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1. Introduction

In 1940s, for dealing with dynamic stochastic systems, stochastic differential equations involving
Wiener process were proposed by Itô for the first time. And they have played a very important role
in many branches of science and industry. Ruelle [1] initiated the study of global random attractors.
In 2004, for a kind of higer order nonlinear difference equation, The literature [2] considered global
attractivity. In particular, for neutral SPDEs, Liu and Li [3] analyzed global attracting set, exponential
decay and stability in distribution. Recently, much research has been done for various differential
systems [4–6].

An uncertain differential system (U-D-S) [7] involving the canonical Liu process [8] was proposed
for the first time. Then Chen and Liu made an in-depth analysis of the U-D-S and obtained the existence
and uniqueness theorem [9]. After that, The U-D-Ss have been applied in more and more fields.
For instance, they have been applied to uncertain optimal control [10–12], and uncertain financial
market [7, 13, 14].

Since Liu [15] presented the definition of stability, many scholars have done a lot of research. For
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instance, existence and uniqueness theorem for uncertain differential equations [16–18], Stability in
mean for uncertain differential equation [19], and stability for multi-dimensional uncertain differential
equation [20, 21]. In 2021, Some new stability theorems of uncertain differential equations with time-
dependent delay were studied by Jia and Liu [22].

From the perspective of application, attractive domain estimation has been applied to many fields,
such as in power system. If the voltage disturbance exceeds a certain level, it may cause a large area
of power failure of the entire grid, or even make the whole grid collapse. Therefore, it is particularly
important to determine the allowable value of deviation from the stable state, that is, the size of the
attractive domain of the stable fixed point. For example, in an ecosystem, the initial population density
range, namely the size of the viable attractive region, is determined to ensure that the system will
not become extinct or explode under the given parameters. Therefore, the estimation of the attractive
region has strong practical value. Tao and Zhu [23,24] studied attractivity and got some the judgement
conditions for U-D-Ss.

In this paper, our aim is to study global attractivity for U-D-Ss. Furthermore, we will deduce some
judging conditions for linear U-D-Ss. In Section 2, Several basic uncertainty definitions and theorems
will be reviewed. Section 3 will present several global attractivity concepts for U-D-Ss. In Section 4,
for linear U-D-Ss, we will deduce some sufficient conditions. Furthermore, we will find the relationship
of of global attractivity between the solution of the U-D-S and its α-path. In Section 5, we will present
some examples having locally but not globally attractivity. Last, Section 6 will show an interest rate
model with uncertainty, which is a global attractive in mean.

2. Preliminary

Definition 2.1. ( [25]) ζ defined on uncertainty space (Γ, L,M) is an uncertain variable. If at least
one of the two integrals is finite, then

E[ζ] =

∫ +∞

0
M{ζ ≥ r}dr −

∫ 0

−∞

M{ζ ≤ r}dr

is called the expected value E[ζ] of ζ.

Definition 2.2. ( [7]) Let f1 and f2 be two given binary functions, and Ct be a canonical process. Then

dYt = f1(t,Yt)dt + f2(t,Yt)dCt (2.1)

is called a U-D-S.

Definition 2.3. ( [26]) Suppose a number α satisfies 0 < α < 1. If Yα
t solves

dYα
t = f1(t,Yα

t )dt + | f2(t,Yα
t )|Φ−1(α)dt, (2.2)

In the above equation, Φ−1(α) is the inverse uncertainty distribution of standard normal uncertain
variable, and

Φ−1(α) =

√
3 ln α

1−α

π
.

Then U-D-S (2.1) is said to have an α-path Yα
t .
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Definition 2.4. ( [23]) Let Yt and Zt satisfy U-D-S (2.1), and their initial values be Y0 and Z0,
respectively. Then the U-D-S (2.1) is called

(i) attractive in measure (i.e., locally attractive in measure) if for any given ε > 0, here exists σ > 0
satisfying when |Y0 − Z0| < σ, we can get

lim
t→+∞

M{|Yt − Zt| > ε} = 0;

(ii) attractive almost surely (i.e., locally attractive almost surely) if here exists σ > 0 satisfying when
|Y0 − Z0| < σ, one can obtain

lim
t→+∞

|Yt − Zt| = 0 almost surely;

(iii) attractive in mean (i.e., locally attractive in mean) if there exists σ > 0 satisfying when |Y0−Z0| <

σ, we can get
lim

t→+∞
E[|Yt − Zt|] = 0.

