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Abstract: In this paper, a general HIV model incorporating intracellular time delay is investigated.
Taking the latent virus infection, both virus-to-cell and cell-to-cell transmissions into consideration, the
model exhibits threshold dynamics with respect to the basic reproduction number R0. If R0 < 1, then
there exists a unique infection-free equilibrium E0, which is globally asymptotically stable. If R0 > 1,
then there exists E0 and a globally asymptotically stable infected equilibrium E∗. When R0 = 1, E0

is linearly neutrally stable and a forward bifurcation takes place without time delay around R0 = 1.
The theoretical results and corresponding numerical simulations show that the existence of latently
infected cells and the intracellular time delay have vital effect on the global dynamics of the general
virus model.
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1. Introduction

Human immunodeficiency virus (HIV), the causative agent of AIDS, remains one of the biggest
causes of morbidity and mortality, infecting around 37.7 million people worldwide and bringing about
nearly 0.68 million AIDS-related death in 2020 [42]. HIV attacks cells of the immune system,
primarily macrophages and CD4+T cells, leading to immunodeficiency of individual. If untreated,
individual has more difficulty fighting againt some opportunistic diseases and eventually results to
death. Considerable efforts on immunity to HIV and drug development have been taken since the
discovery of AIDS, which have brought about quite a few approved antiretroviral drugs [43].
Antiretroviral drugs, which can prevent the replication of HIV and restrain the transmission and
progression to AIDS, are currently the only approved therapies specifically targeting HIV, and there
were 27.5 million or so patients receiving antiretroviral therapies (ART) in 2020 [42]. However, ATR
can not clear HIV due to the persistence of low-level viraemia from virus reservoirs which are
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insensitive to ATR [33]. Despite intensive research and tremendous progress, there is still not an
explicit explanation for the pathogenesis of HIV infection. Effective vaccines and permanent cure
therapies for HIV have not been obtained and thus life-long treatment is necessary.

In the past decades, based on ongoing technology development and extensive clinical trials, a new
research field, viral dynamics, arose. Various mathematical models on HIV are common and applicable
to interpret and predict the time-course of viral levels during HIV infection process. Understanding
threshold dynamics of virus models can be significant to design preventive measures, intervention
means and treatment strategies for the infectious disease control and help to take more effective drug
therapies in clinical practice [2, 6, 12, 21]. A basic within-host virus dynamics model consists of three
compartments: uninfected target cells T (t), infected cells I(t) and free virus V(t), constituting the
following virus model [2, 13]: 

dT
dt

= Λ − dT (t) − βT (t)V(t),

dI
dt

= βT (t)V(t) − δI I(t),

dV
dt

= NδI I(t) − kV(t),

(1.1)

where the target cells are produced at the constant rate Λ and lost to intrinsic mortality rate d. The viral
infection on susceptible cells is modelled by a bilinear incidence function βT (t)V(t). δI and k denote
the corresponding death rates of infected cells and free virus, respectively. Per infected cell releases N
particles in its lifespan.

In virus model (1.1), uninfected healthy cells are assumed to be infected only directly by free
viruses, that is, through the virus-to-cell transmission in the bloodstream, in which virions are
released from infected cells and then move randomly around to find a new uninfected target cell to
infect. For decades it was believed that the spreading of HIV-1 within a host was mainly through free
circulation of the viral particles, with a repeated process consisting of attachment of viruses to T cells,
fusion of viruses into the T cells, replication and assembling of viruses inside the infected T cells,
release of newly produced viral particles from the infected cells, and diffusion of the released viral
particles to catch other T cells. However, recent studies have revealed that the cell-to-cell
transmission also has a significant impact on the virus infection [31] and cell-to-cell spread mode may
be more effective than virus-to-cell spread model in transmitting HIV-1 [7, 8, 24, 30]. A large number
of viral particles can also be simultaneously translocated from infected cells to uninfected cells
through the structures termed virological synapses [4, 11]. Sigal et al. [33] investigated that despite
ART, cell-to-cell transmission of HIV permits ongoing replication.

Besides, it is not instantaneous to produce new virus particles in the process of viral spread. It is
delayed by the time for virions entering into cells and the replication of new virions, including the
process of the transcription and integration of RNA and the production of the capsid proteins. Since
the maturation time of a virus (0.3 days for HIV) is much shorter than the life-span of infected
cell [10, 23], researchers usually ignored the virus maturation time in viral infection dynamics.
Recently, researchers have constructed and analyzed delayed intra-host viral infection models
incorporating both virus-to-cell and cell-to-cell transmissions of virions [18, 32, 34, 40]. Spatial
diffusion is also significant to describe viral transmission. In Wang and Wang [36], a model
incorporating the random movement of viruses was proposed and analyzed while the motion of
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corresponding cells was ignored, based on which McCluskey and Yang [20] and Sun and Wang [34]
further considered general incidence rates and two transmission routes. In Teng et al. [35], a
reaction-diffusion virus infection model with nonlinear incidence and humoral immunity was
proposed, in which the random movement of individuals was also denoted by Fickian diffusions. In
Wang et al. [37], extinction and persistence for a spatially heterogeneous HIV model and the global
stability of steady states for corresponding spatially homogeneous model were explored. Further, in
view of the propagation mechanism for the virus, age structure is a helpful tool to optimize the
model [14, 41].

In addition, effective medical therapies can limit viral replication to a low level while virus
particles cannot be eliminated. A critical factor is the existence of latently infected cells, which can
not be ignored in clinic treatment and mathematical modelling. The latent reservoir persists mainly as
proviruses integrated into the genomes of infected resting memory CD4+ T cells [5, 39]. Latently
infected CD4+ T cells live long and can not be affected by antiretroviral drugs or immune responses,
while they can be activated by relevant antigens to produce virus. Latently infected cells have been a
topic of great interest since they were subsequently shown to persist even in individuals on highly
active antiretroviral therapy (HAART) [17].

Motivated by above works, in this paper, we focus on the following delayed virus model with
general functions, incorporating latent viral infection, both virus-to-cell transmission and cell-to-cell
transmission

dT
dt

= Λ − dT (t) − f (T (t),V(t)) − g(T (t), I(t)),

dL
dt

= ξe−m1τ1 f (T (t − τ1),V(t − τ1)) + ξe−m1τ1g(T (t − τ1), I(t − τ1)) − (α + δL)L(t),

dI
dt

= (1 − ξ)e−m2τ2 f (T (t − τ2),V(t − τ2)) + (1 − ξ)e−m2τ2g(T (t − τ2), I(t − τ2)) − δI I(t) + αL,

dV
dt

= NδI I(t) − cV(t).

