
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(2): 2255–2265.
DOI:10.3934/math.2022128
Received: 02 September 2021
Accepted: 08 November 2021
Published: 10 November 2021

Research article

A note on a ZIKV epidemic model with spatial structure and vector-bias

Yifei Pan1, Siyao Zhu2 and Jinliang Wang1,∗

1 School of Mathematical Science, Heilongjiang University, Harbin 150080, China
2 Department of Mathematics, Nanjing University, Nanjing 210093, China

* Correspondence: Email: jinliangwang@hlju.edu.cn.

Abstract: This paper provides a supplement to a recent study of (Appl. Math. Lett. 80 (2020)
106052). We further verify that the unique endemic equilibrium is globally asymptotically stable
whenever it exists.

Keywords: spatial heterogeneity; global asymptotic stability; basic reproduction number; threshold
dynamics
Mathematics Subject Classification: 35K57, 35J57, 35B40, 92D25

1. Introduction

It is commonly recognized that Zika virus (ZIKV) belongs to a mosquito-borne flavivirus, which
is primarily in tropical and subtropical regions, and spreads through the biting of infected Aedes
aegypti. As reported in World Health Organization (WHO), 72 countries and territories have appeared
local circulation of the ZIKV, which brings major threatens to the global public health in developing
countries [2, 9].

In recent years, reaction-diffusion equation models have been carried out to explore the impacts
of the heterogeneity of spatial environment and population mobility on the spread of ZIKV (see, for
example, but not limited to, [5–8, 12, 13, 19]). In the above mentioned work, Fitzgibbon et al. [8]
firstly proposed the diffusive vector-host model to investigate Zika outbreak in Rio de Janeiro, Brazil
for the year of 2015-2016. The authors mainly focused on the final size and spatial distribution of
the outbreak by numerically study, and later, the threshold-type results of the model characterized
by the basic reproduction number (BRN) have been resolved by Magal et al. in [12]. Subsequently,
Cai et al. [5] analytically and numerically studied the spatiotemporal transmission dynamics of the
proposed model as in [8, 12]. Further, in [6], the authors confirmed that epidemic equilibrium (EE) is
globally asymptotically stable (GAS) by using the technique of Lyapunov function when the diffusion
coefficients are all constants. It should be mentioned that the BRN for the model in [5, 6, 8, 12] was
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defined by the spectral radius of the next generation operator [17], which generally has the relationship
with the principal eigenvalue of associated elliptic system. Due to the fact that the BRN is lack of
visualize, Magal et al. [13] developed an approach to link the BRN for the model in [8, 12] and the
local BRN, and explored the effects of the spatial heterogeneity and diffusion rates on the BRN. The
local BRN was obtained from the reaction-diffusion model by dropping the diffusion terms.

Very recently, Duan and Huang [7] studied the model in [8, 12] by incorporating general incidence
rate. Taking into account the the vector-bias infection mechanism [3, 4, 10, 11] in the vector-borne
disease model, Wang and Chen [19] studied the model in [8, 12] by adopting vector-bias infection
terms. Assume that Ω ⊂ Rn is a bounded domain with a smooth boundary ∂Ω. Let x ∈ Ω and t ∈ R be
the location and time variables, respectively. We use the symbols Hu(x), Hi(x, t), Vu(x, t) and Vi(x, t)
to represent the densities of uninfected hosts, infected hosts, uninfected vectors and infected vectors,
respectively. The uninfected hosts are assumed to be stationary in space since it amounts fairly small
number comparing to the total population [18]. The deterministic reaction-diffusion system in [19]
involving Hi, Vu and Vi reads as follows:

∂

∂t
Hi − ∇ · d1(·)∇Hi = −λ(·)Hi +

cβ1(·)lHu(·)
pHi + lHu(·)