(iv) attractive in distribution (i.e., locally attractive in distribution) if Yt and Zt have uncertainty
distributions Υt(x) and Ψt(x), respectively. And here exists σ > 0 satisfying when |Y0 − Z0| < σ,
we can get

lim
t→+∞

|Υt(x) − Ψt(x)| = 0, x ∈ <,

Theorem 2.1. ( [25]) Let ζ be an uncertain variable. Then , the following inequality holds.

M{|ζ | ≥ t} ≤
E[ f (ζ)]

f (t)
∀t > 0.

provided that f is a even function with f ≥ 0 and increasing on [0,∞).

Theorem 2.2. ( [9]) Suppose that Yt defined on [a1, a2] is an integrable uncertain process, Ct is a
canonical process, and the sample path Ct(γ) has the Lipschitz constant K(γ). Then, the following
inequality holds. ∣∣∣∣∣∣

∫ a2

a1

Yt(γ)dCt(γ)

∣∣∣∣∣∣ ≤ K(γ)
∫ a2

a1

|Yt(γ)| dt

Theorem 2.3. ( [26]) Let Yt and Yα
t satisfy (2.1) and (2.2), respectively. Then at each time t,

Ψ−1
t (α) = Yα

t , 0 < α < 1.

is said to be an inverse uncertainty distribution of Yt.

3. Some global attractivity concepts

In this section, several global attractivity definitions are given for the U-D-S

dYt = f1(t,Yt)dt + f2(t,Yt)dCt. (3.1)

We suppose that Yt and Zt satisfy the above system (3.1), and the initial values are Y0 and Z0,
respectively.
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Definition 3.1. If for any 0 < σ < +∞ and for any ε > 0, when |Y0 − Z0| < σ, the following equation

lim
t→+∞

M{|Yt − Zt| > ε} = 0.

holds. Then the U-D-S (3.1) is called globally attractive in measure.

Example 3.1. Assume that U-D-S has the below form

dYt = − exp(2t)Ytdt + exp(t)YtdCt. (3.2)

It follows that
d (Yt − Zt)
(Yt − Zt)

= − exp(2t)dt + exp(t)dCt.

Thus

Yt − Zt = (Y0 − Z0) exp
(∫ t

0

[
− exp(2s)

]
ds +

∫ t

0
exp(s)dCs

)
= (Y0 − Z0) exp

(
1
2
−

1
2

exp(2t) +

∫ t

0
exp(s)dCs

)
.

For any given σ > 0 and ε > 0. We prove it in two cases. Case 1: Assume 0 < σ ≤ ε. When
|Y0−Z0| < σ, it is easy to see that ln ε

|Y0−Z0 |
> ln ε

σ
≥ 0. According to

∫ t

0
− exp(2s)ds = 1

2−
1
2 exp(2t) < 0,

where t > 0. By the Theorem 2.1, we can obtain

M{|Yt − Zt| > ε} = M

{
|Y0 − Z0| exp

(
1
2
−

1
2

exp(2t) +

∫ t

0
exp(s)dCs

)
> ε

}
= M

{∫ t

0
exp(s)dCs > ln

ε

|Y0 − Z0|
+

1
2

exp(2t) −
1
2

}

≤

E
[(∫ t

0
exp(s)dCs

)2
]

(
ln ε
|Y0−Z0 |

+ 1
2 exp(2t) − 1

2

)2

=

(∫ t

0
| exp(s)|ds

)2(
ln ε
|Y0−Z0 |

+ 1
2 exp(2t) − 1

2

)2

≤

(
exp(t) − 1

)2(
ln ε

σ
+ 1

2 exp(2t) − 1
2

)2

→ 0

as t → +∞. Case 2: Assume σ > ε. When |Y0−Z0| < σ, it is easy to see that ln ε
σ
< ln ε

|Y0−Z0 |
< 0. Then

there exists T0 = 1
2 ln

(
2 + 2| ln ε

σ
|
)
> 0, such that when t > T0, we can obtain ln ε

|Y0−Z0 |
+ 1

2 exp(2t)− 1
2 > 0.