(1.2)
In model (1.2), L(t) represents the concentration of latently infected cells at time t with the mortality
rate δL. Latently infected cells can be activated by relevant antigens to become productively infected
cells at the rate α. Here we introduce the constant ξ ∈ (0, 1) to specify the proportion of infection that
lead target cells into latency stage. The parameter τ1 ≥ 0 and τ2 ≥ 0 represent the intracellular latency
for the virus-to-cell infection and the cell-to-cell infection. m1 and m2 denote the constant death rates of
latently infected cells and infected cells which have not produced viruses. Then e−miτi is the probability
for infected cells to survive from time t − τi to t, i = 1, 2. In system (1.2), the virus-to-cell spread and
the cell-to-cell spread are expressed by the incidence functions f (T,V) and g(T, I), which are assumed
to satisfy the following assumptions:

(i) f , g ∈ C1(R2
+,R+) are differentiable; f (T, 0) = f (0,V) = g(T, 0) = g(0, I) = 0 for all T, I,V ≥ 0,

f (T,V) > 0 and g(T, I) > 0 for all T, I,V > 0.
(ii) ∂ f (T,V)

∂T > 0 and ∂g(T,I)
∂T > 0 for all T ≥ 0 and V, I > 0; ∂ f (T,V)

∂V ≥ 0 and ∂g(T,I)
∂I ≥ 0 for all T,V, I ≥ 0.

(iii) ∂2 f (T,V)
∂T∂V ≥ 0, ∂2g(T,I)

∂T∂I ≥ 0, ∂ f (T,V)
∂V ≤

f (T,V)
V and ∂g(T,I)

∂I ≤
g(T,I)

I for all T,V, I ≥ 0. This indicates that
∂
∂V

(
f (T,V)

V

)
≤ 0 and ∂

∂I

(
g(T,I)

I

)
≤ 0.

Here, we are concerned with the general interaction functions to express the two modes of virus
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transmission. That is, the contribution of the interaction between uninfected target cells T and free
viruses V (infected cells I) to the growth rate of the infected cells is represented by a general
functional response term f (T,V) (g(T, I)), no longer accounted for by some specific function.
Through this approach, we establish a unified theoretical framework to describe the HIV propagation
process.

Now define the following Banach space

C+ = {φ ∈ C([−τ, 0],R+) | φ(θ) is uniformly continuous for θ ∈ [−τ, 0] and ‖φ‖ < ∞},

with norm ‖φ‖ = sup
−τ≤θ≤0

|φ(θ)|. Then, we consider system (1.2) with the following initial conditions

T (θ) = φ1(θ), L(θ) = φ2(θ), I(θ) = φ3(θ), V(θ) = φ4(θ), θ ∈ [−τ, 0], (1.3)

where φi(θ) ∈ C+ satisfies φi(θ) ≥,. 0 and φi(0) > 0, i = 1, 2, 3, 4.
In this paper, we consider the existence, local and global asymptotical stability of the infection-free

equilibrium and the infected equilibrium in terms of the basic reproduction number R0. For each
equilibrium, we first explore the local asymptotical stability by considering the corresponding
characteristic equations, and then discuss their global attractiveness by constructing corresponding
Liapunov functionals, arriving at the global asymptotical stability of the equilibria.

The paper is organized as follows. In Section 2, we study the boundedness and positivity of solutions
and the existence of equilibria for system (1.2). In Section 3, we explore the dynamics of system
without time delay. In Sections 4 and 5, we explore the corresponding local and global stability of
infection-free equilibrium and infected equilibrium, respectively. In Section 6, some specific examples
and applications are presented to illustrate the theoretical results. Conclusions and discussions can be
found in Section 7.

2. Boundedness, positivity and the existence of equilibria

Through the fundamental theory analysis on functional differential equations [9], system (1.2) with
initial conditions (1.3) admits one unique solution. In this section, we first explore the positivity and
boundedness of the solutions of system (1.2).

Theorem 2.1. Solutions of system (1.2) are positive and ultimately uniformly bounded for all t > 0.

Proof. For T (t), suppose that there exists t1 > 0 such that T (t1) = 0 and T (t) > 0 for t ∈ [0, t1). Then
we have T ′(t1) ≤ 0 while the first equation of (1.2) implies that T ′(t1) = Λ > 0. This is a contradiction.
Thus, T (t) > 0 for t > 0.

Let t2 > 0 be the first time such that min{L(t2), I(t2),V(t2)} = 0. In the following, we verify the
non-existence of t2 to ensure the positivity of L(t), I(t) and V(t).

(I) If L(t2) = 0 and L(t) > 0 for t ∈ [0, t2) (I(t2) ≥ 0, V(t2) ≥ 0 and I(t) > 0, V(t) > 0 for t ∈ [0, t2)),
then L′(t2) ≤ 0. From the second equation of (1.2), we have

L′(t2) = ξe−m1τ1 f (T (t2 − τ1),V(t2 − τ1)) + ξe−m1τ1g(T (t2 − τ1), I(t2 − τ1)) > 0,

which contradicts with L′(t2) ≤ 0. Thus, L(t) > 0 for t > 0.
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(II) Similarly, if I(t2) = 0 and I(t) > 0 for t ∈ [0, t2) (L(t2) ≥ 0, V(t2) ≥ 0 and L(t) > 0, V(t) > 0 for
t ∈ [0, t2)), then I′(t2) ≤ 0. From the third equation of (1.2), we have

I′(t2) = (1 − ξ)e−m2τ2 f (T (t2 − τ2),V(t2 − τ2)) + (1 − ξ)e−m2τ2g(T (t2 − τ2), I(t2 − τ2)) + αL(t2) > 0,

which contradicts with I′(t2) ≤ 0. Thus, I(t) > 0 for t > 0.
(III) Again, if V(t2) = 0 and V(t) > 0 for t ∈ [0, t2) (L(t2) ≥ 0, I(t2) > 0 and L(t) > 0, I(t) > 0 for

t ∈ [0, t2)), then V ′(t2) ≤ 0. From the fourth equation of (1.2), we have

V ′(t2) = NδI I(t2) > 0,

which contradicts with V ′(t2) ≤ 0. Thus, V(t) > 0 for t > 0.

Hence, from above discussion, T (t) > 0, L(t) > 0, I(t) > 0 and V(t) > 0 for all t > 0. In the
following, we verify the boundedness.

From the first equation of (1.2), we obtain T ′(t) ≤ Λ − dT (t). This implies that lim sup
t→+∞

T (t) ≤ Λ
d .

Let W1(t) = ξe−m1τ1T (t − τ1) + L(t). Then

W ′
1(t) ≤ Λξe−m1τ1 −min{d, α + δL}W1.

This implies that lim sup
t→+∞

W1(t) ≤ Λξe−m1τ1

min{d,α+δL}
. Thus, we have lim sup

t→+∞

L(t) ≤ Λξe−m1τ1

min{d,α+δL}
.

Let W2(t) = (1 − ξ)e−m2τ2T (t − τ2) + I(t). Then

W ′
2(t) ≤

[
Λ(1 − ξ)e−m2τ2 +

Λξe−m1τ1

min{d, α + δL}

]
−min{d, δI}W2.

This implies that lim sup
t→+∞

W2(t) ≤ Λ(1−ξ)e−m2τ2

min{d,δI }
+

αΛξe−m1τ1

min{d,δI }min{d,α+δL}
:= K̃. Thus, lim sup

t→+∞

I(t) ≤ K̃.

