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Abstract: Let G be a connected standard simple algebraic group of type C or D over an
algebraically closed field k of positive characteristic p > 0, and g := Lie(G) be the Lie algebra of
G. Motivated by the variety of E(r, g) of r-dimensional elementary subalgebras of a restricted Lie
algebra g, in this paper we characterize the irreducible components of E(rkp(g) − 1, g) where the
p-rank rkp(g) is defined to be the maximal dimension of an elementary subalgebra of g.
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1. Introduction

Let (g, [p]) be a finite dimensional restricted Lie algebra over an algebraically closed field k
of positive characteristic p > 0. Following [3] we say that g is elementary, provided g is abelian
and [p] = 0. Given a positive integer r, there is a mount of literatures investigating the set E(r, g)
of elementary subalgebras of dimension r. For instance, the very original paper [3] studies the
geometric properties of E(r, g), which shows that it is a projective variety. The structure of E(r, g)
is described there for simple algebraic Lie algebras of types A,C and r = rkp(g) being the p-rank
of g. For a finite dimensional restricted Lie algebra g, the p-rank rkp(g) is defined as follows

rkp(g) := max { r ∈ N0 ; E(r, g) , ∅ } .

Later on, the first author explores the irreducible components of the variety E(r, g) in [6] for simple
algebraic Lie algebras of type A when r equals rkp(g) − 1.

We now assume that G is a simple algebraic k-group with irreducible root system Φ. The
interested reader may consult [1, 2, 4, 10] for the theory of algebraic groups. Let ∆ := {α1, . . . , αn }

be the set of positive simple roots. For any I ⊂ ∆ define the parabolic subgroup WI and its
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corresponding root system ΦI with Φ+
I being the set of positive roots. We recall two definitions

in [9].

Definition 1. We set S := ∆ \ I and then define

Φrad
S = Φ+ \ Φ+

I

to be the set of positive roots that cannot be written as a linear combination of the simple roots not
in S . If S = {αi }, then we simply write Φrad

i instead of Φrad
{αi }

.

Definition 2. Let α and β be two roots of Φ. We say that α and β commute if α + β is not a root.

Building on methods developed in [5, 7, 9], we find that the maximal elementary subalgebras
of dimension rkp(g) are given by the combinatorics of the commuting roots of Φ. It is our aim in
this paper to present the method of finding the maximal subsets of commuting positive roots of
order rsmax := rkp(g)− 1 for types C and D, and the geometric properties of the varieties E(rsmax, g)
for these two types. Let Φ be the root system of type C or D respectively, and Max(r,Φ+) be
the set of maximal subsets of commuting positive roots of order r. We refer to [5] for his linear
algebraic approach to sets of commuting roots for irreducible root systems, which enables our
set Max(rsmax,Φ

+) to be more tractable. We compute E(rsmax, g) under the assumption that G is
standard, which means the derived subgroup of G is simply connected, p is a good prime for G
and the Lie algebra g = Lie(G) admits a non-degenerate G-invariant symmetric bilinear form. We
rely on the result of Premet (see Lemma 2.2, [8]) to show that any elementary subalgebras of g
can be conjugated into u ⊂ g, the Lie algebra of the unipotent radical U of the Borel subgroup
B ≤ G. We define E(rsmax, u)max as the set of maximal elementary subalgebras of dimension rsmax

in u. The calculation of E(rsmax, g) then proceeds via two steps. First, we determine E(rsmax, u)max

as a set. We define a map Lie : Max(rsmax,Φ
+) → E(rsmax, u)max which sends a maximal subset

of commuting positive roots of order rsmax to a maximal elementary subalgebra of dimension rsmax

in u and show that there is an inverse map LT : E(rsmax, u)max → Max(rsmax,Φ
+) which splits Lie.

The map Lie is not necessarily surjective but we show that for types C and D except for small
ranks it is surjective up to conjugation by U. Further, after giving the definition of ideals of the
root system Φ, we effectively prove that the maximal elementary subalgebras of dimension rsmax in
u up to conjugation by G are given by the ideals of Φ. To finish the calculation of E(rsmax, g), we
allow actions by the Weyl group W ≤ G and determine the irreducible components of E(rsmax, g).

This paper is organized as follows: In section 2, we determine the set Max(rsmax,Φ
+) for types

Cn(n ≥ 3) and Dn(n ≥ 5) . Section 3 deals with the surjection of the map Lie up to conjugation by
G for types C and D. Finally in section 4 we give the irreducible components of E(rsmax, g).

2. Maximal subsets of commuting positive roots

Throughout this section, if M and N are two subsets of Φ, we will use the symbol [M,N] = 0
to denote that roots in M and N commute. Let rmax be the maximal order of a subset of commuting
positive roots. The result in [9] tells us that rkp(g) and rmax are equal. Since the p-rank rkp(g)
should be clear for our consideration in this section, we list the related facts through Table 1.
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Table 1. Maximal sets of commuting roots.

Type T Rank Max(rmax,Φ
+) rmax

Cn n ≥ 3 Φrad
n

1
2n(n + 1)

Dn
n = 4 Φrad

1 ,Φrad
3 ,Φrad

4 6

n ≥ 5 Φrad
n−1,Φ

rad
n

1
2n(n − 1)

2.1. Type Cn, n ≥ 3

Let G be a simple algebraic group with root system Φ which is of type Cn (n ≥ 3), and g :=
Lie(G). Let Φ+ = { εi − ε j | 1 ≤ i < j ≤ n } ∪ { εi + ε j | 1 ≤ i ≤ j ≤ n } be the set of positive roots
and Φ = Φ+ ∪ −Φ+. Setting αi = εi − εi+1, where 1 ≤ i ≤ n − 1 and αn = 2εn. It follows that
∆ = {α1, . . . , αn } is a base of Φ.

Theorem 2.1. Let Φ be of type Cn. The set Max(rsmax,Φ
+) consists only one element

ΦC
n−1,n := {εi + ε j | 1 ≤ i ≤ j < n} ∪ { εr − εn | 1 ≤ r < n } .

Proof. Let J be a subset of {1, . . . , n} and J
′

:= {1, . . . , n} \ J be its complement. A maximal subset
of commuting roots of Φ is uniquely given by (see [9, A.3])

φ(J) := { εi + εi′ , εi − ε j,−ε j − ε j′ | i, i
′

∈ J and j, j
′

∈ J
′

} .