It follows from Theorem 2.1 that

M{|Yt − Zt| > ε} = M

{∫ t

0
exp(s)dCs > ln

ε

|Y0 − Z0|
+

1
2

exp(2t) −
1
2

}
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≤

E
[(∫ t

0
exp(s)dCs

)2
]

(
ln ε
|Y0−Z0 |

+ 1
2 exp(2t) − 1

2

)2

=

(∫ t

0
| exp(s)|ds

)2(
ln ε
|Y0−Z0 |

+ 1
2 exp(2t) − 1

2

)2

≤

(
exp(t) − 1

)2(
ln ε

σ
+ 1

2 exp(2t) − 1
2

)2

→ 0

as t → +∞. Thus the U-D-S (3.2) is globally attractive in measure.

Definition 3.2. The U-D-S (3.1) is called globally attractive almost surely if for any σ with 0 < σ <

+∞, when |Y0 − Z0| < σ, we get

lim
t→+∞

|Yt − Zt| = 0 almost surely.

Definition 3.3. The U-D-S (3.1) is called globally attractive in mean if for any 0 < σ < +∞, when
|Y0 − Z0| < σ, we get

lim
t→+∞

E[|Yt − Zt|] = 0.

Definition 3.4. Suppose Yt and Zt have uncertainty distributions Υt(x) and Ψt(x), respectively. Then
the U-D-S (3.1) is called globally attractive in distribution if for any 0 < σ < +∞, when |Y0 − Z0| < σ,
one can obtain

lim
t→+∞

|Υt(x) − Ψt(x)| = 0, x ∈ <,

Remark 3.1. Global attractivity in measure implies local attractivity in measure of the uncertainty
solutions. However the reverse implication may not hold (Several other definitions have similar
results). For the global and local attractivity of zero solution, Figure 1 shows us an intuitional
comprehension. (a) Global attractivity means for any 0 < σ < +∞, If Y0 is in the σ-neighborhood of
zero, the state Yt with initial value Y0 converges to 0 (t → +∞). (b) Local attractivity describes here
exists 0 < σ < +∞, if Y0 is in the σ-neighborhood of zero, then Yt with initial value Y0 converges to 0
(t → +∞).

Figure 1. (a) Global attractivity and (b) Local attractivity.
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4. Some results

Firstly, this section studies the global attractivity of linear U-D-Ss, and deduces several sufficient
and necessary conditions for global attractivity. Secondly, global attractivity relationships between the
solution and α-path are discussed.

Assuming that A1(t), A2(t), B1(t), B2(t) are continuous functions on [0,+∞). For the linear U-D-S

dYt = (A1(t)Yt + A2(t)) dt + (B1(t)Yt + B2(t)) dCt (4.1)

we suppose that Yt and Zt satisfy the above system (4.1), and the initial values are Y0 and Z0,
respectively.

Theorem 4.1. The linear U-D-S (4.1) is globally attractive in measure if∫ +∞

0
|B1(s)| ds = +∞ (4.2)

and here exists one number p > 1 that satisfies

lim sup
t→+∞

∫ t

0
A1(s)ds(∫ t

0
|B1(s)|ds

)p < 0. (4.3)

Proof: According to the system (4.1), It is easy to see that

d (Yt − Zt)
(Yt − Zt)

= A1(t)dt + B1(t)dCt.

Thus

Yt − Zt = (Y0 − Z0) exp
(∫ t

0
A1(s)ds +

∫ t

0
B1(s)dCs

)
.

For any given σ > 0 and ε > 0. We prove it in two cases. Case 1: Assume σ ≤ ε. When |Y0 − Z0| < σ,
it is easy to see that ln ε

|Y0−Z0 |
> ln ε

σ
≥ 0. According to the (4.3), here exists τ > 0 satisfying when

t > τ, it can be seen
∫ t

0
A1(s)ds < 0. From Theorem 2.1, (4.2) and (4.3), if t → +∞, we can get

M{|Yt − Zt| > ε} = M

{
|Y0 − Z0| exp

(∫ t

0
A1(s)ds +

∫ t

0
B1(s)dCs

)
> ε

}
= M

{∫ t

0
B1(s)dCs > ln

ε

|Y0 − Z0|
−

∫ t

0
A1(s)ds

}

≤

E
[(∫ t

0
B1(s)dCs

)2
]

(
ln ε
|Y0−Z0 |

−
∫ t

0
A1(s)ds

)2 =

(∫ t

0
|B1(s)|ds

)2

(
ln ε
|Y0−Z0 |

−
∫ t

0
A1(s)ds

)2

≤

(∫ t

0
|B1(s)|ds

)2

(
ln ε

σ
−

∫ t

0
A1(s)ds

)2

AIMS Mathematics Volume 7, Issue 2, 2142–2159.