From the fourth equation of (1.2), we have V ′(t) ≤ NδI K̃−cV(t). Thus, we have lim sup
t→+∞

V(t) ≤ NδI K̃
c .

Hence, solutions of system (1.2) are positive and ultimately uniformly bounded for all t > 0. �

Define the following bounded feasible region

Ω =

{
(T, L, I,V) ∈ C4

+ | ‖T‖ ≤
Λ

d
, ‖L‖ ≤

Λξe−m1τ1

min{d, α + δL}
, ‖I‖ ≤ K̃, ‖V‖ ≤

NδI K̃
c

}
.

Then from Theorem 2.1, Ω is a positively invariant set for system (1.2).
Secondly, we explore the existence of equilibria for system (1.2). To this end, we define

K :=
αξ

α + δL
e−m1τ1 + (1 − ξ)e−m2τ2

and the following basic reproduction number

R0 := K
N

c

∂ f (Λ
d , 0)
∂V

+
1
δI

∂g(Λ
d , 0)
∂I

 .
Then, the existence of equilibria of system (1.2) is determined by the sign of R0 − 1.
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Theorem 2.2. If R0 ≤ 1, then system (1.2) only has an infection-free equilibrium E0; whereas, if
R0 > 1, then there exist E0 and an infected equilibrium E∗.

Proof. The infection-free equilibrium E0 = (Λ
d , 0, 0, 0) always exists. In order to explore the existence

of infected equilibrium E∗ = (T ∗, L∗, I∗,V∗), we need to discuss the following equations
Λ − dT − f (T,V) − g(T, I) = 0,
ξ f (T,V) + ξg(T, I) − (α + δL)em1τ1 L = 0,
(1 − ξ) f (T,V) + (1 − ξ)g(T, I) − δIem2τ2 I + αem2τ2 L = 0,
NδI I − cV = 0.

(2.1)

From the first and second equations of (2.1), we obtain

T =
Λ

d
−
α + δL

dξ
em1τ1 L. (2.2)

Let

J :=
1 − ξ
ξ

(α + δL)em1τ1−m2τ2 + α =
α + δL

ξ
em1τ1 K. (2.3)

Then, due to the second and third equations of (2.1), we have

I =
J
δI

L. (2.4)

The fourth equation of (2.1) yields

V =
NδI

c
I =

NJ
c

L. (2.5)

By substituting (2.2), (2.4) and (2.5) into the second and third equations of (2.1), we define the
following auxiliary mapping:

Φ(L) := f (T,V) + g(T, I) − δIem2τ2 I + αem2τ2 L − (α + δL)em1τ1 L

= f (
Λ

d
−
α + δL

dξ
em1τ1 L,

NJ
c

L) + g(
Λ

d
−
α + δL

dξ
em1τ1 L,

J
δI

L) −
α + δL

ξ
em1τ1 L.

Clearly, Φ(0) = f (Λ
d , 0) + g(Λ

d , 0) = 0 and Φ( Λξ

α+δL
e−m1τ1) = −Λ < 0. Besides, when R0 > 1, we have

Φ′(0) =J
N

c

∂ f (Λ
d , 0)
∂V

+
1
δI

∂g(Λ
d , 0)
∂I

 − α + δL

ξ
em1τ1

=
α + δL

ξ
em1τ1(R0 − 1) > 0.

Thus, there exists L∗ ∈ (0, Λξ

α+δL
e−m1τ1), such that E∗ = (T ∗, L∗, I∗,V∗) exists.

Moreover, we can verify that E∗ is unique. On (T ∗, L∗, I∗,V∗), due to the second equation of (2.1),
(2.5) and (2.4), there holds

α + δL

ξ
em1τ1 =

f (T ∗,V∗) + g(T ∗, I∗)
L∗

= J
(

N
c

f (T ∗,V∗)
V∗

+
1
δI

g(T ∗, I∗)
I∗

)
.

AIMS Mathematics Volume 7, Issue 2, 2456–2478.



2462

Then under Assumptions (ii) and (iii), we further have

Φ′(L∗) = −
α + δL

dξ
em1τ1

(
∂ f (T ∗,V∗)

∂T
+
∂g(T ∗, I∗)

∂T

)
+ J

(
N
c
∂ f (T ∗,V∗)

∂V
+

1
δI

∂g(T ∗, I∗)
∂I

)
−
α + δL

ξ
em1τ1

= −
α + δL

dξ
em1τ1

(
∂ f (T ∗,V∗)

∂T
+
∂g(T ∗, I∗)

∂T

)
+

NJ
c

(
∂ f (T ∗,V∗)

∂V
−

f (T ∗,V∗)
V∗

)
+

J
δI

(
∂g(T ∗, I∗)

∂I
−

g(T ∗, I∗)
I∗

)
<0.

Thus, when R0 > 1, there exists a unique infected equilibrium E∗ = (T ∗, L∗, I∗,V∗); when R0 < 1, there
exists no infected equilibrium. Whereas, when R0 = 1, Φ′(0) = 0 and Φ′′(0) ≤ 0. If Φ′′(0) < 0, then
there exists no infected equilibrium. If Φ′′(0) = 0, then Φ(l)(0) = 0, l = 3, 4, ..., and due to Assumption
(ii), for any I ∈ (0, ΛK

δI
),

Φ′(I) = −
δI

Kd

∂ f (Λ−
δI
K I

d , NδI
c I)

∂T
+
∂g(Λ−

δI
K I

d , I)
∂T

 +
NδI

c

∂ f (Λ−
δI
K I

d , NδI
c I)

∂V
+
∂g(Λ−

δI
K I

d , I)
∂I

−
δI

K

<
NδI

c

∂ f (Λ
d , 0)
∂V

+
∂g(Λ

d , 0)
∂I

−
δI

K
=
δI

K
(R0 − 1) = 0.

Thus, in this case, there exists no infected equilibrium. �

3. Dynamics of system without time delay

In this section, we consider system (1.2) without time delay. Let T = ς1, L = ς2, I = ς3, V = ς4,
then we discuss the following ODE system:

dς1

dt
= Λ − dς1(t) − f (ς1(t), ς4(t)) − g(ς1(t), ς3(t)) := χ1,

dς2

dt
= ξ f (ς1(t), ς4(t)) + ξg(ς1(t), ς3(t)) − (α + δL)ς2(t) := χ2,

dς3

dt
= (1 − ξ) f (ς1(t), ς4(t)) + (1 − ξ)g(ς1(t), ς3(t)) − δIς3(t) + ας2 := χ3,

dς4

dt
= NδIς3(t) − cς4(t) := χ4.

(3.1)

Through similar analysis as in Section 2, for system (3.1), R0 := K
(

N
c
∂ f ( Λ

d ,0)
∂ς4

+ 1
δI

∂g( Λ
d ,0)

∂ς3

)
and we

have the following result.