Vi,

∂

∂t
Vu − ∇ · d2(·)∇Vu = α(·)(Vu + Vi) − µ(·)(Vu + Vi)Vu −

bβ2(·)pHi

pHi + lHu(·)
Vu,

∂

∂t
Vi − ∇ · d2(·)∇Vi =

bβ2(·)pHi

pHi + lHu(·)
Vu − µ(·)(Vu + Vi)Vi,

(1.1)

for x ∈ Ω, t > 0, coupled with the following boundary and initial conditions:
∂Hi

∂ϑ
=
∂Vu

∂ϑ
=
∂Vi

∂ϑ
= 0, x ∈ ∂Ω, t > 0.(

Hi(·, 0),Vu(·, 0),Vi(·, 0)
)

=
(
H0

i (·),V0
u (·),V0

i (·)
)
∈ C(Ω;R3

+),

where Hu(·) ∈ Cα(Ω̄,R) is nonnegative and nontrivial; the parameter functions d1(·) ∈ C1+α(Ω̄) and
d2(·) ∈ C1+α(Ω̄) are the diffusion rates of the hosts and vectors, respectively; β1(·) (resp. β2(·)) is
the biting rate of infected hosts (resp. uninfected vectors); the constant b (resp. c) represents the
transmission probability from infected host (resp. vector) to uninfected vectors (hosts); the parameter
function λ(·) represents the loss rate of the infected hosts; the parameter functions α(·) and µ(·) stand
for the breeding rate and the loss rate of the vectors due to environmental crowding. Here βi(·)(i =

1, 2), λ(·), α(·), µ(·) ∈ C(Ω̄) are strictly positive. The constant p (resp. l) stands for the probabilities that
a mosquito randomly arrives at a human and picks the human if he is infectious (resp. susceptible). ∂

∂ϑ

denotes the normal derivative along ∂Ω.
Taking into account the conservation law of the total vector population, and let V : = Vu + Vi, then

V(·, t) fulfills the reaction-diffusion system:
∂

∂t
V − ∇ · d2(·)∇V = α(·)V − µ(·)V2, x ∈ Ω, t > 0,

∂V
∂ϑ

= 0, x ∈ ∂Ω, t > 0,

V(·, 0) = V0(·) = V0
u (·) + V0

i (·).

(1.2)
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It is well-known from [12] that for any V0 ∈ C(Ω̄,R+), (1.2) possesses a unique global classical solution
V(·, t) and satisfies

lim
t→∞
‖V(·, t) − V̄(·)‖∞ = 0, (1.3)

where V̄(·) is the unique positive solution of the problem{
−∇ · d2(·)∇V = α(·)V − µ(·)V2, x ∈ Ω,
∂V
∂ν

= 0, x ∈ ∂Ω.
(1.4)

Obviously, (1.1) admits two disease-free equilibria: the trivial and semi-trivial equilibrium, labeled
by E0 = (0, 0, 0) and E1 = (0, V̄(·), 0), respectively. E0 was proved to be always unstable.

By a routine process as those in [17, Theorem 3.5], the basic reproduction number <0 for (1.1)
in [19] is defined by

<0 = r(−CB−1),

i.e., the spectral radius of −CB−1, where B,C : [C(Ω̄)]2 → [C(Ω̄)]2 are defined as

B(ϕ, ψ)(x) =

(
∇ · d1(·)∇ − λ(·) cβ1(·)

0 ∇ · d2(·)∇ − µ(·)V̄(·)

) (
ϕ

ψ

)
and

C(ϕ, ψ)(x) =

 0 0
bβ2(·) pV̄(·)

lHu(·) 0

 (ϕψ
)
,

for any (ϕ, ψ) ∈ [C(Ω̄)]2.
By defining the BRN, <0, the authors further made an attempt to investigate the relationship

between the BRN and the principal eigenvalue of associated eigenvalue problem. The main results
in [19] are listed below.