2148

=
1(∫ t

0
|B1(s)|ds

)2(p−1)
[

ln ε
σ(∫ t

0 |B1(s)|ds
)p −

∫ t
0 A1(s)ds(∫ t

0 |B1(s)|ds
)p

]2 → 0

Case 2: Assume σ > ε. When |Y0 − Z0| < σ, it is easy to see that ln ε
σ
< ln ε

|Y0−Z0 |
< 0. According to

the (4.3), here exists τ > 0 such that when t > τ, the inequality ln ε
σ
−

∫ t

0
A1(s)ds > 0 holds. By the

Theorem 2.1, (4.2) and (4.3), we can get

M{|Yt − Zt| > ε} = M

{
|Y0 − Z0| exp

(∫ t

0
A1(s)ds +

∫ t

0
B1(s)dCs

)
> ε

}
= M

{∫ t

0
B1(s)dCs > ln

ε

|Y0 − Z0|
−

∫ t

0
A1(s)ds

}

≤

E
[(∫ t

0
B1(s)dCs

)2
]

(
ln ε
|Y0−Z0 |

−
∫ t

0
A1(s)ds

)2

≤

(∫ t

0
|B1(s)|ds

)2

(
ln ε

σ
−

∫ t

0
A1(s)ds

)2

=
1(∫ t

0
|B1(s)|ds

)2(p−1)
[

ln ε
σ(∫ t

0 |B1(s)|ds
)p −

∫ t
0 A1(s)ds(∫ t

0 |B1(s)|ds
)p

]2

→ 0

as t → +∞. Thus the linear U-D-S (4.1) is globally attractive in measure.

Example 4.1. Analyze a following linear U-D-S

dYt = −4t3Ytdt + tYtdCt.

Obviously A1(t) = −4t3 and B1(t) = t, then it is easy to get∫ +∞

0
|B1(s)|ds = +∞ and lim

t→+∞

∫ t

0
A1(s)ds(∫ t

0
|B1(s)|ds

)2 = − lim
t→+∞

t4(
t2
2

)2 = −4 < 0.

Thus dYt = −4t3Ytdt + tYtdCt is globally attractive in measure by Theorem 4.1.

Theorem 4.2. The linear U-D-S (4.1) is globally attractive almost surely if and only if∫ +∞

0
A1(s)ds = −∞.

Proof: Since Yt and Zt both satisfy the linear U-D-S (4.1), the following equation holds

Yt − Zt = (Y0 − Z0) exp
(∫ t

0
A1(s)ds +

∫ t

0
B1(s)dCs

)
.
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According to
∫ t

0
B1(s)dCs ∼ N(0,

∫ t

0
|B1(s)|ds),

∫ t

0
|B1(s)|ds ≤

∫ +∞

0
|B1(s)|ds < +∞. Let K(γ) be the

Lipschitz constant of Ct(γ). From the Theorem 2.2, we can get∫ t

0
B1(s)dCs < K(γ)

∫ t

0
|B1(s)|ds,

It is easy to see that ∫ +∞

0
B1(s)dCs < +∞ almost surely.

For any given σ > 0, when |Y0 − Z0| < σ, we know that

lim
t→+∞

|Yt − Zt| = lim
t→+∞

{
|Y0 − Z0| exp

(∫ t

0
A1(s)ds

)
exp

(∫ t

0
B1(s)dCs

)}
< lim

t→+∞

{
σ exp

(∫ t

0
A1(s)ds

)
exp

(∫ t

0
B1(s)dCs

)}
.

The linear U-D-S (4.1) is globally attractive almost surely if and only if∫ +∞

0
A1(s)ds = −∞.

Example 4.2. Analyze a following linear U-D-S

dYt = −(t2 + t)Ytdt + exp(−3t)YtdCt.

Since A1(t) = −(t2 + t) and B1(t) = exp(−3t), the following equations∫ +∞

0
A1(s)ds = −∞,

and ∫ +∞

0
|B1(s)|ds =

1
3
< +∞

hold. Thus dYt = −(t2 + t)Ytdt + exp(−3t)YtdCt is globally attractive almost surely.