Notice that φ(J) ⊂ Φ+ if and only if J = { 1, . . . , n }. It follows that

Φrad
n = φ({1, . . . , n})

of order 1
2n(n + 1) is the unique element of Max(rmax,Φ

+).
Let M(C) be an element of Max(rsmax,Φ

+). The fact above implies that M(C) cannot be a
maximal subset of commuting roots of Φ. It asserts that M(C) ( φ(J0) for some J0, and |φ(J0)| =
|M(C)| + 1. We conclude that J0 = { 1, . . . , n − 1 } and

M(C) = {εi + ε j | 1 ≤ i ≤ j < n} ∪ { εr − εn | 1 ≤ r < n }

which will be denoted by ΦC
n−1,n. �

2.2. Type Dn, n ≥ 4

Let G be a simple algebraic group with root system Φ which is of type Dn(n ≥ 4), and g :=
Lie(G). Let

Φ+ = { εi ± ε j | 1 ≤ i < j ≤ n }

be the set of positive roots of Φ. Defining αi = εi−εi+1 for 1 ≤ i ≤ n−1 together with αn = εn−1 +εn,
then ∆ = {α1, . . . , αn } is a base of Φ.
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Definition 3. We define Φrad
α1,α2

as a subset of Φ consisting of roots

ε1 ± εi, ε2 ± ε j,where 2 ≤ i ≤ n and 3 ≤ j ≤ n.

Proposition 2.2. Let R ⊂ Φrad
α1,α2

be a subset of commuting positive roots. We either have

(1) R ⊂ Φrad
1 , or

(2) R ⊂ Sab := { ε1 + ε2 } ∪ Sa ∪ Sb.

where Sa ⊂ { ε1 − εr, ε2 + εr | 3 ≤ r ≤ n } is a maximal subset having the property ε1 − εr ∈ Sa if and
only if ε2 + εr < Sa and Sb ⊂ { ε1 + εr, ε2 − εr | 3 ≤ r ≤ n } is a maximal subset with the property
ε1 + εr ∈ Sb if and only if ε2 − εr < Sb.

Proof. If ε1 − ε2 ∈ R, then ε2 ± ε j < R for 3 ≤ j ≤ n, which implies the inclusion R ⊂ Φrad
1 =

{ ε1 ± εi }2≤i≤n. Alternatively, ε1 − ε2 < R, it follows that R ⊂ Sab. �

Notation 2.3. We make a restriction on the rank by letting n = 4. There are four possibilities for
Sa, denoted by

(1) S1
a = { ε1 − ε3, ε1 − ε4 },

(2) S2
a = { ε1 − ε3, ε2 + ε4 },

(3) S3
a = { ε2 + ε3, ε2 + ε4 },

(4) S4
a = { ε1 − ε4, ε2 + ε3 }.

Similarly, Sb has the following four forms

(1) S1
b = { ε1 + ε3, ε1 + ε4 },

(2) S2
b = { ε1 + ε3, ε2 − ε4 },

(3) S3
b = { ε2 − ε3, ε2 − ε4 },

(4) S4
b = { ε1 + ε4, ε2 − ε3 }.

Lemma 2.4. Let Φ be of type D4. Then the elements of Max(5,Φ+) are

(1) S
i j
ab := { ε1 + ε2 } ∪ Si

a ∪ S
j
b where 1 ≤ i, j ≤ 4 and (i, j) , (1, 1), (3, 1), (4, 1),

(2) S1 := { ε1 ± ε2, ε1 + ε3, ε1 − ε4, ε3 − ε4 },
(3) S2 := { ε1 ± ε2, ε1 + ε3, ε1 + ε4, ε3 + ε4 },
(4) S3 := {ε1 ± ε2, ε1 + ε3, ε3 ± ε4},
(5) S4 := { ε1 + ε2, ε1 + ε3, ε2 + ε3, ε3 ± ε4 }.

Proof. It is known that rsmax = rkp(g) − 1 = 5 for D4. Let Ψ+ = Φ+ \ Φrad
α1,α2

= { ε3 ± ε4 } be the
complement of Φrad

α1,α2
in Φ+, and M(D) ∈ Max(5,Φ+). Assume that M(D) = Ma ∪ Mb, where

Ma ⊂ Ψ+ and Mb ⊂ Φrad
α1,α2

.
If Ma = ∅, then |Mb| = 5. By Proposition 2.2, M(D) ⊂ Sab. Since M(D) is maximal, according

to Notation 2.3, we have
M(D) = S

i j
ab := { ε1 + ε2 } ∪ Si

a ∪ S
j
b

where 1 ≤ i, j ≤ 4 and (i, j) , (1, 1), (3, 1), (4, 1).
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If |Ma| = 1, then |Mb| = 4. Since Ma ⊂ Ψ+, it follows that Mb ( Φrad
1 , Mb ( { ε1 + ε2 } ∪ S4

a ∪ S2
b,

or Mb ( { ε1 + ε2 } ∪ S3
a ∪ S1

b. But M(D) is maximal, so Mb = {ε1 ± ε2, ε1 + ε3, ε1 − ε4} when
Ma = { ε3 − ε4 } and Mb = { ε1 ± ε2, ε1 + ε3, ε1 + ε4 } when Ma = { ε3 + ε4 }.

If |Ma| = 2, then |Mb| = 3. Then Ma = Ψ+, and Mb = { ε1 ± ε2, ε1 + ε3 } ( Φrad
1 , or Mb =

{ε1 + ε2, ε1 + ε3, ε2 + ε3} ( Sab.
Summarizing here, there are 17 possibilities of M(D), they are S

i j
ab for 1 ≤ i, j ≤ 4 and (i, j) ,

(1, 1), (3, 1), (4, 1), S1 := { ε1 ± ε2, ε1 + ε3, ε1 − ε4, ε3 − ε4 }, S2 =: {ε1 ± ε2, ε1 + ε3, ε1 + ε4, ε3 + ε4},
S3 := {ε1 ± ε2, ε1 + ε3, ε3 ± ε4}, and S4 := { ε1 + ε2, ε1 + ε3, ε2 + ε3, ε3 ± ε4 }. �

Lemma 2.5. Let Φ be of type D5. Then the elements of Max(9,Φ+) are of the forms

{ εi + εi′ , εi − ε j | i , i
′

, i, i
′

∈ Is and j ∈ Js } ∩ Φ+ for s ∈ { 1, 2 } ,

where I1 = { 1, 2, 3 } with J1 = { 4, 5 } and I2 = { 1, 2, 3, 5 } with J2 = { 4 }.

