∅ 1
�5 �2, �3 1/3 �2, �3 1/3 ∅ 1
�1, �2 �1, �2, �3 0 �2, �3 1/3 �1 1/2

Continued on next page
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� ⊆ � Abd El-Monsef method Hosny method Current method
�� � �� � ���(�) ��� � ��

�−��(�) ��
�−�� �

�1, �3 �1, �3 0 �3 1/2 ∅ 1
�1, �4 �3 2/3 ∅ 1 ∅ 1
�1, �5 �1, �2, �3 1/4 �2, �3 1/2 �1 1/2
�2, �3 �2, �3 0 �2, �3 0 ∅ 1
�2, �4 �1, �2, �3 1/4 �2, �3 1/3 ∅ 1
�2, �5 �3 2/3 �3 2/3 ∅ 1
�3, �4 �1, �3 1/3 �3 1/2 �1 2/3
�3, �5 �2, �3 1/3 �2, �3 1/3 ∅ 1
�4, �5 �1, �2, �3 2/5 �2, �3 1/2 ∅ 1
�1, �2, �3 �1, �2, �3 0 �2, �3 1/3 ∅ 1
�1, �2, �4 �2, �3 1/2 �2, �3 1/2 ∅ 1
�1, �2, �5 �1, �3 1/2 �3 3/4 �1 2/3
�1, �3, �4 �3 2/3 �3 2/3 ∅ 1
�1, �3, �5 �1, �2, �3 1/4 �2, �3 1/2 ∅ 1
�1, �4, �5 �2, �3 3/5 �2, �3 3/5 ∅ 1
�2, �3, �4 �1, �2, �3 1/4 �2, �3 1/3 �1 3/4
�2, �3, �5 {c3} 2/3 ∅ 1 ∅ 1
�2, �4, �5 �1, �3 3/5 �3 3/4 ∅ 1
�3, �4, �5 �1, �2, �3 2/5 �2, �3 1/2 �1 3/4
�1, �2, �3, �4 �2, �3 1/2 �2, �3 1/2 ∅ 1
�1, �2, �3, �5 �1, �3 1/2 ∅ 1 ∅ 1
�1, �2, �4, �5 �3 4/5 �3 4/5 ∅ 1
�1, �3, �4, �5 �2, �3 3/5 �2, �3 3/5 ∅ 1
�2, �3, �4, �5 �1 4/5 ∅ 1 �1 4/5

Observation: From the previous comparisons in Table 5, we note the following:
1) There are several approaches to approximate the sets. The finest of these approaches is that there

are assumed by using � − ��� -approximations of the current methods in Definition 4.2 for
creating the rough approximations because the boundary regions in these cases are minimized
(or removed) by maximizing the lower approximation and minimizing the upper approximation.
Moreover, the accuracy degree, in these cases, is more accurate than the other types. For
example, all proper subsets are rough in Abd El-Monsef’s approaches. But there are many � −
���- exact sets in the current methods.

2) The suggested method in Definition 4.2 is more accurate and stronger than M. Hosny’s methods.
Therefore, the suggested methodologies will be useful in decision-making for extracting the
information and help in eliminating the ambiguity of the data in real-life problems.

3) The significance of the suggested approximations is not only that it is decreasing or deleting the
boundary regions, but also, it’s satisfying all characteristics of Pawlak’s model without any
restrictions as shown in Proposition 4.1.
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6. Conclusions and future work

In our daily life, we often face some problems that necessitate complete decision-making.
However, in the majority of these cases, we get perplexed as to the best solution. To find the most
feasible solution to these problems, we must consider some solution-related parameters. One of the
most important topics in rough sets is minimizing the boundary region, which aims to maximize the
degree of decision-making accuracy. Topological structures formed by relations are one technique
used to accomplish this goal. In this article, using the notion of a j-neighborhood space and the
related concept of θβ-open sets, different methods for generalizing Pawlak rough sets and some of
their enhancements have been proposed and their properties have been studied. Additionally, in the
context of ideal notion, other generalizations to Pawlak’s models and some of their enhancements
such as (Abd El-Monsef et al. [19], Amer et al. [20], and Hosny [21,22] techniques) have been
presented. Comparisons were made between the proposed methods and previous approaches
published in the literature. Furthermore, numerous results have been proposed to explain why our
approximations are more accurate and powerful than other methods.

Finally, an application from Chemistry was proposed to demonstrate the significance of our
decision-making methods. Moreover, it provides a comparison between the proposed methods with
already existing in the literature. Also, this application proved that the suggested methods improve
the accuracy measure which is useful in establishing an accurate decision. So, we can say that the
proposed techniques may be useful in applications. In the future, we will apply the proposed
techniques in more real-life applications.
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