Theorem 4.3. Suppose that
∫ +∞

0
|B1(s)|ds < π

√
3
. Then the linear U-D-S (4.1) is globally attractive in

mean if and only if ∫ +∞

0
A1(s)ds = −∞.

Proof: We can get easily the following equation from (4.1)

Yt − Zt = (Y0 − Z0) exp
(∫ t

0
A1(s)ds +

∫ t

0
B1(s)dCs

)
.

For the above equation, by taking the expected value, we can obtain

E [|Yt − Zt|] = |Y0 − Z0| exp
(∫ t

0
A1(s)ds

)
E

[
exp

(∫ t

0
B1(s)dCs

)]
.
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Now that
∫ t

0
B1(s)dCs ∼ N(0,

∫ t

0
|B1(s)|ds).

exp
(∫ t

0
B1(s)dCs

)
∼ LOGN

(
0,

∫ t

0
|B1(s)|ds

)
.

Since ∫ t

0
|B1(s)|ds ≤

∫ +∞

0
|B1(s)|ds <

π
√

3
,

According to the [27], we can obtain

E
[
exp

(∫ t

0
B1(s)dCs

)]
=
√

3
∫ t

0
|B1(s)|ds csc

(
√

3
∫ t

0
|B1(s)|ds

)
.

For any given σ > 0, when |Y0 − Z0| < σ, it is easy to see that

E [|Yt − Zt|] = |Y0 − Z0| exp
(∫ t

0
A1(s)ds

)
E

[
exp

(∫ t

0
B1(s)dCs

)]
< σ exp

(∫ t

0
A1(s)ds

)
E

[
exp

(∫ t

0
B1(s)dCs

)]
.

Obviously,
lim

t→+∞
E [|Yt − Zt|] = 0

is equivalent to ∫ +∞

0
A1(s)ds = −∞.

Hence (4.1) is globally attractive in mean if and only if∫ +∞

0
A1(s)ds = −∞.

Example 4.3. For the linear U-D-S with following form

dYt = −
1

t + 1
Ytdt +

1
t2 + 1

YtdCt.

Note that A1(t) = − 1
t+1 and B1(t) = 1

t2+1 , we immediately obtain∫ +∞

0
A1(s)ds = −∞ and

∫ +∞

0
|B1(s)|ds =

π

2
<

π
√

3
.

Thus dYt = − 1
t+1Ytdt + 1

t2+1YtdCt is globally attractive in mean.

Next, global attractivity on the solutions and α-paths for U-D-Ss will be studied.

Theorem 4.4. The U-D-S (3.1) is globally attractive in distribution if and only if the differential system
(2.2) is globally attractive.
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Proof: Suppose Υt(x) and Ψt(x) are corresponding regular distributions of Yt and Zt, respectively.
Let Yα

t and Zα
t satisfy (2.2), and their initial values be Y0 and Z0, respectively.

If (3.1) is globally attractive in distribution, In other words, for any given 0 < σ < +∞, when
|Y0 − Z0| < σ, we can get

lim
t→+∞

|Υt(x) − Ψt(x)| = 0 ∀x ∈ <.

Then
lim

t→+∞
|Υ−1

t (α) − Ψ−1
t (α)| = 0 f or all α ∈ (0, 1)

By Yao-Chen Formula (Theorem 2.3), the following equation holds.

lim
t→+∞

|Yα
t − Zα

t | = 0, ∀x ∈ <.

with |Y0 − Z0| < σ. Hence, (2.2) is globally attractive.
Each of these steps is reversible. Then the proof has been completed.

Example 4.4. Let us analyze the following linear system

dYt = −Y3
t dt + σdCt.

Suppose Yα
t is an α-path and the initial value is Y0, i.e., it satisfies the ordinary differential system

dYα
t = −(Yα

t )3dt + σ

√
3
π

ln
α

1 − α
dt. (4.4)

Since the differential system (4.4) and dYα
t = −(Yα

t )3dt have the same as attractivity, we only study
dYα

t = −(Yα
t )3dt. By solving the equation, we get Yα

t = Y0[1 + 2(Y0)2t]−
1
2 with the initial value Y0. For

any σ > 0 and ε > 0, here exists T1 = 1
ε2 > 0 such that when |Y0| < σ and t > T1, one can obtain

|Yα
t | = |Y0[1 + 2(X0)2t]−

1
2 | ≤ |Y0|

1√
Y2

0 t
≤

1
√

T1
< ε.

