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Abstract: Let G be a connected standard simple algebraic group of type C or D over an
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1. Introduction

Let (g, [p]) be a finite dimensional restricted Lie algebra over an algebraically closed field k
of positive characteristic p > 0. Following [3] we say that g is elementary, provided g is abelian
and [p] = 0. Given a positive integer r, there is a mount of literatures investigating the set E(r, g)
of elementary subalgebras of dimension r. For instance, the very original paper [3] studies the
geometric properties of E(r, g), which shows that it is a projective variety. The structure of E(r, g)
is described there for simple algebraic Lie algebras of types A, C and r = rk,(g) being the p-rank
of g. For a finite dimensional restricted Lie algebra g, the p-rank rk,(g) is defined as follows

rk,(g9) :=max{reNy; E(r,g) #0}.

Later on, the first author explores the irreducible components of the variety E(r, g) in [6] for simple
algebraic Lie algebras of type A when r equals rk,(g) — 1.

We now assume that G is a simple algebraic k-group with irreducible root system ®. The
interested reader may consult [1, 2, 4, 10] for the theory of algebraic groups. Let A :={ay,...,a,}
be the set of positive simple roots. For any I C A define the parabolic subgroup W; and its
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corresponding root system ®; with ®; being the set of positive roots. We recall two definitions
in [9].

Definition 1. We set S := A\ I and then define
O = o\ D

to be the set of positive roots that cannot be written as a linear combination of the simple roots not
inS. If S = {a;}, then we simply write ®F* instead of O .

Definition 2. Let @ and 8 be two roots of ®. We say that a and 8 commute if @ + 8 is not a root.

Building on methods developed in [5, 7, 9], we find that the maximal elementary subalgebras
of dimension rk,(g) are given by the combinatorics of the commuting roots of ®. It is our aim in
this paper to present the method of finding the maximal subsets of commuting positive roots of
order rymax = 1k,(g) — 1 for types C and D, and the geometric properties of the varieties E(rymax, )
for these two types. Let @ be the root system of type C or D respectively, and Max(r, ®*) be
the set of maximal subsets of commuting positive roots of order r. We refer to [5] for his linear
algebraic approach to sets of commuting roots for irreducible root systems, which enables our
set Max(rgmax, @) to be more tractable. We compute E(rgn.x, §) under the assumption that G is
standard, which means the derived subgroup of G is simply connected, p is a good prime for G
and the Lie algebra g = Lie(G) admits a non-degenerate G-invariant symmetric bilinear form. We
rely on the result of Premet (see Lemma 2.2, [8]) to show that any elementary subalgebras of g
can be conjugated into u C g, the Lie algebra of the unipotent radical U of the Borel subgroup
B < G. We define E(rsmax, Wmax as the set of maximal elementary subalgebras of dimension rgy,x
in u. The calculation of E(rsm,x, ) then proceeds via two steps. First, we determine E(7smax, 1)max
as a set. We define a map Lie : Max(rgmax, @) — E(rgmax, Wmax Which sends a maximal subset
of commuting positive roots of order ryy,x to a maximal elementary subalgebra of dimension ry,x
in u and show that there is an inverse map LT : E(7gmax, Wmax — Max(Fgmax, @) which splits Lie.
The map Lie is not necessarily surjective but we show that for types C and D except for small
ranks it is surjective up to conjugation by U. Further, after giving the definition of ideals of the
root system @, we effectively prove that the maximal elementary subalgebras of dimension gy, in
1 up to conjugation by G are given by the ideals of ®@. To finish the calculation of E(rgpax, §), we
allow actions by the Weyl group # < G and determine the irreducible components of E(r¢pax, 9).

This paper is organized as follows: In section 2, we determine the set Max(rsyax, @) for types
C,(n > 3) and D,(n > 5) . Section 3 deals with the surjection of the map Lie up to conjugation by
G for types C and D. Finally in section 4 we give the irreducible components of E(7gyax, 9).

2. Maximal subsets of commuting positive roots

Throughout this section, if M and N are two subsets of @, we will use the symbol [M, N] = 0
to denote that roots in M and N commute. Let r,,,x be the maximal order of a subset of commuting
positive roots. The result in [9] tells us that rk,(g) and ry. are equal. Since the p-rank rk,(g)

should be clear for our consideration in this section, we list the related facts through Table 1.
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Table 1. Maximal sets of commuting roots.

Type T Rank Max(rax, @F) Fmax
C, n>3 @rad in(n+1)
D, n=4 O, Pid, P 6

n>5 d)za_dl, orad %n(n -1

2.1. TypeC,,n>3

Let G be a simple algebraic group with root system @ which is of type C, (n > 3), and g :=
Lie(G). Let " = {g—¢€;|1<i<j<n}U{eg+¢€|1<i<j<n}be the set of positive roots
and ® = ®* U —O®*. Setting a; = € — €, where | < i < n -1 and @, = 2¢,. It follows that
A={a,...,a,}is abase of D.

Theorem 2.1. Let @ be of type C,.. The set Max(r¢max, @) consists only one element

(DC

n—1,n

={e+e|1<i<j<niU{e—¢|1<r<n}.