Theorem 3.1. If R0 < 1, then the infection-free equilibrium E0 is locally asymptotically stable. If
R0 > 1, then E0 is unstable. If R0 = 1, then E0 is linearly neutrally stable and there exists a forward
bifurcation around E0.
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Proof. The characteristic equation of the linearization for system (3.1) is (λ + d)G0(λ) = 0, where

G0(λ) = (λ + α + δL)(λ + c)(λ + δI) −
NδI

∂ f (Λ
d , 0)
∂ς4

+ (λ + c)
∂g(Λ

d , 0)
∂ς3

 [αξ + (λ + α + δL)(1 − ξ)
]
.

Obviously, there is always a negative root λ = −d and G0(λ) = 0 can be written as

(λ + α + δL)(λ + c)(λ + δI) =

NδI
∂ f (Λ

d , 0)
∂ς4

+ (λ + c)
∂g(Λ

d , 0)
∂ς3

 [αξ + (λ + α + δL)(1 − ξ)
]
. (3.2)

By dividing (λ + α + δL)(λ + c)(λ + δI) in both sides of (3.2), we obtain

1 =

 NδI

(λ + c)(λ + δI)
∂ f (Λ

d , 0)
∂ς4

+
1

λ + δI

∂g(Λ
d , 0)
∂ς3

 [ αξ

λ + α + δL
+ (1 − ξ)

]
. (3.3)

Suppose that there exists a eigenvalue λ = ι + κi (ι ≥ 0). Then the modulus of both sides of (3.3)
satisfies

1 <
N

c

∂ f (Λ
d , 0)
∂ς4

+
1
δI

∂g(Λ
d , 0)
∂ς3

 [ αξ

α + δL
+ (1 − ξ)

]
= R0.

This contradicts with R0 < 1. Thus, all roots of (3.2) have negative real parts. Hence, when R0 < 1, E0

is locally asymptotically stable.
On the other hand, when R0 > 1, there holds

G0(0) =cδI(α + δL) −
NδI

∂ f (Λ
d , 0)
∂ς4

+ c
∂g(Λ

d , 0)
∂ς3

 [αξ + (α + δL)(1 − ξ)
]

=cδI(α + δL)(1 − R0) < 0

and G0(+∞) = +∞. Thus, there exists at least one real root λ0 > 0, such that G0(λ0) = 0. Hence, if
R0 > 1, then E0 is unstable.

When R0 = 1, characteristic equation (3.2) has one simple zero root λ = 0 and two roots with
negative real part. Thus E0 is a linearly neutrally stable non-hyperbolic equilibrium as R0 = 1. We can
further verify that system (3.1) exhibits forward bifurcation around E0 at ξ∗ := ( α

δL
+ 1)(1 − 1

K̂
), where

K̂ = N
c
∂ f ( Λ

d ,0)
∂ς4

+ 1
δI

∂g( Λ
d ,0)

∂ς3
, that is, R0 = 1.

Let L0(E0, ξ
∗) be the Jacobian matrix of the system (3.1) at ξ = ξ∗. The left eigenvector µ =

(µ1, µ2, µ3, µ4) of the Jacobian matrix L0(E0, ξ
∗) is given by µ · L0(E0, ξ

∗). We obtain

(µ1, µ2, µ3, µ4) = (0, α, α + δL,
α + δL

c

[
αξ

α + δL
+ (1 − ξ)

]
∂ f (Λ

d , 0)
∂ς4

).

The right eigenvector ω = (ω1, ω2, ω3, ω4) of the Jacobian matrix L0(E0, ξ
∗) is given by L0(E0, ξ

∗) ·ω.
We obtain

(ω1, ω2, ω3, ω4)T = (−
1
d

NδI
∂ f (Λ

d , 0)
∂ς4

+ c
∂g(Λ

d , 0)
∂ς3

 , ξ

α + δL

NδI
∂ f (Λ

d , 0)
∂ς4

+ c
∂g(Λ

d , 0)
∂ς3

 , 0,NδI)T .
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Let χi, i = 1, 2, 3, 4, denotes the right-hand side of system (3.1). Then we obtain the following non-zero
derivations (

∂2χ1

∂ς2
3

)
E0

= −
∂2g(Λ

d , 0)

∂ς2
3

,

(
∂2χ1

∂ς2
4

)
E0

= −
∂2 f (Λ

d , 0)

∂ς2
4

,(
∂2χ2

∂ς2
3

)
E0

= ξ
∂2g(Λ

d , 0)

∂ς2
3

,

(
∂2χ2

∂ς2
4

)
E0

= ξ
∂2 f (Λ

d , 0)

∂ς2
4

,(
∂2χ3

∂ς2
3

)
E0

= (1 − ξ)
∂2g(Λ

d , 0)

∂ς2
3

,

(
∂2χ3

∂ς2
4

)
E0

= (1 − ξ)
∂2 f (Λ

d , 0)

∂ς2
4

,(
∂2χ2

∂ς3∂ξ∗

)
E0

=
∂g(Λ

d , 0)
∂ς3

,

(
∂2χ2

∂ς4∂ξ∗

)
E0

=
∂ f (Λ

d , 0)
∂ς4

,(
∂2χ3

∂ς3∂ξ∗

)
E0

= −
∂g(Λ

d , 0)
∂ς3

,

(
∂2χ3

∂ς4∂ξ∗

)
E0

= −
∂ f (Λ

d , 0)
∂ς4

.

Due to [3], we yield the following bifurcation constants % and σ:

% =

4∑
i, j,k=1

µkωiω j

(
∂2χk

∂ςi∂ς j

)
E0

=
[
αξ2 + (α + δL)(1 − ξ)2

] N2δ2
I

∂2 f (Λ
d , 0)

∂ς2
4

+ c2∂
2g(Λ

d , 0)

∂ς2
3

 ≤ 0,

σ =

4∑
i,k=1

µkωi

(
∂2χk

∂ςi∂ξ∗

)
E0

= −δL

NδI
∂ f (Λ

d , 0)
∂ς4

+ c
∂g(Λ

d , 0)
∂ς3

 ≤ 0.

Under conditions ∂2 f ( Λ
d ,0)

∂ς2
4

+
∂2g( Λ

d ,0)
∂ς2

3
, 0 and ∂ f ( Λ

d ,0)
∂ς4

+
∂g( Λ

d ,0)
∂ς3

, 0, a1 < 0 and b1 < 0. Thus, due to
Theorem 4.1 in [3], there exists a forward bifurcation. When ξ < ξ∗, that is, R0 > 1, E0 is unstable and
there exists an locally asymptotically stable positive equilibrium E∗; when ξ > ξ∗, that is, R0 < 1, E0

is locally asymptotically stable. �

Note that the presence of forward bifurcation confirms the inhibition of the disease when R0 < 1.
From the forward bifurcation analysis, we know that if there is a stable coexistence equilibrium E∗

bifurcating from E0, E0 changes its stability from stable to unstable.

4. Stability analysis of the infection-free equilibrium

In this section, we investigate the stability of the infection-free equilibrium E0. We first focus on
the local asymptotical stability of E0 by discussing the distribution of the corresponding characteristic
values.

Theorem 4.1. If R0 < 1, then the infection-free equilibrium E0 is locally asymptotically stable. If
R0 = 1, then E0 is linearly neutrally stable. If R0 > 1, then E0 is unstable.