Thus dYα
t = −(Yα

t )3dt is globally attractive. It follows from the globally attractivity of dYα
t = −(Yα

t )3dt
that (4.4) is globally attractive. According to the Theorem 4.4, the uncertain differential system dYt =

−Y3
t dt + σdCt is globally attractive in distribution.

Corollary 4.1. The U-D-S (3.1) is not globally attractive in distribution if here exists 0 < α < 1 such
that the differential system (2.2) is not globally attractive.

Proof: We suppose α0 ∈ (0, 1) and the differential system

dYα0
t = f1(t,Yα0

t )dt + | f2(t,Yα0
t )|Φ−1(α0)dt

is not globally attractive. By the Theorem 4.4, the U-D-S (3.1) is not globally attractive in distribution.
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5. Examples having local but not global attractivity

In this section, we give some examples to show that local attractivity does not implies global
attractivity.

Example 5.1. (Locally but not globally attractive in measure) Let us consider the following form of
system

dYt =
(
−Yt + Y2

t

)
dt − exp(−t)

(
−Yt + Y2

t

)
dCt. (5.1)

We have
dYt

(−Yt + Y2
t )

=

(
1

Yt − 1
−

1
Yt

)
dYt = dt − exp(−t)dCt.

If we integrate both sides, we can obtain

Yt − 1
Yt

=
Y0 − 1

Y0
exp

(
t −

∫ t

0
exp(−s)dCs

)
.

That is

Yt =
Y0 exp

(
−t +

∫ t

0
exp(−s)dCs

)
Y0 exp

(
−t +

∫ t

0
exp(−s)dCs

)
− Y0 + 1

.

We know that 0 satisfies (5.1) with the initial Y0 = 0. For any given 0 < ε < 1, let |Y0| < 1. We can
prove it in two cases. Case 1: If 0 ≤ Y0 < 1, it follows that

M{|Yt| > ε} = M

{
exp

(
−t +

∫ t

0
exp(−s)dCs

)
>
ε(1 − Y0)
Y0(1 − ε)

}
= M

{∫ t

0
exp(−s)dCs > ln

(
ε(1 − Y0)
Y0(1 − ε)

)
+ t

}
≤

E
[
(
∫ t

0
exp(−s)dCs)2

]
(
ln

(
ε(1−Y0)
Y0(1−ε)

)
+ t

)2

=

(∫ t

0
exp(−s)ds

)2(
ln

(
ε(1−Y0)
Y0(1−ε)

)
+ t

)2

=

− exp(−t) + 1)

ln
(
ε(1−Y0)
Y0(1−ε)

)
+ t


2

→ 0

as t → +∞.
Case 2: Assume −1 < Y0 < 0, we can easily obtain

M{|Yt| > ε} = M

 1

|1 − Y0−1
Y0 exp

(
−t+

∫ t
0 exp(−s)dCs

) | > ε

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≤ M

{
exp

(
−t +

∫ t

0
exp(−s)dCs

)
>

(Y0 − 1)ε
Y0(1 + ε)

}
= M

{∫ t

0
exp(−s)dCs > t + ln

(
(Y0 − 1)ε
Y0(1 + ε)

)}

≤

E
[(∫ t

0
exp(−s)dCs

)2
]

(
t + ln

(
ε(Y0−1)
Y0(1+ε)

))2

=

(∫ t

0
exp(−s)ds

)2(
t + ln

(
ε(Y0−1)
Y0(1+ε)

))2

=

− exp(−t) + 1

t + ln
(
ε(Y0−1)
Y0(1+ε)

)
2

→ 0

as t → +∞. No matter what case happens, we always have

lim
t→+∞

M{|Yt| > ε} = 0.

That is to say that (5.1) is locally attractive in measure. However if Y0 = 1, Yt = 1 is the solution of
(5.1). Then we have

M{|Yt| > ε} = 1.

Thus (5.1) is not globally attractive in measure.

Example 5.2. (Locally but not globally attractive almost surely) Analyze the U-D-S

dYt =
(
−Y2

t − Yt

)
dt −

(
−Y2

t − Yt

)
exp(−t)dCt. (5.2)

It is easy to see that 0 is the solution of (5.2) and the initial is Y0 = 0. It can be obtained that

Yt =
Y0 exp

(
−t +

∫ t

0
exp(−s)dCs

)
−Y0 exp

(
−t +

∫ t

0
exp(−s)dCs

)
+ Y0 + 1

.