Proof. Note that rsmax = rkp(g) − 1 = 9 for D5. Let

Ψ+ = Φ+ \ Φrad
α1,α2

= { ε3 ± ε4, ε3 ± ε5, ε4 ± ε5 } ,

and M(D) ∈ Max(9,Φ+). Assume that M(D) = Ma ∪ Mb, where Ma ⊂ Ψ+,Mb ⊂ Φrad
α1,α2

.
If ε3 − ε4 ∈ Ma, then ε4 ± ε5 < Ma which gives Ma ⊂ M0

a := { ε3 ± ε4, ε3 ± ε5 }. Alternatively, if
ε3 − ε4 < Ma, then Ma ⊂ M1

a := { ε3 + ε4, ε3 + ε5, ε4 + ε5 }, or Ma ⊂ M2
a := { ε3 + ε4, ε3 − ε5, ε4 − ε5 },

or Ma ⊂ M3
a := { ε3 + ε4, ε3 ± ε5 }, or Ma ⊂ M4

a := { ε3 + ε4, ε4 ± ε5 }. So, we have |Ma| ≤ 4. If
|Mb| = 8, then Mb must be Φrad

1 , which is maximal in Φ+, it is a contradiction. Hence, |Ma| ≥ 2.
If |Ma| = 4, then |Mb| = 5 and Ma = M0

a = { ε3 ± ε4, ε3 ± ε5 }. But [Ma,Mb] = 0, which implies
|Mb| ≤ 3 whenever Mb ⊂ Φrad

1 or Mb ⊂ Sab, it is a contradiction.
If |Ma| = 3, then |Mb| = 6. In this case, we first assume that Mb ⊂ Φrad

1 . Then ε1 ± εi exist
for at least one choice for i from the set { 3, 4, 5 }, this implies |Ma| ≤ 2 by [Ma,Mb] = 0, it is a
contradiction. Then we may assume Mb ⊂ Sab, it follows that |Mb ∩ (Sa ∪ Sb)| ≥ 5. We list several
possibilities to get a contradiction in this case: (a) Ma = M1

a or M2
a , there is no Mb with |Mb| = 6

such that M(D) is maximal; (b)Ma = M3
a or M4

a , then Mb ⊂ { εi + ε j } ∪ { ε1 + ε2 } where 1 ≤ i ≤ 2
and 3 ≤ j ≤ 4, thus |Mb ∩ (Sa ∪ Sb)| ≤ 4; (c)Ma ⊂ M0

a , then ε3 ± εi occurs in Ma for i = 4 or i = 5,
which implies |Mb| ≤ 5.

If |Ma| = 2, then |Mb| = 7. If Mb ⊂ Φrad
1 , then Ma = ∅ by [Ma,Mb] = 0, it is a contradiction. If

Mb ⊂ Sab, then

Mb = { ε1 + ε2 } ∪ { εi + ε j, εi − ε4 | i = 1, 2 and j = 3, 5 }

with Ma = { ε3 − ε4, ε3 + ε5 }, or

Mb = { ε1 + ε2 } ∪ { εi + ε3, εi − ε j | i = 1, 2 and j = 4, 5 }

with Ma = { ε3 − ε4, ε3 − ε5 }.
Summarizing here, by taking I1 = { 1, 2, 3 } with J1 = { 4, 5 } and I2 = { 1, 2, 3, 5 } with J2 = { 4 }

there are two possibilities for M(D), that is

M(D) = { εi + εi′ , εi − ε j | i , i
′

, i, i
′

∈ Is and j ∈ Js } ∩ Φ+ for s ∈ { 1, 2 } .

�
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Proposition 2.6. Suppose that Φ is of type Dn with n ≥ 6. Let Ψrad
n−2 := Ψ+ ∩ Φrad

n and Ψrad
n−3 :=

Ψ+ ∩ Φrad
n−1, where Ψ = Φ \ ±Φrad

α1,α2
is a root system of Dn−2. Let M(D) ∈ Max(n(n−1)

2 − 1,Φ+), then
there is no such a decomposition M(D) = Ma ∪ Mb with Ma = Ψrad

n−2 or Ψrad
n−3 and Mb ⊂ Φrad

α1,α2
.

Proof. We first know that n(n−1)
2 −1 is the rank rsmax of Dn, and (n−2)(n−3)

2 is the p-rank of Dn−2. Since
Ψ is the root system of Dn−2 and by Table 1

Max(
n(n − 1)

2
,Φ+) = {Φrad

n−1,Φ
rad
n },

it follows that

Ψrad
n−2 := Ψ+ ∩ Φrad

n ,

and

Ψrad
n−3 := Ψ+ ∩ Φrad

n−1 (∗)

are the only two elements of Max( (n−2)(n−3)
2 ,Ψ+).

Recall that Φrad
α1,α2

= { ε1 ± εi, ε2 ± ε j | 2 ≤ i ≤ n and 3 ≤ j ≤ n }. If Ma = Ψrad
n−2, then εi − ε j < Mb

for i = 1, 2 and 3 ≤ j ≤ n by [Ma,Mb] = 0, this gives rise to

Mb ⊂ { ε1 ± ε2, ε1 + εi }3≤i≤n ,

or

Mb ⊂ {ε1 + εi, ε2 + ε j | 2 ≤ i ≤ n and 3 ≤ j ≤ n}.

Note that |Mb| = |M(D)| − |Ma| = 2n − 4 if M(D) exists. An inspection of these two cases gives
either |Mb| ≤ n < 2n − 4 or M(D) = Ma ∪ Mb ( Φrad

n , from which we deduce that M(D) does not
exist. Alternatively, we assume that Ma = Ψrad

n−3. For this situation, we get

Mb ⊂ { ε1 ± ε2, ε1 − εn, ε1 + ε j }3≤ j≤n−1 ,

or

Mb ⊂ { ε1 − εn, ε1 + εi }2≤i≤n−1 ∪ { ε2 − εn, ε2 + ε j }3≤ j≤n−1 .