Proof. Let Jbe asubsetof {1,...,n}and J :={1,...,n}\J be its complement. A maximal subset
of commuting roots of @ is uniquely given by (see [9, A.3])

o)) :={€&+e.6—€,—€—€ |i,i €Jand j,j €J }.
Notice that ¢(J) c ®* if and only if J = {1,...,n}. It follows that
O = ¢({1,...,n})

of order 3n(n + 1) is the unique element of Max(riax, ®*).

Let M(C) be an element of Max(rgnax, @*). The fact above implies that M(C) cannot be a
maximal subset of commuting roots of ®@. It asserts that M(C) € ¢(Jy) for some Jy, and |p(Jy)| =
IM(C)| + 1. We conclude that J, ={1,...,n—1} and

MC)={g+e|l1<i<j<nU{eg-¢g|l1<r<nj

which will be denoted by ®¢ |

n—1n"

2.2. Type D,,n > 4

Let G be a simple algebraic group with root system ® which is of type D,(n > 4), and g :=
Lie(G). Let

O ={g+e|l1<i<j<n}

be the set of positive roots of @. Defining ; = €, — €1 for 1 <i < n—1 together with @,, = €,_; +¢€,,
then A ={ay,...,q,} is a base of O.
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Definition 3. We define ® as a subset of ® consisting of roots

a1,a2

e te,6te,where2<i<nand3 < j<n.

Proposition 2.2. Let R ¢ ®™ , be a subset of commuting positive roots. We either have

ay,a

(1) R c @™ or
(2) RCSab ::{61+62}U8aUSb.

where S, C {€ — €,6 + €. |3 < r < n}isamaximal subset having the property €, — €, € 8, if and
onlyife+e€ ¢ S,and 8, C {€ +¢€,6 —€ |3 <r<n}isamaximal subset with the property
€ +€ €8yifand only if & — €, ¢ S,

Proof. If €, — & € R, then &, + €; ¢ R for 3 < j < n, which implies the inclusion R C CI)r]ad =
{ € % € }r<icn. Alternatively, € — € ¢ R, it follows that R C 8. O

Notation 2.3. We make a restriction on the rank by letting n = 4. There are four possibilities for
8., denoted by

(1) 8y ={e1—€,6 —€},
2) i={e—6,6+e),
3) 8={e+ae6+el,
(4) 83:{61 —&,6+ 6}

Similarly, S, has the following four forms

(1) 8, ={€e1+6,6 +6},
2) 8 ={ea+6,6-6},
3) 8§ ={a-—a6-)
(4) 82:{61 +e&,6— 6.

Lemma 2.4. Let O be of type Dy. Then the elements of Max(5, ®*) are

(1) 87 :={e +&}US, U8, where 1 <i,j<4 and (i, ) # (1,1),(3,1),(4, 1),
(2) Si:={ateaat6a,a-a6-al
(3) 82 = {E] + 6,6 + 6,6 6,63+ € },
(4) 83 ={ex 6,6 + 6,6 &)},
(5) 84 ={e+e6,6+6,6+6,6*6).
Proof. 1t is known that rym. = 1k, (g) — 1 = 5 for Dy. Let V" = ©F \ @ = [ +¢) be the

ay1,a2

complement of @3¢ in ®*, and M(D) € Max(5, ®*). Assume that M(D) = M, U M, where

a1,a2
M, c¥* and M, c @2, .
If M, = 0, then |M,| = 5. By Proposition 2.2, M(D) C §,,. Since M(D) is maximal, according
to Notation 2.3, we have

M(D)=8" ={e+e}US U8/
where 1 <i,j<4and (i, j) # (1,1),(3,1), (4, 1).
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If |IM,| = 1, then |M,| = 4. Since M, c ", it follows that M), ¢ ™, M), C {€ + &} USIUS?,
or M, € {e+6}US;US,. But M(D) is maximal, so M, = {€ * &,€ + &,€ — &} when
M,={ag—gland M, ={€ + 6,6+, +&}when M, ={e& +¢&}.

If IM,| = 2, then |[M,| = 3. Then M, = ¥, and M, = {e, + 6,6+ 6} < CDrlad, or M, =
e +6,6+6,6+6a)C Sab-

Summarizing here, there are 17 possibilities of M (D), they are SZ}? forl <i,j<4and(,)) #
(1,1),(3,1),(4,1), 81 ={e xe,6+6,6 -, 65— €6}, 8 = {6 £ 6,6 + 6,6 + &, 6 + &),
83 = {E] + 6,6 + 6,6 64}, and 84 = {61 + 6,6 +6,6 16,636 } O

Lemma 2.5. Let ® be of type Ds. Then the elements of Max (9, ®*) are of the forms
le+e,e—€|i#i,ii €elyand jeJynd forse{l,2},
where I, = {1,2,3}with J, ={4,5}and I, ={1,2,3,5} with J, = {4}.
Proof. Note that rgna = 1k,(g) — 1 = 9 for Ds. Let
gt = @t @

ar,a2

and M(D) € Max(9, ®*). Assume that M(D) = M, U M,, where M, c ¥*, M, C (ij‘faz.