From Theorem 2.2, we can deduce∣∣∣∣∣∣
∫ t

0
exp(−s)dCs

∣∣∣∣∣∣ ≤ K(γ)
∫ t

0
exp(−s)ds ≤ K(γ),

where K(γ) is the Lipschitz constant of Ct(γ). It is easy to see that∫ +∞

0
exp(−s)dCs < +∞ almost surely.

Then we have

exp
(∫ +∞

0
exp(−s)dCs

)
< +∞ almost surely.
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It follows that

lim
t→+∞

|Yt| = lim
t→+∞

∣∣∣∣∣∣∣∣
Y0 exp

(
−t +

∫ t

0
exp(−s)dCs

)
−Y0 exp

(
−t +

∫ t

0
exp(−s)dCs

)
+ Y0 + 1

∣∣∣∣∣∣∣∣
= lim

t→+∞

∣∣∣∣∣∣∣∣
Y0 exp

(∫ t

0
exp(−s)dCs

)
−Y0 exp

(∫ t

0
exp(−s)dCs

)
+ exp(t)(Y0 + 1)

∣∣∣∣∣∣∣∣
= 0 almost surely

for |Y0| < 1. Thus (5.2) is locally attractive almost surely. But if Y0 = −1, we have Yt = −1 and then

|Yt| ≡ 1.

Then (5.2) is not globally attractive almost surely.

Example 5.3. (Locally but not globally attractive in mean) Supposed the U-D-S is

dYt = (−Yt + Y3
t )dt − (−Yt + Y3

t )
1

t2 + 1
dCt. (5.3)

We know that 0 is the solution of (5.3) if the initial is Y0 = 0. In addition, we can obtain

dYt

(−Yt + Y3
t )

=
1
2

(
1

Yt − 1
+

1
Yt + 1

−
2
Yt

)
dYt = dt −

1
t2 + 1

dCt.

Obviously, (
1

Yt − 1
+

1
Yt + 1

−
2
Yt

)
dYt = 2dt −

2
t2 + 1

dCt.

Taking integral on both sides, we get

Y2
t − 1
Y2

t
=

Y2
0 − 1

Y2
0

exp
(
2t −

∫ t

0

2
s2 + 1

dCs

)
.

Thus

|Yt| =

√√√
Y2

0 exp(−2t +
∫ t

0
2

s2+1dCs)

Y2
0 exp(−2t +

∫ t

0
2

s2+1dCs) − Y2
0 + 1

.

Note that
∫ t

0
1

s2+1dCs ∼ N(0,
∫ t

0
1

s2+1ds). Hence

exp
(∫ t

0

1
s2 + 1

dCs

)
∼ LOGN

(
0,

∫ t

0

1
s2 + 1

ds
)
.

Since ∫ t

0

1
s2 + 1

ds ≤
∫ +∞

0

1
s2 + 1

ds =
π

2
<

π
√

3
,

from [27], we have

E
[
exp

(∫ t

0

1
s2 + 1

dCs

)]
=
√

3
∫ t

0

1
s2 + 1

ds csc
(
√

3
∫ t

0

1
s2 + 1

ds
)
.
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When |Y0| < 1, we have

E [|Yt|] = E


√√√

Y2
0 exp(−2t +

∫ t

0
2

s2+1dCs)

Y2
0 exp(−2t +

∫ t

0
2

s2+1dCs) − Y2
0 + 1


≤ E


√√

Y2
0 exp(−2t +

∫ t

0
2

s2+1dCs)

−Y2
0 + 1


= E

 |Y0| exp(−t +
∫ t

0
1

s2+1dCs)√
−Y2

0 + 1


=
|Y0| exp(−t)E

[
exp(

∫ t

0
1

s2+1dCs)
]

√
−Y2

0 + 1

=
|Y0| exp(−t)√
−Y2

0 + 1

√
3
∫ t

0

1
s2 + 1

ds csc
(
√

3
∫ t

0

1
s2 + 1

ds
)

→ 0

as t → +∞. So (5.3) is locally attractive in mean. But if Y0 = 1, (5.3) has a solution Yt = 1, and then
we have

E[|Yt|] ≡ 1 (t → +∞).