Accordingly, we have either |Mb| ≤ n < 2n − 4 or M(D) = Ma ∪ Mb ( Φrad
n−1, which also shows the

non-existence of M(D). �

Lemma 2.7. Let n = 6. Keep the notations for Ψ,M(D),Ma and Mb as above. Then the elements
of Max(14,Φ+) are

{ εi + εi′ , εi − ε j | i , i
′

, i, i
′

∈ Is and j ∈ Js } ∩ Φ+for s ∈ { 1, 2 }

where I1 = { 1, 2, 3, 4 } with J1 = { 5, 6 } and I2 = { 1, 2, 3, 4, 6 } with J2 = { 5 }.
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Proof. Since n = 6, the p-rank rkp(g) is 15 and the rank rsmax = rkp(g)−1 is 14. Since Ψ is the root
system of D4, and the p-rank of D4 is 6, it gives |Ma| ≤ 6. By Proposition 2.2 and the maximality of
Φrad

1 in Φ+, we have |Mb| ≤ 9. Hence, there are only two possibilities for M(D) if it exists: |Ma| = 6
and |Mb| = 8, or |Ma| = 5 and |Mb| = 9.

If |Ma| = 6, then Ma = Ψrad
3 ,Ψrad

4 or Ψrad
1 b Table 1. By Proposition 2.6, one only needs to check

the case when Ma = Ψrad
1 . Recall that

Ψrad
1 = { ε3 ± εi }4≤i≤6 ,

it gives

Mb ⊂ { ε1 ± ε2, ε1 + ε3 }

or

Mb ⊂ { ε1 + ε2, ε1 + ε3, ε2 + ε3 } ,

there is no Mb with |Mb| = 8. If |Ma| = 5, then |Mb| = 9 if M(D) exists. If Mb ⊂ Φrad
1 , then every

element in Ψ+ cannot commute with the elements of Mb, so M(D) does not exist. Otherwise, we
let Mb ⊂ Sab, then it has to be Mb = Sab by comparing their orders. If Ma is not maximal in Ψ+,
then Ma ⊂ Ψrad

1 ,Ψrad
3 or Ψrad

4 . We discuss these three possibilities to get a contradiction:
(a) Ma ⊂ Ψrad

1 , then there exists i0 where 4 ≤ i0 ≤ 6 such that ε3 ± εi0 ∈ Ma. But ε3 ± εi0 cannot
commute with elements of Sab from each of the sets

{ ε1 + εi0 , ε2 − εi0 }

and

{ ε1 − εi0 , ε2 + εi0 } ;

(b) Ma ⊂ Ψrad
3 , then Sab must be

{ ε1 + εi, ε2 + εi }3≤i≤5 ∪ { ε1 + ε2, ε1 − ε6, ε2 − ε6 } ,

but now Ma ∪ Mb ( Φrad
5 ;

(c) Ma ⊂ Ψrad
4 , then Sab must be

{ ε1 + εi }2≤i≤6 ∪ { ε2 + εr }3≤r≤6 ,

but again

Ma ∪ Mb ( Φrad
6 .

Now the consideration is left only for Ma being maximal with |Ma| = 5. Since the rank rsmax is 5
for D4, we have Ma ∈ Max(5,Ψ+). By Lemma 2.4 there are only two are suitable here, they are

Ma = { ε3 + ε4, εi − ε5, εi − ε6 }3≤i≤4 ,

AIMS Mathematics Volume 7, Issue 2, 2084–2101.
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or

Ma = { ε3 + ε4, εi − ε5, εi + ε6 }3≤i≤4 .

Given by these, the corresponding Mb is

Mb = { ε1 + ε2, εi + εr, εi − εs }1≤i≤2,3≤r≤4,5≤s≤6 ,

or

Mb = {ε1 + ε2, εi + εr, εi − ε5, εi + ε6}1≤i≤2,3≤r≤4.

Summarizing here, by denoting I1 = { 1, 2, 3, 4 } with J1 = { 5, 6 } and I2 = { 1, 2, 3, 4, 6 } with
J2 = { 5 } we have

M(D) = { εi + εi′ , εi − ε j | i , i
′

, i, i
′

∈ Is and j ∈ Js } ∩ Φ+for s ∈ { 1, 2 } .

�

Notation 2.8. Let J be a subset of { 1, . . . , n }. We denote by

φ(J) := { εi + εi′ , εi − ε j,−ε j − ε j′ | i , i
′

, i, i
′

∈ J and j , j
′

, j, j
′

< J }

a set of commuting roots and consider the following sets

ΦD
n−2,n−1 := φ(J) ∩ Φ+when J = { 1, . . . , n − 2 } ,

ΦD
n−1,n := φ(J) ∩ Φ+when J = {1, . . . , n − 2, n}.

Theorem 2.9. Suppose that Φ is of type Dn(n ≥ 5). Let M(D) ∈ Max(rsmax,Φ
+), then M(D) is

either of the form ΦD
n−2,n−1 or of the form ΦD

n−1,n.

Proof. We prove the above statement by induction. The statement is clear for n = 5 and n = 6 by
Lemmas 2.5 and 2.7. Assume it is proved for 2m − 1 and 2m, m ≥ 3. We prove the statement is
true for 2m + 1 and 2m + 2.

Keep the notation for Ψ,Ma and Mb as above again. Let M(D) ∈ Max(rsmax,Φ
+) and Φ be of

type Dn, where n ∈ { 2m + 1, 2m + 2 }. Assume that M(D) = Ma∪Mb where Ma ⊂ Ψ+,Mb ⊂ Φrad
α1,α2

.
Then we get the upper bounds for |Ma| and |Mb|:

|Ma| ≤
(n − 2)(n − 3)

2
, |Mb| ≤ 2n − 2

which are constrained by |Ma|+ |Mb| =
n(n−1)

2 − 1. By Proposition 2.6, we have |Ma| ,
(n−2)(n−3)

2 . By
the maximality of Φrad

1 , we have |Mb| , 2n − 2 (otherwise Mb = Φrad
1 but 2n − 2 < n(n−1)

2 − 1 when
n ≥ 7). The only case left for our consideration is when |Ma| =

(n−2)(n−3)
2 − 1 and |Mb| = 2n − 3.