Theorem 1.1. Denote by Ψ(t) the solution semiflow generated by (1.1). Let ω(ϕ) be the omega limit
set of the orbit O+(ϕ) := {Ψ(t)φ : t ≥ 0}. Let X0 : = {ϕ ∈ C(Ω̄;R3

+) : ϕ1 + ϕ3 , 0 and ϕ2 + ϕ3 ,

0}, ∂X0 : = {ϕ ∈ C(Ω̄;R3
+) : ϕ1 + ϕ3 = 0 or ϕ2 + ϕ3 = 0}. Then for ∀(H0

i (·),V0
u (·),V0

i (·)) ∈ X0, we have
the following assertions.

(i) If<0 < 1, then E1 is GAS, i.e., E1 is locally stable and satisfies

lim
t→∞
‖
(
Hi,Vu,Vi

)
(·, t) − E1‖∞ = 0.

(ii) If <0 > 1, then E0 and E1 are uniform weak repellers, i.e., there exists ζ > 0 small enough
satisfying

lim sup
t→∞

‖Ψ(t)(H0
i ,V

0
u ,V

0
i ) − U‖∞ ≥ ζ, where U = E0, E1, respectively.

(iii) If<0 > 1, then (1.1) is uniformly persistent, that is, there is η > 0 satisfying

lim inf
t→∞

inf
ω∈∂X0

‖
(
(Hi(·, t),Vu(·, t),Vi(·, t)

)
− ω‖∞ ≥ η.

Furthermore, (1.1) admits at least one EE.
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Although the threshold-type results for model (1.1) have been achieved in terms of the BRN, the
detailed information (rather than the uniform persistence result) on the dynamics of model when<0 >

1 was left and unsolved. It comes naturally to investigate the following question: Whether does model
(1.1) admit a unique global stable EE? This constitutes the main motivation of the current paper. Our
goal of this paper is to investigate that when <0 > 1, (1.1) admits a unique EE, and it is GAS. The
methods used here is inspired by the recent study [12].

2. Global dynamics when<0 > 1

2.1. Asymptotic autonomous system

It is noted in (1.3) that lim
t→∞
‖V(·, t)− V̄(·)‖∞ = 0, which allows us to consider the following problem:



∂

∂t
Hi − ∇ · d1(·)∇Hi = −λ(·)Hi +

cβ1(·)lHu(·)
pHi + lHu(·)

Vi, x ∈ Ω, t > 0,

∂

∂t
Vi − ∇ · d2(·)∇Vi =

bβ2(·)pHi

pHi + lHu(·)
(V̄(·) − Vi)+ − µ(·)V̄(·)Vi, x ∈ Ω, t > 0,

∂Hi

∂ϑ
=
∂Vi

∂ϑ
= 0, x ∈ ∂Ω, t > 0.(

Hi(·, 0),Vi(·, 0)
)

=
(
H0

i (·),V0
i (·)

)
∈ C(Ω̄;R2

+).

(2.1)

If the EE of model (2.1), (H̃i(·), Ṽi(·)) ∈ C2(Ω̄) ×C2(Ω̄), exists, it then satisfies

−∇ · d1(·)∇Hi = −λ(·)Hi +
cβ1(·)lHu(·)
pHi + lHu(·)

Vi, x ∈ Ω,

−∇ · d2(·)∇Vi =
bβ2(·)pHi

pHi + lHu(·)
(V̄(·) − Vi)+ − µ(·)V̄(·)Vi, x ∈ Ω,

∂Hi

∂ϑ
=
∂Vi

∂ϑ
= 0, x ∈ ∂Ω.

(2.2)

In the whole section, we always assume that model (2.1) has EE, (H̃i(·), Ṽi(·)), then we prove that
(H̃i(·), Ṽi(·)) is positive, unique and GAS in the setM := {(H0

i (·),V0
i (·)) ∈ C(Ω̄;R2

+) : H0
i (·)+V0

i (·) , 0}.

2.1.1. The uniqueness of EE

We prove the uniqueness and positivity of (H̃i(·), Ṽi(·)) by the following lemmas. The way used here
is similar to the ideas of [1], which based on the fact that the model (2.2) is cooperative and sub-linear.

Lemma 2.1. The nontrivial nonnegative equilibrium (H̃i(·), Ṽi(·)) of model (2.1) is strictly positive.