Ifes — e € M, then ¢ + s ¢ M, which gives M, C MS = {6& £ &, 6 £ 6 ). Alternatively, if
&—6¢M,then M, C M ={g+ea,g+6,6+6},or M, C M? :={6+6&,6— 6,6 — 6},
orM, Cc M :={eg+e,6+te},or M, C M* := {& + €&, e + 6 ). So, we have |M,| < 4. If
|M,,| = 8, then M, must be ®?¢, which is maximal in @™, it is a contradiction. Hence, [M,]| > 2.

If |IM,| = 4, then |M,| =5 and M, = MS ={&6 &, 6 +e6). But [M,, M,] = 0, which implies
M| < 3 whenever M, C (Drlad or M, c 8,, it is a contradiction.

If [M,| = 3, then |[M,| = 6. In this case, we first assume that M, C <Drlad. Then €, + € exist
for at least one choice for i from the set { 3,4, 5}, this implies |M,| < 2 by [M,,M,] = 0, itis a
contradiction. Then we may assume M), C &, it follows that [M;, N (S, U 8;)| = 5. We list several
possibilities to get a contradiction in this case: (a) M, = M}, or Mﬁ, there is no M, with |M,| = 6
such that M(D) is maximal; (b)M, = M or M2, then M, C {€ +€;}U{e + &} where 1 <i <2
and 3 < j < 4, thus |[M, N (8, U 8)| < 4; (c)M, C M?, then & + € occurs in M, fori =4 ori = 5,
which implies [M,| < 5.

If IM,| = 2, then [M,| =7. If M}, C (Drlad, then M, = 0 by [M,, M,] = 0, it is a contradiction. If
M, C Sab’ then

“{ataattea,agrel,

Mb:{61+62}U{€i+6j,65—64|i:1,2andj:3,5}
with M, = {& — &, 6 + €}, or
M,={e+elU{g+e6,g—¢€li=12and j=4,5}

withM, ={& —€,6 — € ).
Summarizing here, by taking /; = {1,2,3}with J; = {4,5}and I, ={1,2,3,5} with J, = {4}
there are two possibilities for M (D), that is

M(D)={e+e,6—¢€li#i,i,i €eljand je )N forse{l,2}.

O
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Proposition 2.6. Suppose that @ is of type D, with n > 6. Let ‘I’;a_dz = V' N O™ and ‘I’;a_d3 =

Y+ n (foﬂ, where ¥ = @ \ iCDZj‘l‘faz is a root system of D,_,. Let M(D) € Max(M —1,®%), then

2
there is no such a decomposition M(D) = M, U M, with M, = Y™, or ¥™%, and M,, ¢ ®}

ay,a2°

Proof. We first know that @ — 1 is the rank rgy,,, of D, and %2(”_3) is the p-rank of D,_,. Since
Y is the root system of D,_, and by Table 1

Max(" =D g4y = (@™, ),
it follows that
Pl = N @R,
and
pred = @ (*)

are the only two elements of Max(%, Y.
Recall that @9, ={e t 6,6+ ¢ |2<i<nand3 < j<n}. If M, =¥, thene —¢ ¢ M,

ay,a

fori=1,2and 3 < j <nby [M,, M,] = 0, this gives rise to
My, Ccle £ e,6 + €l s
or
Mycle+ege+e€l2<i<nand3 < j<n}

Note that |[M,| = IM(D)| — |[M,| = 2n — 4 if M(D) exists. An inspection of these two cases gives
either |M,| < n < 2n—4 or M(D) = M, U M, € ®*, from which we deduce that M(D) does not

n
exist. Alternatively, we assume that M, = ‘{’;“_‘13. For this situation, we get

M,cle e, e -6a.a+€k .,

or

M, cle —e.a+ehamiVia-—a.a+el ., .

Accordingly, we have either [M,| <n <2n-4or M(D)=M,U M, C (fo_dl, which also shows the
non-existence of M(D). O

Lemma 2.7. Let n = 6. Keep the notations for ¥, M(D), M, and M, as above. Then the elements
of Max(14, @) are

le+e,6—€|i#i,ii elyand jeJ}ndforse(l,2)

where I} ={1,2,3,4}with J, ={5,6}and I, ={1,2,3,4,6} with J, = {5}.
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Proof. Since n = 6, the p-rank rk,(g) is 15 and the rank rgma = 1K,(g) — 1 is 14. Since ¥ is the root
system of Dy, and the p-rank of D; is 6, it gives |[M,| < 6. By Proposition 2.2 and the maximality of
(I)rlad in ®*, we have |M,| < 9. Hence, there are only two possibilities for M (D) if it exists: |M,| = 6
and |M,| = 8, or [M,| = 5 and |[M,| = 9.