Note that (n−2)(n−3)
2 − 1 is the rank rsmax for Ψ of Dn−2. If Ma is maximal in Ψ+, then by induction

hypothesis
Ma = φ(Ĵ) ∩ Ψ+ for Ĵ = { 3, . . . , n − 2 } or Ĵ = { 3, . . . , n − 2, n } .
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According to this, we get Mb = Sab. More precisely,

Mb = { ε1 + ε2, εi + εr, εi − εn−1, εi − εn }1≤i≤2,3≤r≤n−2

when Ĵ = { 3, . . . , n − 2 }, or

Mb = {ε1 + ε2, εi + εr, εi − εn−1, εi + εn}1≤i≤2,3≤r≤n−2

when Ĵ = { 3, . . . , n − 2, n }. Both of them give rise to

M(D) = φ(J) ∩ Φ+

where J = Ĵ ∪ {1, 2}(i.e. J = { 1, . . . , n − 2 } or J = { 1, . . . , n − 2, n }).
Afterwards, let us turn to the case when Ma is not maximal. Since

Max(rmax,Ψ
+) = {Ψrad

n−3,Ψ
rad
n−2 }

by (∗), this gives Ma ⊂ Ψrad
n−3 or Ma ⊂ Ψrad

n−2. If Ma ( Ψrad
n−3, then

Mb = { ε1 + ε2, εi + εr, εi − εn }1≤i≤2,3≤r≤n−1

by [Ma,Mb] = 0, but then Ma ∪ Mb ( Φrad
n−1 which is not maximal, so M(D) does not exist. If

Ma ( Ψrad
n−2, then

Mb = { ε1 + ε2, εi + εr }1≤i≤2,3≤r≤n

by [Ma,Mb] = 0, but Ma ∪ Mb ( Φrad
n , so there is no M(D) by the same reason. �

3. Expressions of maximal elements of E(rsmax, u)

3.1. LT

(Sect. 3.1 of [9]). We have to choose a total ordering � on Φ+ which respects addition of
positive roots, that is, if β, γ, λ, β + λ, γ + λ ∈ Φ+ and β � γ then β + λ � γ + λ. We note that
the standard ordering ≥ on Φ respects addition, as does a reverse lexicographical ordering with
respect to any ordering of the simple roots. This ordering will define the extraspecial pairs in our
root system and consequently the signs in the structure constants of the chevalley basis.

Let E ⊂ u be an elementary subalgebra. The ordering � on Φ+ gives an ordering on the basis
elements xβ of u. Choose the unique basis of E which is in reduced echelon form with respect to
this ordering and let LT(E) be the set of roots β such that the corresponding xβ are the leading term
in this reduced basis. Observe that if xβ and xγ are the leading terms of b1 = xβ+ < lower terms >
and b2 = xγ+ < lower terms > respectively, and if β+γ ∈ Φ+ then [xβ, xγ] = Nβ,γxβ+γ is the leading
term of [b1, b2]. Thus if [b1, b2] = 0 then β and γ commute. This proves that LT(E) is a set of
commuting roots.
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3.2. Elementary subalgebras

We concentrate on G being a connected simple algebraic k-group of type C or D with g :=
Lie(G) and p is a good prime. Let Φ be the root system of G with positive roots Φ+. Let u := Lie(U)
be the Lie algebra of the unipotent radical U of the Borel subgroup B ≤ G, and { xα : α ∈ Φ+ } be a
basis of u. Since p is good for G, we have [xα, xβ] = 0 if and only if α+ β < Φ for α, β ∈ Φ. Recall
that x[p]

α = 0 for α ∈ Φ, one does have an elementary subalgebra

Lie(R) := Spank{xα ; α ∈ R}

when R is a subset of commuting roots.
In section 2, we have determined all the elements of the set Max(rsmax,Φ

+). In virtue of LT, for
R ∈ Max(rsmax,Φ

+), Lie(R) is not properly contained in any elementary subalgebra E ⊂ u. If there
were such E, then we would have R ( LT(E), violating the maximality of R. We present the result
through the following corollary:

Corollary 3.1. Suppose p is a good prime. Let G be a connected simple algebraic group of type
Cn(n ≥ 3) or Dn(n ≥ 5) over an algebraically closed field k of positive characteristic p > 0 and
u := Lie(U) be the Lie algebra of the unipotent radical U of the Borel subgroup B ≤ G. Then the
assignment

R 7→ Lie(R)

induces an injective map

Lie : Max(rsmax,Φ
+) // E(rsmax, u)max

where Max(rsmax,Φ
+) is summarized by Table 2.

Table 2. Maximal subsets of commuting roots of order rsmax.

Type T Rank Max(rsmax,Φ
+) rsmax

Cn n ≥ 3 ΦC
n−1,n

1
2n(n + 1) − 1

Dn n ≥ 5 ΦD
n−2,n−1,Φ

D
n−1,n

1
2n(n − 1) − 1

3.3. Type Cn

Suppose that G is of type Cn(n ≥ 3). Let � be the reverse lexicographic ordering given by
αn ≺ αn−1 ≺ · · · ≺ α1.

Lemma 3.2. Suppose that G is of type Cn with n ≥ 3. If E ∈ E(rsmax, u)max, then
LT(E) ∈ Max(rsmax,Φ

+) with respect to �.

Proof. If LT(E) < Max(rsmax,Φ
+), then LT(E) ( Φrad

n by Table 1. Note that Φ+ \ Φrad
n � Φrad

n , it
follows that all terms of basis vectors correspond to the roots lying in Φrad

n . Hence, E is contained in
the elementary subalgebra Lie(Φrad

n ). Notice that dimE < dim Lie(Φrad
n ), the containment is proper

which contradicts maximality. �
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In what follows, we will refine sets Φ+ and ΦC
n−1,n. We define for 1 ≤ i ≤ n

Φ+
i := { ε1 + εi, ε2 + εi, . . . , 2εi } ,

and for 1 < i ≤ n

Φ−i := { ε1 − εi, ε2 − εi, . . . , εi−1 − εi } .

Then the elements of Φ+
i and Φ−i satisfy

2εi � εi−1 + εi � · · · � ε1 + εi,

εi−1 − εi � εi−2 − εi � · · · � ε1 − εi

and Φ+ is the union of the following subsets:

Φ−2 � · · · � Φ−n−1 � Φ−n � Φ+
n � Φ+

n−1 � · · · � Φ+
1 .

Recall the definition of ΦC
n−1,n for Cn in Section 2.1, we get

ΦC
n−1,n = Φ−n ∪

n−1⋃
i=1

Φ+
i .