Proof. Let X = (T (t), L(t), I(t),V(t)) and Xτi = (T (t − τi), L(t − τi), I(t − τi),V(t − τi)), i = 1, 2. Then
the linearization of system (1.2) at E0 can be expressed by

dX
dt

= L0X +M01Xτ1 +M02Xτ2 ,
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where

L0 =


−d 0 −

∂g( Λ
d ,0)
∂I −

∂ f ( Λ
d ,0)
∂V

0 −(α + δL) 0 0
0 α −δI 0
0 0 NδI −c

 ,

M01 =


0 0 0 0

0 0 ξe−m1τ1
∂g( Λ

d ,0)
∂I ξe−m1τ1

∂ f ( Λ
d ,0)
∂V

0 0 0 0
0 0 0 0


and

M02 =


0 0 0 0
0 0 0 0

0 0 (1 − ξ)e−m2τ2
∂g( Λ

d ,0)
∂I (1 − ξ)e−m2τ2

∂ f ( Λ
d ,0)
∂V

0 0 0 0

 .
Then the characteristic equation is

det(λI − L0 −M01e−λτ1 −M02e−λτ2) = (λ + d)G0(λ) = 0,

where

G0(λ) =(λ + α + δL)(λ + c)(λ + δI)

−

NδI
∂ f (Λ

d , 0)
∂V

+ (λ + c)
∂g(Λ

d , 0)
∂I

 [αξe−(m1+λ)τ1 + (λ + α + δL)(1 − ξ)e−(m2+λ)τ2
]
.

Obviously, there is always a negative root λ = −d and G0(λ) = 0 can be written as

(λ + α + δL)(λ + c)(λ + δI) =NδI
∂ f (Λ

d , 0)
∂V

+ (λ + c)
∂g(Λ

d , 0)
∂I

 [αξe−(m1+λ)τ1 + (λ + α + δL)(1 − ξ)e−(m2+λ)τ2
]
.

(4.1)

By dividing (λ + α + δL)(λ + c)(λ + δI) in both sides of (4.1), we obtain

1 =

 NδI

(λ + c)(λ + δI)
∂ f (Λ

d , 0)
∂V

+
1

λ + δI

∂g(Λ
d , 0)
∂I

 [ αξ

λ + α + δL
e−(m1+λ)τ1 + (1 − ξ)e−(m2+λ)τ2

]
. (4.2)

Suppose that there exists a eigenvalue λ = ι + κi (ι ≥ 0). Then the modulus of both sides of (4.2)
satisfies

1 <
N

c

∂ f (Λ
d , 0)
∂V

+
1
δI

∂g(Λ
d , 0)
∂I

 [ αξ

α + δL
e−m1τ1 + (1 − ξ)e−m2τ2

]
= R0.
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This contradicts with R0 < 1. Thus, all roots of (4.1) have negative real parts. Hence, when R0 < 1, E0

is locally asymptotically stable. Further, due to similar analysis, whenR0 = 1, any root of characteristic
equation (4.1) has negative real part except a simple zero root λ = 0 and thus E0 is linearly neutrally
stable.

On the other hand, when R0 > 1, there holds

G0(0) =cδI(α + δL) −
NδI

∂ f (Λ
d , 0)
∂V

+ c
∂g(Λ

d , 0)
∂I

 [αξe−m1τ1 + (α + δL)(1 − ξ)e−m2τ2
]

=cδI(α + δL)(1 − R0) < 0

and G0(+∞) = +∞. Thus, there exists at least one real root λ0 > 0, such that G0(λ0) = 0. Hence, if
R0 > 1, then E0 is unstable. �

Based on the local asymptotical stability analysis, we construct a Lyapunov functional to verify the
global asymptotical stability of E0. Similar to the local asymptotical stability of E0, the following
theorem shows that the basic reproduction number R0 acts as the threshold value for the global
asymptotical stability of E0.

Theorem 4.2. If R0 < 1, then the infection-free equilibrium E0 is globally asymptotically stable; if
R0 = 1, then E0 is globally attractive.

Proof. Let

R01 =
NK

c

∂ f (Λ
d , 0)
∂V

and R02 =
K
δI

∂g(Λ
d , 0)
∂I

.

Then R0 = R01 + R02. Define the following Liapunov functional

V0(t) =
α

α + δL
L + I +

1 − R02

N
V

+
αξ

α + δL
e−m1τ1

∫ τ1

0
( f (T (t − θ),V(t − θ)) + g(T (t − θ), I(t − θ)))dθ

+ (1 − ξ)e−m2τ2

∫ τ2

0
( f (T (t − θ),V(t − θ)) + g(T (t − θ), I(t − θ)))dθ.

Calculating the time derivative ofV0(t) along (1.2) yields

dV0

dt
=K( f (T,V) + g(T, I)) − δIR02I − (1 − R02)

c
N

V

=

[
K

f (T,V)
V

− (1 − R02)
c
N

]
V +

(
K

g(T, I)
I
− δIR02

)
I.

From Assumption (iii), we know f ( Λ
d ,V)
V is decreasing with respect to V and g( Λ

d ,I)
I is decreasing with
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respect to I. Thus, when R0 < 1,

dV0

dt
≤

K lim
V→0

f (λd ,V)
V

− (1 − R02)
c
N

 V +

K lim
I→0

g(λd , I)
I
− δIR02

 I

=

NK
c

∂ f (λd , 0)
∂V

− (1 − R02)
 c

N
V +

K
δI

∂g(λd , 0)
∂I

− R02

 δI I

=[R01 − (1 − R02)]
c
N

V + (R02 − R02)δI I

=(R0 − 1)
c
N

V ≤ 0.

Let Θ0 =
{
(T, L, I,V) : dV0

dt = 0
}
. Then the largest invariant subset of Θ0 just consists of E0. Thus,

due to the LaSalle’s invariance principle [15], whenR0 ≤ 1, E0 is a global attractor. Further, combining
the local asymptotical stability of E0 under the condition R0 < 1, E0 is globally asymptotically stable.