If |IM,| = 6, then M, = ¥, ¥%4 or ¥ b Table 1. By Proposition 2.6, one only needs to check
the case when M, = ¥7*. Recall that

P = {6 + € Jucics »
it gives
M,Cle +6,6 +6&}
or
Mb C {61 + 6, € +63,62+63},

there is no M, with |M,| = 8. If |[M,| = 5, then |M,| = 9 if M(D) exists. If M}, C (I)rlad, then every
element in ¥* cannot commute with the elements of M;, so M(D) does not exist. Otherwise, we
let M, C 8, then it has to be M, = §,, by comparing their orders. If M, is not maximal in ¥~
then M, C W™, W3¢ or ¥. We discuss these three possibilities to get a contradiction:

(a) M, c ¥, then there exists iy where 4 < iy < 6 such that & + €, € M,. But & * ¢, cannot
commute with elements of S, from each of the sets

e +€,.60-¢}
and
e -6, +¢€};
(b) M, C ¥, then 8,, must be
lat+teaat+ehisUia+e,6-66—6l,

but now M, U M, ¢ ®;
(c) M, c ¥, then 8, must be

e+ 6wVl + 6l
but again
d
M, UM, C (Dga .

Now the consideration is left only for M, being maximal with |[M,| = 5. Since the rank rgy, 1S 5
for D4, we have M, € Max(5,¥Y*). By Lemma 2.4 there are only two are suitable here, they are

Ma = {63 + €4, — 6,6 — & }35,‘54 5
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or
M,={&+ea. 66,6+ 6 licu-
Given by these, the corresponding M,, is
My ={€ +6&,6+6,6— €}cicr3<r<45<556 »
or

M, ={e+ 6,6+ 6,6 — 6,6 + €i<i<a3<r<4-

Summarizing here, by denoting I, = {1,2,3,4} with J; = {5,6}and I, = {1,2,3,4,6} with
Jo = {5} we have

M) ={e+e,6—¢€lizi,i,i €l;and jeJ,}ndforse{1,2}.

Notation 2.8. Let J be a subset of { 1,...,n}. We denote by
¢(J) ={e+e€.6—€,—€—€ |i+ P00 eJand j# j,,]',jl ¢ J}

a set of commuting roots and consider the following sets

2, =) N O when J ={1,...,n-2},
QY =¢()N D when J ={1,...,n—2,n}.

Theorem 2.9. Suppose that @ is of type D,(n > 5). Let M(D) € Max(rgmax, ®*), then M(D) is
either of the form ®° or of the form ®”

n-2,n—1 n—-1,n"
Proof. We prove the above statement by induction. The statement is clear for n = 5 and n = 6 by
Lemmas 2.5 and 2.7. Assume it is proved for 2m — 1 and 2m, m > 3. We prove the statement is
true for 2m + 1 and 2m + 2.
Keep the notation for ¥, M, and M, as above again. Let M(D) € Max(rgpax, @) and @ be of
type D,,, where n € { 2m + 1,2m + 2 }. Assume that M(D) = M,UM, where M, c ¥Y*, M, C Cij‘faQ.
Then we get the upper bounds for |M,| and |M,|:

(n—2)(n-3)
2

|M,| < M| <2n =2

n(n—1) (n=2)(n-3)
- —5—. By

which are constrained by |M,| + |M,| = — 1. By Proposition 2.6, we have |M,| #

the maximality of @, we have |M,| # 2n — 2 (otherwise M, = 7 but 2n — 2 < # — 1 when

n > 7). The only case left for our consideration is when |M,| = &2(”_3) — 1 and M| = 2n - 3.
Note that #=20=3

> — 1 is the rank rgy,, for ¥ of D,_,. If M, is maximal in ¥*, then by induction
hypothesis

A

M,=¢()N¥Y forJ={3,....n—2}or J={3,....n—2,n}.
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According to this, we get M, = §,,. More precisely,
M,={€+6&,6+6,6— €_1,6 — € }1<i<23<r<n2
when J ={3,...,n-2},or
M, ={e + €&, 6+ €, 6 — €1, 6 + E}1<i<23<r<n—2
when J = {3,...,n—2,n}. Both of them give rise to
M(D) = ¢(J)Nn ®*

where J = fU{l,Z}(i.e. J=A{1l,....,.n=2}orJ={1,...,n=2,n}).
Afterwards, let us turn to the case when M, is not maximal. Since

Max(rmaXa \P+) = {\Prad \P;a_dz }

n-3°
. : rad rad rad
by (), this gives M, C ¥}**s or M, C V)™, If M, C ¥}, then
M, ={e +e&,6+ 6,6~ € }1<icr3<r<n-1

by [M,, M,] = 0, but then M, U M, C (fof‘l which is not maximal, so M(D) does not exist. If
M, ¢ Y™, then

My ={e +&,€6+ € <3<

by [M,, M}] = 0, but M, U M, € @™, so there is no M(D) by the same reason. O
3. Expressions of maximal elements of E(r;., 1)

3.1. LT

(Sect. 3.1 of [9]). We have to choose a total ordering > on ®* which respects addition of
positive roots, that is, if 8,y, 4,8+ A4,y + 4 € ®  and 8 > y then 8+ A > y + 4. We note that
the standard ordering > on O respects addition, as does a reverse lexicographical ordering with
respect to any ordering of the simple roots. This ordering will define the extraspecial pairs in our
root system and consequently the signs in the structure constants of the chevalley basis.