Theorem 3.3. Suppose that G is of type Cn with n ≥ 3. If E ∈ E(rsmax, u) satisfies LT(E) = ΦC
n−1,n

then E = Lie(ΦC
n−1,n)exp(ad(axαn )) for some a.

Proof. If LT(E) = ΦC
n−1,n, the reduced echelon form basis of E is

xi j = xεi+ε j , 1 ≤ i ≤ j < n,

and

yi = xεi−εn +

n∑
s=1

aisxεs+εn , 1 ≤ i < n.

Step I. We prove that a11 = 0. Let exp(ad(−a11N−1
2εn,ε1−εn

xαn)) be the conjugation acting on E,
which is lower triangular with respect to �. Therefore,

LT(exp(ad(−a11N−1
2εn,ε1−εn

xαn))(E)) = LT(E)

and the term xε1+εn in exp(ad(−a11N−1
2εn,ε1−εn

xαn))(y1) is eliminated.
Step II. We prove that all ais = 0. For j > 1, we have

[y1, y j] =

n∑
s=1

Nε1−εn,εs+εna jsxε1+εs +

n∑
s=2

Nεs+εn,ε j−εna1sxεs+ε j .

The coefficient of xεs+ε j in [y1, y j] is Nεs+εn,ε j−εna1s, so a1s = 0; the coefficient of xε1+εs in [y1, y j] is
Nε1−εn,εs+εna js, so a js = 0. Thus E = Lie(ΦC

n−1,n)exp(ad(axαn )) for a = a11N−1
2εn,ε1−εn

. �
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3.4. Type Dn

Suppose that G is of type Dn. Let � be the reverse lexicographic ordering given by

αn−2 � · · ·α2 � α1 � αn−1 � αn.

One can compute that if i < j < n, then Nεi+εn,ε j−εn = Nεi−εn,ε j+εn = 1.
Let R = { εi + ε j | 1 ≤ i < j ≤ n − 1 }. Then

Φrad
n = R ∪ { εr + εn | 1 ≤ r < n } ,

Φrad
n−1 = R ∪ { εr − εn | 1 ≤ r < n } .

According to �, it gives rise to an refinement of Φ+:

{ εi − ε j | 2 ≤ i < j < n } � { ε1 − ε j | 2 ≤ j < n } � Φrad
n−1 \ R � Φrad

n \ R � R.

Lemma 3.4. Suppose that G is of type Dn with n ≥ 5. If E ∈ E(rsmax, u)max, then
LT(E) ∈ Max(rsmax,Φ

+) with respect to �.

Proof. We prove it by assuming LT(E) < Max(rsmax,Φ
+). Then LT(E)  Φrad

n , or LT(E)  Φrad
n−1 by

Table 1.

Case 1. LT(E)  Φrad
n . If Φrad

n \ LT(E) = { εs + εn } for some 1 ≤ s < n, then the reduced echelon
form basis of E consists of

xi j = xεi+ε j , 1 ≤ i < j < n,

yi = xεi+εn + aisxεs+εn , 1 ≤ i < n , i , s and ais = 0 when i < s.

Alternatively, we have Φrad
n \LT(E) = { εs + εt } for 1 ≤ s < t ≤ n−1. And then the reduced echelon

form basis of E for 1 ≤ i < j < n and i , s, j , t

xi j = xεi+ε j + ai jxεs+εt , ai j = 0 when i < s or i = s, j < t,

yi = xεi+εn + bixεs+εt , 1 ≤ i < n.

One can easily see that, both of them yield E  Lie(Φrad
n ), it is a contradiction.

Case 2. LT(E)  Φrad
n−1. If Φrad

n−1 \ LT(E) = { εs − εn }, then there is the reduced echelon form basis
of E

xi j = xεi+ε j , 1 ≤ i < j ≤ n − 1,

yi = xεi−εn + aisxεs−εn +

n−1∑
t=1

bitxεt+εn , 1 ≤ i < n, i , s and ais = 0 when i < s.
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Note that exp(ad(−aisN−1
εs−εi,εi−εn

xεs−εi)) for i > s will rule out the term aisxεs−εn in yi and fix a jsxεs−εn

in y j if j , i. Let λi = −aisN−1
εs−εi,εi−εn

, then conjugation by b := exp(ad(λn−1xεs−εn−1)) ◦ · · · ◦
exp(ad(λs+1xεs−εs+1)) on E yields the final reduced basis

x
′

i j = xεi+ε j , 1 ≤ i < j ≤ n − 1,

y
′

i = xεi−εn +

n−1∑
t=1

b
′

itxεt+εn , 1 ≤ i , s < n,

where x
′

i j = b.xi j and y
′

i = b.yi. As n ≥ 5, the proof in [9, Theorem 3.6] shows that all b
′

it = 0.
Consequently E  Lie(Φrad

n−1)b−1
, which is not maximal. Alternatively, we get Φrad

n−1 \ LT(E) =

{ εs + εt } for 1 ≤ s < t < n and the reduced echelon form basis of E

xi j = xεi+ε j + ai jxεs+εt , ai j = 0 when i < s or i = s, j < t,

yi = xεi−εn +

n−1∑
r=1

bir xεr+εn + dixεs+εt , 1 ≤ i < n.

If i, j, r < n are distinct, then the coefficient of xε j+εr in [yi, y j] is Nεr+εn,ε j−εnbir. As n ≥ 5, we have
bir = 0 for all r , i. Now for i , j the coefficient of xεi+ε j in [yi, y j] is Nεi−εn,ε j+εnb j j + Nεi+εn,ε j−εnbii.
Thus if i < j < t < n we have a system of equations

Nεi−εn,ε j+εnb j j + Nεi+εn,ε j−εnbii = b j j + bii = 0
Nεi−εn,εt+εnbtt + Nεi+εn,εt−εnbii = btt + bii = 0

Nε j−εn,εt+εnbtt + Nε j+εn,εt−εnb j j = btt + b j j = 0

whose solution is bii = b j j = btt = 0. This gives bii = 0 for all i. Therefore, we have E  Lie(Φrad
n−1),

it is a contradiction. �

Theorem 3.5. Suppose that G is of type Dn with n ≥ 6. If E ∈ E(rsmax, u) satisfies LT(E) = ΦD
n−1,n

or ΦD
n−2,n−1 then E = Lie(ΦD

n−1,n)exp(ad(axαn−1 )) or E = Lie(ΦD
n−2,n−1)exp(ad(axαn )) for some a.