Thus (5.3) is not globally attractive in mean.

Example 5.4. (Locally but not globally attractive in distribution) Analyze the U-D-S with the
following form

dYt =
(
−Yt + Y2

t

)
dt + σdCt.

Let Yα
t be an α-path of the above system and the initial value is Y0, i.e., it satisfies the ordinary

differential system

dYα
t =

(
−Yα

t + (Yα
t )2

)
dt +

σ
√

3
π

ln
(

α

1 − α

)
dt. (5.4)

Since the differential system (5.4) and dYα
t = (−Yα

t + (Yα
t )2)dt have the same attractivity, we only study

dYα
t = (−Yα

t + (Yα
t )2)dt, which has zero solution and a solution Yα

t =
Y0 exp(−t)

Y0 exp(−t)−Y0+1 with initial value Y0.
Let |Y0| < 1, we can prove it in two cases. Case 1: Let 0 ≤ Y0 < 1.∣∣∣Yα

t

∣∣∣ =

∣∣∣∣∣∣ Y0 exp(−t)
Y0 exp(−t) − X0 + 1

∣∣∣∣∣∣
≤

Y0 exp(−t)
1 − Y0

→ 0

as t → +∞. Case 2: Assume −1 < Y0 < 0. Then∣∣∣Yα
t

∣∣∣ =
|Y0| exp(−t)

1 − Y0
[
1 − exp(−t)

]
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≤ |Y0| exp(−t)
→ 0

as t → +∞. No matter what case happens, the ordinary differential system dYα
t = (−Yα

t + (Yα
t )2)dt is

locally attractive. But if Y0 = 1, then Yα
t = 1 and we have∣∣∣Yα

t

∣∣∣ ≡ 1 (t → +∞).

Thus the ordinary differential system dYα
t = (−Yα

t + (Yα
t )2)dt is not globally attractive. we obtain

that the ordinary differential system (5.4) is locally attractive but not globally attractive. By [23], the
uncertain differential system

dYt = (−Yt + Y2
t )dt + σdCt

is locally attractive in distribution but not globally attractive in distribution by Corollary 4.1.

6. Interest rate model with uncertainty

The real interest rate has not kept unchanged. Assumed that the interest rate follows an U-D-S,
Chen and Gao [14] introduced a following model

dZt = (−aZt + b)dt + σdCt (6.1)

where a, b, σ are all positive numbers. Zt and Yt are assumed to satisfy (6.1) with initial values Z0 and
Y0, respectively. It is easy to get the following equation

d (Zt − Yt) = −aZtdt + aYtdt = −a(Zt − Yt)dt.

Thus

Zt − Yt = (Z0 − Y0) exp (−at) .

For any 0 < σ < +∞, when |Z0 − Y0| < σ, we can easily obtain the following result

E[|Zt − Yt|] < σ exp (−at)→ 0

as t → +∞. Thus

E[|Zt − Yt|]→ 0

as t → +∞. Therefore, this model (6.1) is globally attractive in mean.
The above result shows that if Z0 is higher than b

a , the drift of (6.1) is negative, and the interest rate
will drop down in the b

a direction. Similarly, if Z0 is less than b
a , the drift of (6.1) is positive, so the rate

will rise in the direction of b
a .

Next, let a = 2, b = 2, σ = 1, using MATLAB, Figure 2 shows the simulation diagram of E(Xt)
with several different initial values.
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Figure 2. E(Xt) for dXt = (−2Xt + 2)dt + XtdCt.

7. Conclusions

This article gave several concepts of global attractivity. Global attractivity (in measure, in mean,
almost surely, in distribution) implies local attractivity ( in measure, in mean, almost surely, in
distribution). However the reverse implication may not hold. We gave some locally but not globally
attractive examples. For linear U-D-Ss, some sufficient conditions of global attractivitywere presented.
Furthermore, this paper found the relationship of attractivity and stability between the solution of the
U-D-S and its α-path. The attractivity and stability of the general differential system solution can
be determined by constructing Lyapunov function, thus the difficulty of determining the attractivity
and stability of the U-D-Ss is greatly reduced. Last, an uncertain interest rate model which is global
attractive in mean was considered. It is deduced that the solution of the model is attractive in mean.
Future work will focus on the application of stability and attractivity.
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