Let € C u be an elementary subalgebra. The ordering > on ®* gives an ordering on the basis
elements xz of 1. Choose the unique basis of & which is in reduced echelon form with respect to
this ordering and let LT(€) be the set of roots 8 such that the corresponding x; are the leading term
in this reduced basis. Observe that if xz and x, are the leading terms of b; = x3+ < lower terms >
and b, = x,+ < lower terms > respectively, and if 8+ € @ then [xg, x, ] = Ng, Xz, is the leading
term of [by, b,]. Thus if [by,b,] = O then S and y commute. This proves that LT(&) is a set of
commuting roots.

AIMS Mathematics Volume 7, Issue 2, 2084-2101.
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3.2. Elementary subalgebras

We concentrate on G being a connected simple algebraic k-group of type C or D with g :=
Lie(G) and p is a good prime. Let @ be the root system of G with positive roots ®*. Let u := Lie(U)
be the Lie algebra of the unipotent radical U of the Borel subgroup B < G, and {x, : « € ®*}be a
basis of 1. Since p is good for G, we have [x,, xg] = 0 if and only if & + 8 ¢ ® for a, 8 € ®@. Recall
that x”' = 0 for @ € ®@, one does have an elementary subalgebra

Lie(R) := Span,{x, ; @ € R}

when R is a subset of commuting roots.

In section 2, we have determined all the elements of the set Max(rgmax, @*). In virtue of LT, for
R € Max(rgmax, ©*), Lie(R) is not properly contained in any elementary subalgebra & C u. If there
were such &€, then we would have R C LT(&), violating the maximality of R. We present the result
through the following corollary:

Corollary 3.1. Suppose p is a good prime. Let G be a connected simple algebraic group of type
C.(n > 3) or D,(n > 5) over an algebraically closed field k of positive characteristic p > 0 and
u := Lie(U) be the Lie algebra of the unipotent radical U of the Borel subgroup B < G. Then the
assignment

R — Lie(R)

induces an injective map
Lie : Max(rsmax’ (D+) - E(rsmax’ u)max

where Max(ropax, ©F) is summarized by Table 2.

Table 2. Maximal subsets of commuting roots of order rgyax-

Type T Rank Max(rsmax, @) F'smax
C, nx3 o, in(n+1)-1
Dn nz 5 q)r[l)—Z,n—l’ (Dt?—l,n %I’l(l’l - 1) =1

3.3. Type C,

Suppose that G is of type C,(n > 3). Let > be the reverse lexicographic ordering given by
a, < p-1 < <Qai.

Lemma 3.2. Suppose that G is of type C, with n > 3. If & € E(Fgmao Wmax then
LT(E) € Max(rgmax, @) with respect to >.

Proof. If LT(€) ¢ Max(Fymax, @), then LT(E) ¢ ®™¢ by Table 1. Note that ®* \ &2 > @24 jt
follows that all terms of basis vectors correspond to the roots lying in 9. Hence, € is contained in
the elementary subalgebra Lie(®"). Notice that dim & < dim Lie(®™9), the containment is proper
which contradicts maximality. O
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In what follows, we will refine sets ®* and (Df_l’n. We defineforl <i<n
O ={e+€,6+€,...,26},
andforl <i<n

O ={e-g&—€....,61—€}.

1

Then the elements of ®; and @} satisfy
26 €1 t€> > € +€,
€1 —€EZ€r— €= """ =€ —€
and @™ is the union of the following subsets:
Q) >-->D >0 > > > > D]

Recall the definition of (I)S_Ln for C,, in Section 2.1, we get

n—1,n

of,, =, ul o,

Theorem 3.3. Suppose that G is of type C, with n > 3. If £ € E(rgmax, 1) satisfies LT(E) = CDS_M
then € = Lie((Dg_l’n)e"p(ad(“x"n)) for some a.

Proof. If LT(€) = ®¢ | | the reduced echelon form basis of € is

n—1,n°
xl] = x6i+6j’]~ S l S J < n’
and
n
Vi = Xe—e, + Z AisXeote,» l<i<n.
s=1

Step 1. We prove that a;; = 0. Let exp(ad(—a;; N,

2€,,61—
which is lower triangular with respect to >. Therefore,

. Xa,)) be the conjugation acting on &,

LT(exp(ad(=a11 Ny, ., %a,))(E)) = LT(E)

and the term x .., in exp(ad(—a; 1N2‘; a _enxan))(yl) is eliminated.

Step 1I. We prove that all a;; = 0. For j > 1, we have

n n
[yl,yj] = E Nel—e,l,es+e,,ajsxel+es + § Nes+e,1,e_,~—e,,alsxes+e_,~'

s=1 s=2
The coefficient of x y¢; in [y1,y;] 18 Ne 1e,.¢;-¢,015> 80 a15 = 0; the coefficient of x ¢, 1n [y, y;] is

_ T in(dC d _ 1
Ne,-e,e+6,0js> 80 ajs = 0. Thus € = Lie(®S_, )**@@w) fora = a; N, . m|
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3.4. Type D,

Suppose that G is of type D,. Let > be the reverse lexicographic ordering given by
Apn > Ay > A1 > Ay > Q.