Proof. Case 1. LT(E) = ΦD
n−1,n. Then the reduced echelon form basis of E is

xi j = xεi+ε j +

i−1∑
h=1

ai jhxεh+εn−1 , 1 ≤ i < j < n − 1,

yi = xεi+εn +

n−2∑
r=1

bir xεr+εn−1 , 1 ≤ i < n − 1

zi = xεi−εn−1 +

i−1∑
v=1

n−2∑
t=v+1

civtxεv−εt +

n−1∑
r=1

dir xεr−εn + kixεn−1+εn +

n−2∑
s=1

`isxεs+εn−1 , 1 ≤ i < n − 1.

Step I. We prove that civt = ai jh = 0. If i ≥ 3 and v ≥ 2, the coefficient of xε1+εv in [x1t, zi] is
Nε1+εt ,εv−εtcivt, so civt = 0. Then for all i ≥ 2, we have

zi = xεi−εn−1 +

n−2∑
t=2

ci1txε1−εt +

n−1∑
r=1

dir xεr−εn + kixεn−1+εn +

n−2∑
s=1

`isxεs+εn−1 .
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Consider the bracket for i ≥ 2

0 = [x2t, zi] = ci12Nε2+εt ,ε1−ε2 xε1+εt + ci1tNε2+εt ,ε1−εt xε1+ε2 + a2t1Nε1+εn−1,εi−εn−1 xε1+εi .

Then a2t1 = 0 (It is possible since n ≥ 6), and finally ci1t = 0. Now for i ≥ 2, the coefficient of
xεh+εi in [xi j, zi] is Nεh+εn−1,εi−εn−1ai jh, thus ai jh = 0 for all h < i.

Step II. We prove that bir = dir = 0. Let λ = −d11N−1
εn−1−εn,ε1−εn−1

. Using conjugation by
exp(ad(λxεn−1−εn)), we may assume that d11 = 0. If i, j, r are distinct, then we have

[yi, z j] =

n−1∑
r=1

Nεi+εn,εr−εnd jr xεi+εr +

n−2∑
r=1

Nεr+εn−1,ε j−εn−1bir xε j+εr .

This gives dir = bir = 0 for all r , i. Now for i , j, the coefficient of xεi+ε j in [yi, z j] is Nεi+εn,ε j−εnd j j+

Nεi+εn−1,ε j−εn−1bii = d j j + bii = 0. As n ≥ 6 (n ≥ 5 is enough), this gives dii = bii = 0 for all i.

Step III. We prove that ki = `is = 0. For i , j, the coefficient of xε j+εn in [zi, z j] is Nεn−1+εn,ε j−εn−1ki,
so all ki = 0. If i, j, s < n − 1 are distinct, then the coefficient of xεs+ε j in [zi, z j] is Nεs+εn−1,ε j−εn−1`is.
As n ≥ 6 (n ≥ 5 is enough), this gives `is = 0 for all s , i. Now for i , j, the coefficient of xεi+ε j in
[zi, z j] is Nεi−εn−1,ε j+εn−1` j j + Nεi+εn−1,ε j−εn−1`ii. Thus if i < j < t < n − 1 are distinct, we have a system
of equations

Nεi−εn−1,ε j+εn−1` j j + Nεi+εn−1,ε j−εn−1`ii = ` j j + `ii = 0
Nεi−εn−1,εt+εn−1`tt + Nεi+εn−1,εt−εn−1`ii = `tt + `ii = 0

Nε j−εn−1,εt+εn−1`tt + Nε j+εn−1,εt−εn−1` j j = `tt + ` j j = 0

with unique solution `ii = ` j j = `tt = 0. This gives `ii = 0 for all i and finally yields E =

Lie(ΦD
n−1,n)exp(ad(axαn−1 )).

Case 2. LT(E) = ΦD
n−2,n−1. Then the reduced echelon form basis of E is

xi j = xεi+ε j +

i−1∑
h=1

ai jhxεh+εn−1 , 1 ≤ i < j < n − 1,

yi = xεi−εn +

n−1∑
p=1

bipxεp+εn +

n−2∑
q=1

ciqxεq+εn−1 , 1 ≤ i < n − 1,

zi = xεi−εn−1 +

i−1∑
v=1

n−2∑
t=v+1

divtxεv−εt + kixεn−1−εn +

n−1∑
r=1

fir xεr+εn +

n−2∑
s=1

gisxεs+εn−1 , 1 ≤ i < n − 1.

If i, j, p are distinct, then the coefficient of xεp+ε j in [yi, y j] is Nεp+εn,ε j−εnbip, it follows that bip = 0
for all p , i. If i , j, the coefficient of xεi+ε j in [yi, y j] is Nεi−εn,ε j+εnb j j + Nεi+εn,ε j−εnbii. Thus if
i < j < t < n − 1 are distinct, we have a system of equations

Nεi−εn,ε j+εnb j j + Nεi+εn,ε j−εnbii = b j j + bii = 0
Nεi−εn,εt+εnbtt + Nεi+εn,εt−εnbii = btt + bii = 0

Nε j−εn,εt+εnbtt + Nε j+εn,εt−εnb j j = btt + b j j = 0

with bii = b j j = btt = 0. This implies bii = 0 for all i. Then the calculation for the other coefficients
is similar to Case 1. We conclude that there exists some a such that E = Lie(LT(E))exp(ad(axαn )). �
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4. Summarizing for unipotent case

Summarizing the discussions for G in section 3, we are to give the main result except for some
small ranks for each type. Before doing this, we recall the definition of an ideal of Φ+. We say
R ⊆ Φ+ is an ideal if α + β ∈ R whenever α ∈ Φ+, β ∈ R and α + β ∈ Φ+; see [9, Definition 2.10].
A prototypical example for such an ideal arises from Φrad

i , where αi is a simple root. In the sequel,
the move to ideals helps to establish that both G.Lie(R) and G.E(rsmax,Lie(H)) are closed.

Lemma 4.1. If αi is a simple root, then Φrad
i \ {αi } is an ideal.

Proof. Suppose that α ∈ Φ+, β ∈ Φrad
i \ {αi } and α + β ∈ Φ+. Since Φrad

i is an ideal, it follows that
α+ β ∈ Φrad

i . As αi is a simple root, then α+ β , αi, which gives α+ β ∈ Φrad
i \ {αi }, so Φrad

i \ {αi }

is an ideal. �

Theorem 4.2. Suppose that G is of type Cn(n ≥ 3) or Dn(n ≥ 6). Then

E(rsmax, u)max ⊆ G.Lie(R),

where R is the ideal listed in the third column of the following Table 3.