Proof. As (H̃i(·), Ṽi(·)) is nontrivial, we obtain H̃i(·) , 0 or Ṽi(·) , 0. But from the first equation
of (2.2), one can get (λ(·) − ∇ · d1(·)∇)Hi =

cβ1(·)lHu(·)
pHi+lHu(·) Vi, which implies that H̃i(·) , 0 and Ṽi(·) , 0.

According to the maximum principle, the assertion directly follows. This proves Lemma 2.1. �

We next pay our attention to the fixed point problem: for any B1,B2 > 0, defining S = {φ ∈

C(Ω̄;R+) : ‖φ‖∞ ≤ B1} and L : S ⊂ C(Ω̄)→ C(Ω̄) by

L(φ) =
(
B2 − ∇ · d1(·)∇

)−1
L1(φ),
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where L1(φ) :=
[(
B2 − λ(·)

)
φ+ cβ1(·)(µ(·)V̄(·)−∇ · d2(·)∇)−1 bβ2(·)pφ

pφ+lHu(·) (V̄(·)−Vi)+ −
cβ1(·)pφ

pφ+lHu(·) (µ(·)V̄(·)−∇ ·

d2(·)∇)−1 bβ2(·)pφ
pφ+lHu(·) (V̄(·) − Vi)+

]
.

Lemma 2.2. Consider the elliptic system (2.2). H̃i(·) is a nontrivial fixed point of L. Specifically, there
exists a sufficiently large B∗1 > 0 such that for all B1 > B

∗
1 and B2 > 0, L(H̃i(·)) = H̃i(·).

Proof. From the second equation of (2.2), one knows that Ṽi(·) fulfills

Ṽi(·) =
(
µ(·)V̄(·) − ∇ · d2(·)∇

)−1 bβ2(·)pHi

pHi + lHu(·)
(V̄(·) − Ṽi(·))+.

Substituting it into the first equation of (2.2) and adding a term B2H̃i(·) to both side of the obtained
equation yield (

B2 − ∇ · d1(·)∇
)
H̃i(·) =

(
B2 − λ(·)

)
H̃i(·)

+
cβ1(·)lHu(·)

pH̃i(·) + lHu(·)
(
µ(·)V̄(·) − ∇ · d2(·)∇

)−1 bβ2(·)pH̃i(·)
pH̃i(·) + lHu(·)

(V̄(·) − Ṽi(·))+.

We further rewrite the above equation as

H̃i(·) =
(
B2 − ∇ · d1(·)∇

)−1
[(
B2 − λ(·)

)
H̃i(·)

+
N(·)

pH̃i(·) + lHu(·)
(
µ(·)V̄(·) − ∇ · d2(·)∇

)−1 bβ2(·)pH̃i(·)
pH̃i(·) + lHu(·)

(V̄(·) − Ṽi(·))+

]
.

Here N(·) = cβ1(·)lHu(·). We further rewrite N(·) = cβ1(·)
(
pH̃i(·) + lHu(·) − pH̃i(·)

)
by a zero trick.

This together with Lemma 2.1 yields the assertion, which proves Lemma 2.2. �

Lemma 2.3. There exists a sufficiently large number B∗2 > 0 such that for all B2 > B
∗
2 and B1 > 0, L

is monotone, i.e., L(H1
i ) ≤ L(H2

i ) for all H1
i ,H

2
i ∈ S with H1

i ≤ H2
i .

Proof. We only need to verify that L1(Hi) ≤ L1(Hi + m) with m > 0 for any Hi,Hi + m ∈ S. In fact,

L1(Hi + m) − L1(Hi) = A(Hi + m) −A(Hi) + B(Hi + m) − BHi,

where 
A(φ) = cβ1(·)(µ(·)V̄(·) − ∇ · d2(·)∇)−1 bβ2(·)pφ

pφ + lHu(·)
(V̄(·) − Vi)+,

B(φ) = φ[(B2 − λ(·) −
cβ1(·)p

pφ + lHu(·)
(µ(·)V̄(·) − ∇ · d2(·)∇)−1 bβ2(·)pφ

pφ + lHu(·)
(V̄(·) − Vi)+].