One can compute thatif i < j < n, then Ne¢, -6, = Ne—e,ci46, = |-
LetR={g+€|1<i<j<n-1} Then

O™ =RU{e+6 |1 <r<n},
(Dila_dl:ﬂQU{er—enllﬁr<n}.

According to >, it gives rise to an refinement of ®:
le—€l2<i<j<n}>{e-¢€l2<j<n}>0O" \R>DO\R >R

Lemma 3.4. Suppose that G is of type D, with n > 5. If &€ € E(Fgmax, Wmax, then
LT(E) € Max(rgmax, @) with respect to >.

Proof. We prove it by assuming LT(€) ¢ Max(rmax, ®*). Then LT(€) ¢ @}, or LT(E) ¢ ®™, by
Table 1.

Case 1. LT(&) ¢ @™ If @\ LT(E) = { ¢ + ¢, } for some 1 < s < n, then the reduced echelon
form basis of € consists of

Xij = Xetejs 1Si<j<l/l,

Vi = Xete, + QisXere,, 1 <i<n,i# sanda;,;=0wheni<s.

Alternatively, we have d);"‘d\LT(F,) ={e +¢€}forl <s<t<n-1. And then the reduced echelon
formbasisof Efor 1l <i< j<mnandi#s,j#t

Xij = Xere; T UijXere> @iy = 0Wheni<sori=s,j<i,

Vi = Xeve, T bixeﬁe,’ Il <i<n.

One can easily see that, both of them yield € ¢ Lie(®™), it is a contradiction.

Case 2. LT(&) ¢ @™. If @™ \ LT(€) = {¢ — €}, then there is the reduced echelon form basis
of &

Xij = Xerey 1 <0< j<n—1,
n—1

Vi = Xe—e, + QisXe,—¢, + Z biXere,, 1 <i<n,i# sanda;; =0 wheni<s.
=1
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Note that exp(ad(—a;sN_ 16[ e, Xy E1)) for i > s will rule out the term a;,x¢ ¢, In y; and fiX asx¢ e,
iny;if j # i. Let A4; = a,sN; ~ec—e,» then conjugation by b := exp(ad(4d,-1x¢—¢,_,)) © -+ ©
exp(ad(Ay41Xe,—e,,,)) on € yields the final reduced basis

Es+1

’

Xij = Xervejs I1<i<j<n-1,

n—1

Vi = Xe—e + Z by Xere, 1 <i#s<n,
=1
where x;j = b.x;;and y, = b.y;. Asn > 5, the proof in [9, Theorem 3.6] shows that all b, = 0.
Consequently € & Lie(®™)"", which is not maximal. Alternatively, we get @™ \ LT(E) =
{e + ¢} for 1 < s <t < nand the reduced echelon form basis of £

Xij = Xete + QijXe e, aij =0wheni<sori=s,j<t,
n—1
Yi = Xe—¢, + Z birxe,+en + di-xes+e,’ l<i<n.
r=1
If i, j, r < n are distinct, then the coefficient of x¢ ¢, in [y;, y;] 18 Ne 1e,.¢;-¢,0ir- As n > 5, we have
bi» = 0 for all r # i. Now for i # j the coefficient of x ¢, in [yi, ¥;] 18 Ne—q,.;46,0jj + Neteyei—e,Dii-
Thus if i < j <t < n we have a system of equations

Ne,-—en,e/-+enbjj + Ne,-+e,,,e/-—fnbii = bjj +b;=0

Nei—e,,,e,+enbtt + Ne,-+e,,,et—enbii = btt + bii =0

Ne_,-—e,[,e,+e,lbtt + Nej+e,,,e,—e,,bjj =b, + bjj =0
whose solution is b; = b;; = b, = 0. This gives b; = 0 for all i. Therefore, we have € ¢ Lie((I)ff‘_dl),
it is a contradiction. d

Theorem 3.5. Suppose that G is of type D, with n > 6. If € € E(rgmax, 1t) satisfies LT(E) =
or ®° then & = Lie(®@Y | )P @) or € = Lie(®Y , ) @a)) for some a.

nln

n-2,n—1

Proof. Case 1. LT(&) = CI)nD_Ln. Then the reduced echelon form basis of € is

2,n—

i—-1

xe,+e, Z aijh-xe;,+e,,_|, 1 <1< J<n- 17
h=1

I\)

Yi = Xe+e, +thrxe,+en 171 <i<n-1

r=1
i-1 n-2

Zi = Xg—g,y T Z Z CiviXe,— T+ Zdlrxe, —€, +kx5n 1+e, T Zflyxgv-}.gn 1,1 <i<n-1.

v=1 t=v+1

Step I. We prove that ¢;; = a;j, = 0. If i > 3 and v > 2, the coefficient of x ., in [xi;,z] is

Ne +e.e0-¢,Civ» 80 Ciyy = 0. Then for all i > 2, we have
n—2 n— n—
Zi = Xg-e, t Z CiltXe—¢ + Z dir-xe,—e,l + kixe,,,1+s,, + Z fixxeﬁe,,,l-
t=2 =
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Consider the bracket fori > 2

0= [Xz;, Zi] = Ci12N52+et,51—52x51+e, + CiltN52+e,,el—e,x51+ez + aZthel+E,,_1,e,-—6,,_1xel+e,-~
Then ay,; = 0 (It is possible since n > 6), and finally ¢;;; = 0. Now for i > 2, the coeflicient of
Xepve 10 [Xij, 2118 Neyve, 1 -6, @ijh> thus a;j, = 0 for all h < i.