Table 3. Ideals for Theorem 4.2.

Type Rank Ideal R

Cn n ≥ 3 Φrad
n \ {αn }

Dn n ≥ 6 Φrad
n−1 \ {αn−1 }

Proof. Theorems 3.3 and 3.5 ensure that

E(rsmax, u)max ⊆
⋃

I∈Max(rsmax,Φ+)

U.Lie(I).

where I is the set of commuting roots showing in Table 4.

Table 4. sets for Theorem 4.2.

Type Rank Set I

Cn n ≥ 3 ΦC
n−1,n

Dn n ≥ 6 ΦD
n−1,n,Φ

D
n−2,n−1

Let ẇ ∈ NG(T ) be a representative of an element w in Weyl group W and I be a set of commuting
roots. It is clear that ẇ.Lie(I) = Lie(w.I). We are to show that each I of Max(rsmax,Φ

+) can be
W -conjugated to an ideal R. For type C, the simple reflection sn acts by negating εn and fixing the
remaining εi therefore any representative ṡn ∈ NG(T ) conjugates Lie(ΦC

n−1,n) to Lie(Φrad
n \ {αn }).
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For type D, the Weyl group is a semidirect product of (Z/2Z)n−1 and S n, and its action on roots
is induced from the action on the set { ε1, ε2, ..., εn } where we may take S n to permute the indices
of the εi and the jth generator of (Z/2Z)n−1 to send ε j to −ε j, ε j+1 to −ε j+1, and fix all other εi. So
by conjugation we may assume our elementary subalgebras are of the form Lie(Φrad

n−1 \ {αn−1 }).
Finally we use Lemma 4.1 to prove that Φrad

n \ {αn } and Φrad
n−1 \ {αn−1 } are ideals and are done. �

Corollary 4.3. Let G be a standard simple algebraic k-group with root system Cn(n ≥ 3) or
Dn(n ≥ 6). Then

E(rsmax, g) = G.Lie(R) ∪
⋃

H an ideal

G.E(rsmax,Lie(H))

is the union of irreducible closed subsets, where ideals R,H are listed in the Table 5.

Table 5. Ideals for Corollary 4.3.

Type Rank Ideal R Ideal H

Cn n ≥ 3 Φrad
n \ {αn } Φrad

n

Dn n ≥ 6 Φrad
n−1 \ {αn−1 } Φrad

n−1,Φ
rad
n

Proof. Theorem 4.2 gives the set E(rsmax, u)max. We need to consider the elements of E(rsmax, u) \
E(rsmax, u)max. In accordance with [9, Corollary 3.9] and [8, Lemma 2.2], we arrive at the equality.
In viewing of the proof of Corollary 3.7 of [6], the right hand is a union of irreducible closed
subsets. �

Theorem 4.4. Let G be a standard simple algebraic k-group with root system Cn(n ≥ 3) or Dn(n ≥
6). Then the irreducible components of E(rsmax, g) for each type can be characterized; see Table 6.

Table 6. Irreducible components for Theorem 4.4.

Type Rank Irreducible components

Cn n ≥ 3 G.E(rsmax,Lie(Φrad
n ))

Dn n ≥ 6 G.E(rsmax,Lie(Φrad
n−1)), G.E(rsmax,Lie(Φrad

n ))

Proof. By Corollary 4.3, it suffices to check the maximality of each irreducible closed subvariety.
For type Cn, it is clear that G.E(rsmax,Lie(Φrad

n )) is the unique irreducible component. For type
Dn, it is clear that G.Lie(Φrad

n−1 \ {αn−1 }) is not maximal, so it suffices to check the maximality of
G.E(rsmax,Lie(R)) for R = Φrad

n−1 or R = Φrad
n . We may assume

G.E(rsmax,Lie(Φrad
n−1)) ⊆ G.E(rsmax,Lie(Φrad

n )).

Then we have Lie(Φrad
n−1 \ {αn−1 }) = g.Lie(Φrad

n \ { γ }) for some g ∈ G and γ ∈ Φrad
n . By Lemma 3.8

of [6], we have Φrad
n−1 \ {αn−1 } and Φrad

n \ { γ } are W -conjugate. On the other hand, one can easily
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check that Φrad
n \ { γ } and Φrad

n \ {αn } are W -conjugate, so there is some w ∈ W such that w.Φrad
n−1 \

{αn−1 } = Φrad
n \ {αn }. Notice that

Φrad
n−1 \ {αn−1 } = { εi + ε j | 1 ≤ i < j ≤ n − 1 } ∪ { εi − εn | 1 ≤ i < n − 1 } ,
Φrad

n \ {αn } = { εi + ε j | 1 ≤ i < j ≤ n − 1 } ∪ { εi + εn | 1 ≤ i < n − 1 } .

Let

A := { εi + εn | 1 ≤ i < n − 1 } .

We now consider w−1.A in Φrad
n−1 \ {αn−1 }. By the order of set A, one can verify that

w−1.A = B := { εi + εn−1 | 1 ≤ i < n − 1 }

or

w−1.A = C := { εi − εn | 1 ≤ i < n − 1 } .

If w−1.A = B, then by observing the action of w on Φrad
n−1 \ {αn−1 }, we have w.C = {εi − εn−1 | 1 ≤

i < n − 1}. Since { εi − εn−1 | 1 ≤ i < n − 1 } < Φrad
n \ {αn }, it is impossible. If w−1.A = C, then we

find that w.B = { εi − εn−1 | 1 ≤ i < n − 1 }. This is also impossible by the same reason. Hence, the
closed subset G.E(rsmax,Lie(Φrad

n−1)) is maximal. The maximality of G.E(rsmax,Lie(Φrad
n )) is verified

in a similar way and is omitted. �

Remark. In [9] the authors show that E(rmax, g) is a finite disjoint union of partial flag varieties,
which differs from the above result.

5. Conclusions

In this paper we characterize the irreducible components of the variety E(rkp(g) − 1, g), where
g := Lie(G) is the Lie algebra of a connected standard simple algebraic group G of type C or D.
The results show that E(rkp(g) − 1, g) is not a finite disjoint union of partial flag varieties, which
differs from E(rkp(g), g).
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