Obviously,A is monotonically increasing with respect to φ. We focus on the following set:{
cβ1(·)p

pφ + lHu(·)
(µ(·)V̄(·) − ∇ · d2(·)∇)−1 bβ2(·)pφ

pφ + lHu(·)
(V̄(·) − Vi)+

}
.

With the help of the elliptic estimate, the above set is bounded, which in turn implies that B is
monotonically increasing with respect to φ if B2 is large. Hence, L1(Hi + m) ≥ L1(Hi). Therefore,
L is monotone if B2 is large. This proves Lemma 2.3. �
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For ∀g1, g2 ∈ C(Ω̄,R), if g1(x) < g2(x) for all x ∈ Ω̄, we write g1 � g2.

Lemma 2.4. For ∀θ ∈ (0, 1) and Hi ∈ S with Hi � 0, we have θL(Hi) � L(θHi).

Proof. Recall from Lemma 2.2 that

θL1(Hi) =

[(
B2 − λ(·)

)
θHi

+
cβ1(·)lHu(·)
pHi + lHu(·)

(µ(·)V̄(·) − ∇ · d2(·)∇)−1 bβ2(·)pθHi

pHi + lHu(·)
(V̄(·) − Vi)+

]
≤

[(
B2 − λ(·)

)
θHi

+
cβ1(x)lHu(·)
pθHi + lHu(·)

(µ(·)V̄(·) − ∇ · d2(·)∇)−1 bβ2(·)pθHi

pθHi + lHu(·)
(V̄(·) − Vi)+

]
= L1(θHi),

then θL(Hi) � L(θHi). The assertion now just based on the fact that (B2 − ∇ · d1(·)∇)−1 is strongly
positive. This proves Lemma 2.4. �

Lemma 2.5. The EE of model (2.1) is unique whenever it exists.

Proof. Assume for the contrary that (H∗i ,V
∗
i ) and (H∗∗i ,V

∗∗
i ) are two different positive equilibrium. Then

from the second equation of model (2.2), one can easily get H∗i , H∗∗i . In the following, we always
let H∗i � H∗∗i . By virtue of H̃i(·) is a nontrivial fixed point of L and the (1.1) is uniformly persistent
whenever<0 > 1, then the upper and lower bounds of H̃i(·) are guaranteed.

Let us define ρ = max{ρ̃ ≥ 0 : ρ̃H∗i ≤ H∗∗i }. We then directly have ρ ∈ (0, 1) and ρH∗i ≤ H∗∗i and
ρH∗i (x0) = H∗∗i (x0) for some x0 ∈ Ω̄. By Lemma 2.2, with sufficiently large numbers B1 and B2, such
that L(H∗i ) = H∗i and L(H∗∗i ) = H∗∗i . This combined with Lemmas 2.3 and 2.4 gives

ρH∗i = ρL(H∗i ) � L(ρH∗i ) � L(H∗∗i ) = H∗∗i .

Thus ρH∗i � H∗∗i , which contradicts with ρH∗i (x0) = H∗∗i (x0). This proves Lemma 2.5. �

2.1.2. Global stability of EE of (2.1)

Let

G1(Hi,Vi)(·, t) = −λ(·)Hi +
cβ1(·)lHu(·)
pHi + lHu(·)

Vi

and

G2(Hi,Vi)(·, t) =
bβ2(·)pHi

pHi + lHu(·)
(V̄(·) − Vi)+ − µ(·)V̄(·)Vi.