�

5. Stability analysis of the infected equilibrium

In this section, we analyze the stability of the infected equilibrium E∗. In order to explore the local
asymptotical stability of E∗, we need to analyze the characteristic equation of system (1.2) on E∗. The
linearization of system (1.2) at E∗ can be expressed by

dX
dt

= L1X +M11Xτ1 +M12Xτ2 ,

where

L1 =


−d − ∂g(T ∗,I∗)

∂T −
∂ f (T ∗,V∗)

∂T 0 −
∂g(T ∗,I∗)

∂I −
∂ f (T ∗,V∗)

∂V
0 −(α + δL) 0 0
0 α −δI 0
0 0 NδI −c

 ,

M11 =


0 0 0 0

ξe−m1τ1
(
∂g(T ∗,I∗)

∂T +
∂ f (T ∗,V∗)

∂T

)
0 ξe−m1τ1 ∂g(T ∗,I∗)

∂I ξe−m1τ1 ∂ f (T ∗,V∗)
∂V

0 0 0 0
0 0 0 0


and

M12 =


0 0 0 0
0 0 0 0

(1 − ξ)e−m2τ2
(
∂g(T ∗,I∗)

∂T +
∂ f (T ∗,V∗)

∂T

)
0 (1 − ξ)e−m2τ2 ∂g(T ∗,I∗)

∂I (1 − ξ)e−m2τ2 ∂ f (T ∗,V∗)
∂V

0 0 0 0

 .
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Then the characteristic equation is

det(λI − L1 −M11e−λτ1 −M12e−λτ2)

=

(
λ + d +

∂g(T ∗, I∗)
∂T

+
∂ f (T ∗,V∗)

∂T

)
(λ + α + δL)(λ + c)(λ + δI)

− (λ + d)
[
NδI

∂ f (T ∗,V∗)
∂V

+ (λ + c)
∂g(T ∗, I∗)

∂I

]
×

[
αξe−(m1+λ)τ1 + (λ + α + δL)(1 − ξ)e−(m2+λ)τ2

]
=0,

that is, (
λ + d +

∂g(T ∗, I∗)
∂T

+
∂ f (T ∗,V∗)

∂T

)
(λ + α + δL)(λ + c)(λ + δI)

=(λ + d)
[
NδI

∂ f (T ∗,V∗)
∂V

+ (λ + c)
∂g(T ∗, I∗)

∂I

]
×

[
αξe−(m1+λ)τ1 + (λ + α + δL)(1 − ξ)e−(m2+λ)τ2

]
.

(5.1)

By dividing (λ + α + δL)(λ + c)(λ + δI)(λ + d) in two sides of system (5.1), we obtain

λ + d +
∂g(T ∗,I∗)

∂T +
∂ f (T ∗,V∗)

∂T

λ + d

=

 NδI
∂ f (T ∗,V∗)

∂V

(λ + c)(λ + δI)
+

∂g(T ∗,I∗)
∂I

λ + δI


×

[
αξ

λ + α + δL
e−(m1+λ)τ1 + (1 − ξ)e−(m2+λ)τ2

]
.

(5.2)

Suppose that there exists eigenvalue λ = ι+ κi (ι ≥ 0). Then, since Assumption (ii), the modulus of the
left side of (5.2) is more than one. Note that from the second and third equations of (2.1), we have

αL∗ =
αξ

α + δL
e−m1τ1( f (T ∗,V∗) + g(T ∗, I∗)) (5.3)

and

δI∗ = (1 − ξ)e−m2τ2( f (T ∗,V∗) + g(T ∗, I∗)) + αL∗. (5.4)

Then it follows from (5.3) and (5.4) that

δI∗ = K ( f (T ∗,V∗) + g(T ∗, I∗)) . (5.5)

Due to Assumption (iii), V∗ = NδI
c I∗ and (5.5), the other side of (5.2) satisfies NδI

∂ f (T ∗,V∗)
∂V

(λ + c)(λ + δI)
+

∂g(T ∗,I∗)
∂I

λ + δI

 [ αξ

λ + α + δL
e−(m1+λ)τ1 + (1 − ξ)e−(m2+λ)τ2

]
≤K

(
N
c
∂ f (T ∗,V∗)

∂V
+

1
δI

∂g(T ∗, I∗)
∂I

)
≤ K

(
N
c

f (T ∗,V∗)
V∗

+
1
δI

g(T ∗, I∗)
I∗

)
≤K

N
c

f (T ∗,V∗)
NδI

c I∗
+

1
δI

g(T ∗, I∗)
I∗

 =
K
δI I∗

( f (T ∗,V∗) + g(T ∗, I∗)) = 1.
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This is a contradiction. Thus, all roots of (5.2) have negative real parts.
Hence, we obtain the following theorem on local asymptotical stability of E∗.

Theorem 5.1. If R0 > 1, then the infected equilibrium E∗ is locally asymptotically stable.

Moreover, using the similar proof of Section 4 in [16] and Theorem 3.1 in [38], we have the
following theorem on uniformly persistence.

Theorem 5.2. If R0 > 1, then system (1.2) is uniformly persistent, that is, there exists a constant $ > 0
such that lim sup

t→+∞

min{T (t), L(t), I(t),V(t)} ≥ $.

Based on the local asymptotical stability of the infected equilibrium E∗ and the uniformly
persistence of system (1.2), we further investigate the global asymptotical stability of E∗. For this
purpose, we also need to make the following hypothesises on f (T,V) and g(T, I):

(A1):
(

T ∗ f (T,V)
T f (T ∗,V∗) − 1

) (
V
V∗ −

T ∗ f (T,V)
T f (T ∗,V∗)

)
≥ 0 and

(
T ∗g(T,I)
Tg(T ∗,I∗) − 1

) (
I
I∗ −

T ∗g(T,I)
Tg(T ∗,I∗)

)
≥ 0.

Then, by virtue of the Volterra type function [19]

h(ζ) = ζ − 1 − ln ζ, ζ > 0,

we can construct a Lyapunov functional to ensure E∗ to be globally attractive with respect to all the
solutions with non-negative initial values, arriving at the following results on global asymptotical
stability.

Theorem 5.3. Suppose that Assumption (A1) holds. If R0 > 1, then the infected equilibrium E∗ is
globally asymptotically stable.

Proof. Define the following Liapunov functionalV1(t) = V11(t) +V12(t), where

V11(t) =KT ∗h(
T (t)
T ∗

) +
αL∗

α + δL
h(

L(t)
L∗

) + I∗h(
I(t)
I∗

) +
K
c

f (T ∗,V∗)h(
V(t)
V∗

)

and

V12(t)

=
αξ

α + δL
e−m1τ1 f (T ∗,V∗)

∫ τ1

0
h(

f (T (t − θ),V(t − θ))
f (T ∗,V∗)

)dθ

+ (1 − ξ)e−m2τ2 f (T ∗,V∗)
∫ τ2

0
h(

f (T (t − θ),V(t − θ))
f (T ∗,V∗)

)dθ

+
αξ

α + δL
e−m1τ1g(T ∗, I∗)

∫ τ1

0
h(

g(T (t − θ), I(t − θ))
g(T ∗, I∗)

)dθ

+ (1 − ξ)e−m2τ2g(T ∗, I∗)
∫ τ2

0
h(

g(T (t − θ), I(t − θ))
g(T ∗, I∗)

)dθ.