Step 1. We prove that b;,, = d;, = 0. Let A = —d;IN_ 11 —e.—c,,- Using conjugation by
exp(ad(Ax,, ,—,)), we may assume that d;; = 0. If 7, j, r are distinct, then we have

n—1 n-2
[yza Z] = § N €+6,,6,—Ep ]rxe,+e, + § Ne,+e,, 1,€j—€n— 1bzrxe,+e,
r=1 r=1

This gives d;, = b;, = Oforall r # i. Now fori # j, the coefficient of x¢ ., in [y;, 2;11S Neve,.c;-6, 4+
Neverie-ebii = djj+ bi; =0. Asn > 6 (n > 5 is enough), this gives d;; = b; = 0 for all i.

Step 1I1. We prove that k; = €;; = 0. For i # j, the coefficient of x. ., In [z;,2;] 1S Ne,_ 1¢,.¢/-¢,-, Ki>
soall k; = 0. If i, j, s < n— 1 are distinct, then the coeflicient of x ¢, in [z;,2;] 1S Neve, .c;-6,1 Cis-
Asn > 6 (n =5 is enough), this gives £;; = 0 for all s # i. Now for i # j, the coeflicient of x; in
[2i»2j] 18 Ne—e, 1 ej+e1 Cjj T Neverre-e,i Lii- Thus if i < j <t < n— 1 are distinct, we have a system
of equations

Ne,'—en-1,6_;+en 15 + Neve, . €j—6n- i = fjj +4i=0
Ns,-—e,l,l,sﬁen,l{tt + Nsi+en,1,6,—sn,|£ii = ftt + fii =0
ij_fn—laft"'fn—lf” + N5j+5)lflaft_fnfl€jj = by + fjj =0

with unique solution ¢; = ¢;; = €, = 0. This gives {; = 0 for all i and finally yields & =
Lie((I)D_l )exp(ad(axam1 ) .

Case 2. LT(¢) = (I)n‘D_2 el Then the reduced echelon form basis of € is

i—1

= Xg+eg T Z QjjpXere, s 1 ST<j<n-—1,
n-2
Vi = Xe-e, T Z blpx€p+fn + Z CigXes+en1> I1<i<n-1,
p=1
i-1 n-2
Zi = Xg-e, t Z Z dlvtxev —-& +ng,l - T Zf,rxwen + Zg”xfr"'fn 1’1 <i<n-1.
v=1 t=v+1

If i, j, p are distinct, then the coefficient of x,, ., In [yi, ¥;] 18 Ne,1¢,.¢-¢,bip» it follows that b;, = 0
forall p # i. If i # j, the coefficient of X, in [y;,y;] 18 Ne—e,;+6,0j + Nevenej—e,Dii- Thus if

i < j<t<n-1are distinct, we have a system of equations

NEi*E,l,Ej‘FEnbjj + Ne,-+5,1,ej76nbii = bjj +b; =0
NE,‘—E,l,E,-FEnbtl + NEi+En,€;—Enbii = btt + bii =0
NEj—e,,,e,+e,,btt + NEj-%—E,,,e,—enbjj = bn + bjj = O

with b; = bj; = b, = 0. This implies b;; = 0 for all i. Then the calculation for the other coefficients
is similar to Case 1. We conclude that there exists some a such that & = Lie(LT(€))*P@@¥)) o
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4. Summarizing for unipotent case

Summarizing the discussions for G in section 3, we are to give the main result except for some
small ranks for each type. Before doing this, we recall the definition of an ideal of ®*. We say
R C ®@* is an ideal if @ + 8 € R whenever @ € @, € R and a + 8 € ®7; see [9, Definition 2.10].
A prototypical example for such an ideal arises from @™, where «; is a simple root. In the sequel,
the move to ideals helps to establish that both G.Lie(R) and G.E(ryy.x, Lie(H)) are closed.

Lemma 4.1. If ; is a simple root, then (Dlr.ad \{a;}is an ideal.

Proof. Suppose that @ € ®*,5 € ®\ {a;} and @ + 8 € ®*. Since O™ is an ideal, it follows that
a+B € ™. As q; is a simple root, then @ + 8 # a;, which gives @ + 8 € @\ {a;}, s0 O™\ {; }
1s an ideal. O

Theorem 4.2. Suppose that G is of type C,(n > 3) or D,(n > 6). Then
E(rsmax’ u)max g G'Lie(R)$

where R is the ideal listed in the third column of the following Table 3.

Table 3. Ideals for Theorem 4.2.