By simple calculation, ∂G1/∂Vi ≥ 0 and ∂G2/∂Hi ≥ 0, then the limit system (2.1) is cooperative.
It then follows from [15] that the solution semiflow of (2.1), Ψ̃(t) : C(Ω̄;R2) → C(Ω̄;R2), i.e.,
Ψ̃(t)(H0

i ,V
0
i ) = (Hi(·, t),Vi(·, t)), ∀t ≥ 0, is monotone. In what follows, we always say that t > 0 and the

limit process are all uniformly on Ω̄. The following results provide the information that the solution of
(2.1),(Hi,Vi), is strictly positive and bounded under the condition that

(
H0

i (·),V0
i (·)

)
∈ C(Ω;R+

2 ).
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Lemma 2.6. Consider the limit system (2.1). Then the solution (Hi(·, t),Vi(·, t)) of (2.1) is strictly
positive and bounded, provided that

(
H0

i (·),V0
i (·)

)
∈ C(Ω;R+

2 ).

Proof. Similar to Lemma 3.7 in [12], the strictly positivity of (Hi(·, t),Vi(·, t)) can be obtained directly,
as (2.1) is cooperative.

Let M1 = max{‖V̄(·)‖∞, ‖V0
i (·)‖∞} and M2 = max{c‖β1‖∞M1/λm, ‖Hi0‖∞}, where λm = min{λ(x) :

x ∈ Ω̄}. From the Vi-equation of (2.1), together with the comparison principle, one can get that
Vi(·, t) ≤ M1. Further, by the Hi-equation of (2.1), we directly have that for x ∈ Ω and t > 0, ∂

∂t Hi − ∇ ·

d1(·)∇Hi ≤ −λ(·)Hi + cβ1M1. Again from the standard comparison principle, 0 ≤ Hi(·, t) ≤ M2. This
proves Lemma 2.6. �

Lemma 2.7. The EE of (2.1) is GAS whenever it exists, i.e.,

lim
t→∞
‖(Hi(·, t),Vi(·, t)) − (H̃i(·), Ṽi(·))‖ = 0 in C(Ω̄;R2).

Proof. By Lemmas 2.5 and 2.6, we let (H̃i(·), Ṽi(·)) be the unique positive EE of (2.1). We introduce
the following auxiliary system,

−∇ · d1(·)∇Hi(·) = −λ(·)Hi(·) + cβ1(·)Vi(·), x ∈ Ω,

−∇ · d2(·)∇Vi(·) = bβ2(·)(V̄(·) − Vi(·))+Hi(·) − µ(·)V̄(·)Vi(·), x ∈ Ω,
∂Hi(·)
∂ϑ

=
∂Vi(·)
∂ϑ

= 0, x ∈ ∂Ω.

Hi(·) = H0
i (·), Vi(·) = V0

i (·), x ∈ Ω.

Let (Hi(·),Vi(·)) = γ(H̃i(·), Ṽi(·)) and (H̄i(·), V̄i(·)) = κ(H̃i(·), Ṽi(·)), we may choose sufficiently small
γ > 0 and sufficiently large κ such that (Hi(·),Vi(·)) ≤ (H0

i (·),V0
i (·)) ≤ (H̄i(·), V̄i(·)). Due to the

monotonicity of Ψ̃(t), by [15, Corollary 7.3.6], we have

Ψ̃(t)(Hi(·),Vi(·))→ (H̃i(·), Ṽi(·)) and Ψ̃(t)(H̄i(·), V̄i(·))→ (H̃i(·), Ṽi(·)),

in C(Ω̄;R2) as t → ∞. Hence, Ψ̃(t)(H0
i (·),V0

i (·))→ (H̃i(·), Ṽi(·)) in C(Ω̄;R2) as t → ∞. �

2.2. Global stability of EE of (1.1)

In the following, by the theory of asymptotically autonomous semiflows, see, for example, [16,
Theorem 4.1], we show the main result of this paper.

Theorem 2.1. Let (H̃i(·), Ṽu(·), Ṽi(·)) be the unique EE of (1.1). Let X0 and<0 be defined in Theorem
1.1. Then for any (H0

i (·),V0
u (·),V0

i (·)) ∈ X0, EE is GAS provided that<0 > 1, i.e., the solution of (1.1)
fulfills

lim
t→∞

(Hi,Vu,Vi)(·, t) = (H̃i(·), Ṽu(·), Ṽi(·)) uniformly on Ω̄.