Since Λ = dT + f (T ∗,V∗) + g(T ∗, I∗) and cV∗ = NδI I∗, calculating the time derivative of V11(t)
along (1.2) yields
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dV11

dt

=K
(
1 −

T ∗

T

)
(Λ − dT − f (T,V) − g(T, I))

+
α

α + δL

(
1 −

L∗

L

)
[ξ f (T (t − τ1),V(t − τ1))e−m1τ1

+ ξg(T (t − τ1), I(t − τ1))e−m1τ1 − (α + δL)L]

+

(
1 −

I∗

I

)
[(1 − ξ) f (T (t − τ2),V(t − τ2))e−m2τ2

+ (1 − ξ)g(T (t − τ2), I(t − τ2))e−m2τ2 − δI I + αL]

+ K
f (T ∗,V∗)

cV∗

(
1 −

V∗

V

)
(NδI I − cV)

= − K
d
T

(T − T ∗)2 + K(− f (T ∗,V∗) − g(T ∗, I∗) + f (T,V) + g(T, I))
(
T ∗

T
− 1

)
−

αξ

α + δL
e−m1τ1

(
L∗

L
− 1

)
( f (T (t − τ1),V(t − τ1)) + g(T (t − τ1), I(t − τ1)))

− (1 − ξ)e−m2τ2

(
I∗

I
− 1

)
( f (T (t − τ2),V(t − τ2)) + g(T (t − τ2), I(t − τ2)))

+ αL∗ + δI(I∗ − I) − αL
I∗

I
+ K f (T ∗,V∗)

(
1 −

V∗

V

) ( I
I∗
−

V
V∗

)
. (5.6)

Moreover, due to (5.3), δI I∗ = JL∗ and (2.3), we have

δI(I∗ − I) = −K
( I
I∗
− 1

)
( f (T ∗,V∗) + g(T ∗, I∗)). (5.7)

Then it follows from (5.3), (5.6) and (5.7) that

dV1

dt

= − K
d
T

(T − T ∗)2 − K( f (T ∗,V∗) + g(T ∗, I∗))
(
T ∗

T
− 1

)
+ K( f (T,V) + g(T, I))

T ∗

T

−
αξ

α + δL
e−m1τ1

L∗

L
( f (T (t − τ1),V(t − τ1)) + g(T (t − τ1), I(t − τ1)))

+
αξ

α + δL
e−m1τ1( f (T ∗,V∗) + g(T ∗, I∗))

− (1 − ξ)e−m2τ2
I∗

I
( f (T (t − τ2),V(t − τ2)) + g(T (t − τ2), I(t − τ2)))

− K
( I
I∗
− 1

)
( f (T ∗,V∗) + g(T ∗, I∗))
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−
I∗L
IL∗

αξ

α + δL
e−m1τ1( f (T ∗,V∗) + g(T ∗, I∗)) + K f (T ∗,V∗)

(
I
I∗
−

V
V∗
−

V∗I
VI∗

+ 1
)

+
αξ

α + δL
e−m1τ1

(
f (T ∗,V∗) ln

f (T (t − τ1),V(t − τ1))
f (T,V)

+ g(T ∗, I∗) ln
g(T (t − τ1), I(t − τ1))

g(T, I)

)
+ (1 − ξ)e−m2τ2

(
f (T ∗,V∗) ln

f (T (t − τ2),V(t − τ2))
f (T,V)

+ g(T ∗, I∗) ln
g(T (t − τ2), I(t − τ2))

g(T, I)

)
,

that is,

dV1

dt

= − K
d
T

(T − T ∗)2 − K( f (T ∗,V∗) + g(T ∗, I∗))
(
T ∗

T
− 1

)
+K

(
T ∗

T
f (T,V) −

I
I∗

f (T ∗,V∗) −
V
V∗

f (T ∗,V∗) +
I
I∗

f (T ∗,V∗)
)

+K
(
T ∗

T
g(T, I) −

I
I∗

g(T ∗, I∗)
)

−
αξ

α + δL
e−m1τ1 f (T ∗,V∗)

(
f (T (t − τ1),V(t − τ1))L∗

f (T ∗,V∗)L
− 1

)
−

αξ

α + δL
e−m1τ1g(T ∗, I∗)

(
g(T (t − τ1), I(t − τ1))L∗

g(T ∗, I∗)L
− 1

)
−(1 − ξ)e−m2τ2 f (T ∗,V∗)

(
f (T (t − τ2),V(t − τ2))I∗

f (T ∗,V∗)I
− 1

)
−(1 − ξ)e−m2τ2g(T ∗, I∗)

(
g(T (t − τ2), I(t − τ2))I∗

g(T ∗, I∗)I
− 1

)
−

αξ

α + δL
e−m1τ1 f (T ∗,V∗)

(
I∗L
IL∗
− 1

)
−

αξ

α + δL
e−m1τ1g(T ∗, I∗)

(
I∗L
IL∗
− 1

)
− K f (T ∗,V∗)

(
V∗I
VI∗
− 1

)
+

αξ

α + δL
e−m1τ1

(
f (T ∗,V∗) ln

f (T (t − τ1),V(t − τ1))
f (T,V)

+ g(T ∗, I∗) ln
g(T (t − τ1), I(t − τ1))

g(T, I)

)
+(1 − ξ)e−m2τ2

(
f (T ∗,V∗) ln

f (T (t − τ2),V(t − τ2))
f (T,V)

+ g(T ∗, I∗) ln
g(T (t − τ2), I(t − τ2))

g(T, I)

)
.

Moreover, for simplification, let

f := f (T,V), f ∗ := f (T ∗,V∗), fτ1 := f (Tτ1 ,Vτ1), fτ2 := f (Tτ2 ,Vτ2),
g := g(T, I), g∗ := g(T ∗, I∗), gτ1 := g(Tτ1 , Iτ1), gτ2 := g(Tτ2 , Iτ2).
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Then, dV1
dt is converted to

dV1

dt

= − K
d
T

(T − T ∗)2 − K( f ∗ + g∗)h(
T ∗

T
)

+ K f ∗
(
h(

T ∗ f
T f ∗

) − h(
V
V∗

)
)

+ Kg∗
(
h(

T ∗g
Tg∗

) − h(
I
I∗

)
)

−
αξ

α + δL
e−m1τ1

(
f ∗h(

fτ1 L∗

f ∗L
) + g∗h(

gτ1 L∗

g∗L
) + f ∗h(

I∗L
IL∗

) + g∗h(
I∗L
IL∗

)
)

− (1 − ξ)e−m2τ2

(
f ∗h(

fτ2 I∗

f ∗I
) + g∗h(

gτ2 I∗

g∗I
)
)
− K f ∗h(

V∗I
VI∗

).

From Assumption (A1), f T ∗

f ∗T lies between 1 and V
V∗ ,

gT ∗

g∗T lies between 1 and I
I∗ . Then, there holds that

h( f T ∗

f ∗T )−h( V
V∗ ) ≤ 0 and h(gT ∗

g∗T )−h( I
I∗ ) ≤ 0. Thus, when R0 > 1 and Assumption (A1) holds, dV1

dt ≤ 0. Let

Θ1 =
{
(T, L, I,V) : dV1

dt = 0
}

and the largest invariant subset of Θ1 just consists of E∗. Thus, due to the
LaSalle’s invariance principle [15], E∗ is a global attractor. Further, combining the local asymptotical
stability of E∗ under condition R0 > 1, E∗ is globally asymptotically stable. �

6. Numerical simulations

In this section, we perform some specific examples to support our main results, verifying the effect
of R0 on system (1.2).