Type Rank Ideal R
C. n>3 op\ {a, )
D, n>6 O™\ { -y }

Proof. Theorems 3.3 and 3.5 ensure that

E(rsmax, IJ»)max c U ULIC(I)
IeMax (rgmax, ")

where [ is the set of commuting roots showing in Table 4.

Table 4. sets for Theorem 4.2.

Type Rank Set 1
Cn n>3 (Dl(q,:—l,n
Dn n= 6 (DnD—l,n’ (DE—Z,n—l

Let w € Ng(T) be arepresentative of an element w in Weyl group % and I be a set of commuting
roots. It is clear that w.Lie(/) = Lie(w.I). We are to show that each I of Max(r¢nax, ®*) can be
# -conjugated to an ideal R. For type C, the simple reflection s, acts by negating €, and fixing the
remaining ¢; therefore any representative §, € Ng(T) conjugates Lie(®C | ) to Lie(d),rlad \{a, ).

n—1,n
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For type D, the Weyl group is a semidirect product of (Z/2Z)"! and S, and its action on roots
is induced from the action on the set { €, &, ..., €, } where we may take S, to permute the indices
of the ¢ and the j” generator of (Z/2Z)""! to send €j t0 —€j, €j,1 t0 —€j,1, and fix all other €. So
by conjugation we may assume our elementary subalgebras are of the form Lie(CI)fjf‘1 \{a,-1 D).
Finally we use Lemma 4.1 to prove that (fod \{a,}and (I)ifl \ {a,_1 } are ideals and are done. O

Corollary 4.3. Let G be a standard simple algebraic k-group with root system C,(n > 3) or
D,(n > 6). Then

E(Fsmax» 8) = G.Lie(R) U U G .E(rgmax, Lie(H))

H an ideal

is the union of irreducible closed subsets, where ideals R, H are listed in the Table 5.

Table 5. Ideals for Corollary 4.3.

Type Rank Ideal R Ideal H
C, n>3 O\ {a, } @rad
D, n>6 DR\ { i ) e, o

Proof. Theorem 4.2 gives the set E(rgmax, Wmax- We need to consider the elements of E(rgpax, 1t) \
E(Fsmax»> Wmax- In accordance with [9, Corollary 3.9] and [8, Lemma 2.2], we arrive at the equality.
In viewing of the proof of Corollary 3.7 of [6], the right hand is a union of irreducible closed
subsets. O

Theorem 4.4. Let G be a standard simple algebraic k-group with root system C,(n > 3) or D,(n >
6). Then the irreducible components of E(r¢max, 8) for each type can be characterized; see Table 6.

Table 6. Irreducible components for Theorem 4.4.

Type Rank Irreducible components
C, n>3 G .E(Fmax, Lie(@™Y))
D, nx6 G E(Fymax, Lie(®™)), G E(Fymax, Lie(D}))

Proof. By Corollary 4.3, it suffices to check the maximality of each irreducible closed subvariety.
For type C,, it is clear that G.E(rgmay, Lie(®™)) is the unique irreducible component. For type
D, it is clear that G.Lie(CI)ff‘_“'1 \ {@,-1}) 1s not maximal, so it suffices to check the maximality of
G E(Fymax, Lie(R)) for R = @™ or R = ®*. We may assume

G E(ramas: Lie(®;))) € G.E(rama. Lie(@;)).

Then we have Lie(®™, \ { @, }) = g.Lie(®\ {y}) for some g € G and y € ®**. By Lemma 3.8
of [6], we have (Ifo‘_d1 \ {a,-; } and @;ad \ { vy} are # -conjugate. On the other hand, one can easily
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check that @\ {y } and @ \ { , } are # -conjugate, so there is some w € # such that w.@™, \
{1} = @™\ {a,}. Notice that

O \{a, 1 }={e+ell<i<j<n-1}U{e-¢€ll<i<n-1},

O\ {a,}={e+e€|1<i<j<n-1}U{e+e&|l<i<n-—1}.
Let
A={g+e |1 <i<n-1}.

We now consider w™'. A in (I)ffﬂ \ { @, }. By the order of set A, one can verify that

wlA=B:={eg+e_|1<i<n-1)}
or

wlA=C:={e—¢|1<i<n-1}.
If w!'.A = B, then by observing the action of w on @™ \ {a,_; }, we have w.C = {g — 6,1 | 1 <
i<n-1}. Since{e—¢€,1|1<i<n-1}¢d™\ {q,},itis impossible. If w™'.A = €, then we
find that w.B = {¢ —€,-1 | | <i <n—1}. This is also impossible by the same reason. Hence, the

closed subset G.E(rymax, Lie(®™))) is maximal. The maximality of G.E(rymax, Lie(®*)) is verified
in a similar way and is omitted. O

Remark. In [9] the authors show that E(r.x, g) is a finite disjoint union of partial flag varieties,
which differs from the above result.

5. Conclusions

In this paper we characterize the irreducible components of the variety E(rk,(g) — 1, g), where
g := Lie(G) is the Lie algebra of a connected standard simple algebraic group G of type C or D.
The results show that E(rk,(g) — 1, g) is not a finite disjoint union of partial flag varieties, which
differs from E(rk,(g), g).
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