Proof. Combined with (iii) of Theorem 1.1 and the previous lemmas in last subsection, the existence
and uniqueness of EE of (1.1) is ensured. We are now in a position to rewrite the Hi and Vi equations
of (1.1) as 

∂Hi

∂t
− ∇ · d1(·)∇Hi = −λ(·)Hi +

cβ1(·)lHu(·)
pHi + lHu(·)

Vi, x ∈ Ω, t > 0,

∂Vi

∂t
− ∇ · d2(·)∇Vi =

bβ2(·)pHi

pHi + lHu(·)
(V̄(·) − Vi)+ − µ(·)V̄(·)Vi + G, x ∈ Ω, t > 0,

(2.3)
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with G(·, t) =
bβ2(·)pHi

pHi+lHu(·) (Vu − (V̄(·) − Vi)+) − µ(·)
(
Vu + Vi − V̄(·)

)
Vi. Thanks to |Vu − (V̄(·) − Vi)+| ≤

|Vu + Vi − V̄(·)|, one knows that G(·, t) → 0 in C(Ω̄;R) as t → ∞. According to [14, Proposition
1.1], one knows that (2.3) is asymptotic to (2.1). By Theorem 1.1, the ω-limit set of system (2.3)
is contained in a stable set M. Further by the generalized results in [16, theorem 4.1], one directly
obtain that (Hi,Vi) → (H̃i(·), Ṽi(·)) in C(Ω̄;R2) as t → ∞. On the other hand, as Vu + Vi → V̄(·) and
Ṽu(·) + Ṽi(·) = V̄(·), it gives Vu → Ṽu(·) in C(Ω̄;R) as t → ∞. This proves Theorem 2.1. �

3. Numerical simulations

In this section, we perform the numerical simulation to validate the main result that the EE is GAS
when<0 > 1. Let Ω = (0, 1) ⊂ R. We consider system (1.1) with the parameter setting as follows:

λ(·) ≡ λ = 0.07, µ(·) ≡ µ = 0.35, α(·) ≡ α = 52.5, d1(·) ≡ d1 = 0.003,
d2(·) ≡ d2 = 0.008, p = 0.9, l = 0.1, b = 0.75, c = 0.65,
Hu(x) = Hu = 100, β1(x) = 0.75(1 + 0.8 cos(πx)), β2(x) = 0.65(1 + 0.8 cos(πx)).

(3.1)

Direct calculation gives the corresponding basic reproduction number <0 ≈ 1.9393. For illustrative
purpose only, we choose the following initial condition

H0
i (x) = 100 × 25 × (x − 0.3) × (0.7 − x), V0

i (x) = 10 × 25 × (x − 0.3) × (0.7 − x), V0
u (x) = 150. (3.2)

Solution curves of Hi(x, t), Vu(x, t) and Vi(x, t) are shown in Figures 1, 2 and 3. From Theorem 2.1,
Hi(x, t), Vu(x, t) and Vi(x, t) will approach to the unique EE of (1.1). Figures 1, 2 and 3 demonstrate the
spatial distribution of the densities of infected hosts, uninfected vectors and infected vectors after the
initial epidemic.
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Figure 1. <0 ≈ 1.9393 > 1. (a) Spatial surface of infected hosts Hi(x, t); (b) Time evolution
of infected hosts Hi(x, t). The parameters are chosen in (3.1) and (3.2).
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Figure 2. <0 ≈ 1.9393 > 1. (a) Spatial surface of uninfected vectors Vu(x, t); (b) Time
evolution of uninfected vectors Vu(x, t). The parameters are chosen in (3.1) and (3.2).
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Figure 3. <0 ≈ 1.9393 > 1. (a) Spatial surface of infected vectors Vi(x, t); (b) Time
evolution of infected vectors Vi(x, t). The parameters are chosen in (3.1) and (3.2).
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