Example 6.1. In [38], X. Wang et al. considered model (1.2) with the virus-to-cell transmission and
the cell-to-cell transmission functions as the mass-action infection rates, that is, f (T,V) = βTV and
g(T, I) = kT I for β, k > 0. Then system (1.2) becomes

dT
dt

= Λ − dT (t) − βT (t)V(t)) − kT (t)I(t),

dL
dt

= ξe−m1τ1βT (t − τ1)V(t − τ1) + ξe−m1τ1kT (t − τ1), I(t − τ1) − (α + δL)L(t),

dI
dt

= (1 − ξ)e−m2τ2βT (t − τ2),V(t − τ2) + (1 − ξ)e−m2τ2kT (t − τ2), I(t − τ2) − δI I(t) + αL,

dV
dt

= NδI I(t) − cV(t).

(6.1)

Based on the above analysis, we obtain

R0 =

[
αξ

α + δL
e−m1τ1 + (1 − ξ)e−m2τ2

] (
NβΛ

cd
+

kΛ

δId

)
.

If R0 < 1, then model (6.1) only has an infection-free equilibrium E0, which is globally asymptotically
stable. If R0 > 1, then there exist E0 and an globally asymptotically stable infected equilibrium E∗.
The results are the same as those in [38], in which X. Wang et al. analyzed the global dynamics of the
HIV latent infection model (6.1).
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Example 6.2. Let f (T,V) =
β1T (t)V(t)
1+aV(t) and g(T, I) = β2T (t)I(t), for β1, β2, a > 0. We consider the

following system

dT
dt

= Λ − dT (t) −
β1T (t)V(t)
1 + aV(t)

− β2T (t)I(t),

dL
dt

= ξe−m1τ1
β1T (t − τ1)V(t − τ1)

1 + aV(t − τ1)
+ ξe−m1τ1β2T (t − τ1), I(t − τ1) − (α + δL)L(t),

dI
dt

= (1 − ξ)e−m2τ2
β1T (t − τ2)V(t − τ2)

1 + aV(t − τ2)
+ (1 − ξ)e−m2τ2β2T (t − τ2)I(t − τ2) − δI I(t) + αL(t),

dV
dt

= NδI I(t) − cV(t).

(6.2)

Through our analysis, for system (6.2),

R0 =

[
αξ

α + δL
e−m1τ1 + (1 − ξ)e−m2τ2

] (
Nβ1Λ

cd
+
β2Λ

δId

)
.

The model (6.2) presents threshold dynamics with respect to R0 as shown in Theorem 4.2 and
Theorem 5.3.

Note that different values of τ1 and τ2 can evaluate the effect of time delays on the virus dynamics.
Through our analysis, R0 is decreasing with respect to τ1 and τ2. Thus, extending the time delay with
the aid of drug treatment can help to inhibit viruses. We take numerical simulations to show the effect
of time delay τi, i = 1, 2. For system (6.2) with parameters listed in Table 1, the graph trajectories
with respect to different values of τ1 = τ2 = τ are depicted in Figure 1.

Through R0, different values of ξ also affect the virus dynamics. Thus, changing the the proportion
of latent infection through the aid of drug treatment can help to reduce viruses. We take numerical
simulations to show the effect of ξ. For system (6.2) with parameters τ1 = τ2 = 1.75 days. The graph
trajectories of system (6.2) with respect to different values of ξ are depicted in Figure 2.

Table 1. The parameters of system (6.2).
Parameter Description Value Source
Λ Recruitment rate of target cells 10000 cells ·ml−1 ·day−1 [1]
d Death rate of uninfected cells 0.01 day−1 [22]
β1 Virus-to-cell infection rate 2.4 × 10−8 ml · day−1 [27]
β2 Cell-to-cell infection rate 1 × 10−6 ml · day−1 [25]
α Activation rate of infected cells 0.01 day−1 [28]
δI Death rate of activated infected cells 0.05 day−1 [1]
δL Death rate of latently infected cells 0.004 day−1 [1]
ξ Fraction of latency 0.001 [29]
N Virus production rate of per infected cell 2000 per cell per day [27]
c Death rate of virus 23 day−1 [26]
m1 Death rate of latently infected cells which

have not produced viruses
1 day−1 Assume

m2 Death rate of infected cells which have
not produced viruses

1 day−1 Assume

a Inhibition taken by virus 0.01 cells · ml−1 Assume
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Figure 1. Graph trajectories of system (6.2) with respect to different values of τi = τ, i = 1, 2.
The time delay τ is extended from 0.5 day (R0 = 8.1268) to 1.75 days (R0 = 0.6690).
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Figure 2. Graph trajectories of system (6.2) with respect to different values of ξ. The
parameter ξ is decreased from 0.05 (R0 = 1.4686) to 0.025 (R0 = 0.7188).
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7. Conclusions and discussion

In this paper, the global dynamic analysis of a general within-host latent viral infection model with
intracellular delays was carried out. By introducing general transmission functions f (T,V) and
g(T, I), which were assumed to satisfy several reasonable biological assumptions, we considered two
virus predominant infection modes. The theoretical analysis showed that model (1.2) possesses two
equilibria, relying on the basic reproductive number R0, which consists of two parts: One is the
contribution from the virus-to-cell infection and the other is the contribution from the cell-to-cell
transmission. Afterwards, through local and global analysis, we verified that the model exhibits
threshold dynamics with respect to R0. When R0 is less than unity, there exists a unique globally
asymptotically stable infection-free equilibrium E0. In this situation, the disease with virus is
inhibited effectively. When R0 is greater than one, E0 is unstable and there exists a globally
asymptotically stable infected equilibrium E∗. For the critical case when R0 equals to one, E0 is a
linearly neutrally stable non-hyperbolic equilibrium. Center manifold theory should be applied to
further explore the stability and bifurcation around E0 when R0 = 1.

In our model (1.2), we extend the existing research on HIV transmission process and take into
account generalized incidence rates. This not only enables us to establish a unified theoretical
framework that can be applied to numerous situations, but also provides deeper insight into the
relationship among different transmission dynamics. By considering double virus spread routes, we
found that the infection rate tends to increase with higher transmission rates. We also illustrated that
the infection can be inhibited through proper drug block, while a proper treatment still needs to be
further investigated. According to the results of theoretical analysis and numerical simulations,
cellular time lags and latent infection cells have significant effect on the global asymptotical stability.
By reducing the proportion of latent infection or extending the intracellular delay, it is possible to
inhibit the secondary infection produced by each primary case and block the transmission of HIV.

Based on our generalized HIV transmission model, further research still need to be conducted.
Despite the efforts to explore a general model, there exist several assumptions and some nonlinear
incidence rates are not incorporated, such as Beddington-DeAngelis function. Hence, the results could
be generalized by adopting more analytical techniques. Spatial diffusion and age structure are also
useful to describe viral transmission, which are neglected in model (1.2). Based on the pattern and age
structures, more effective strategies can be taken to inhibit the propagation of the virus. Combining the
delay effect and PDE structure, it would be more challenging to explore the model, including the well-
posedness of solutions, stability and bifurcation analysis, the existence of travelling wave solution.
This is a significant work that we will take effort on in the future.
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