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Feng Feng1,∗, Zhe Wan1,2, José Carlos R. Alcantud3 and Harish Garg4

1 Department of Applied Mathematics, School of Science, Xi’an University of Posts and
Telecommunications, Xi’an 710121, China

2 School of Economics and Management, Xi’an University of Posts and Telecommunications, Xi’an
710121, China

3 BORDA Research Unit and Multidisciplinary Institute of Enterprise (IME), University of
Salamanca, E37007 Salamanca, Spain

4 School of Mathematics, Thapar Institute of Engineering and Technology, Deemed University,
Patiala 147004, Punjab, India

* Correspondence: Email: fengnix@hotmail.com; Tel: +8615029099528.

Abstract: The theory of three-way decision is built on the philosophy of thinking in threes. The
essence of three-way decision is trisecting the whole and taking different strategies for different parts
accordingly. The theory of three-way decision has been successfully implemented to diverse fields
since it provides an elegant and efficient solution for solving complicated problems. In this paper,
a useful representation for hesitant fuzzy sets is obtained by means of canonical soft sets. We also
define unit interval parameterized soft sets and their derived hesitant fuzzy sets. Mutual representations
and inner connections between hesitant fuzzy sets and soft sets are examined. With the help of soft
rough sets, a generalized rough model based on hesitant fuzzy sets is established. A novel three-way
decision method is presented for solving decision-making problems by means of hesitant fuzzy sets
and canonical soft sets. Finally, a numerical example regarding peer review of research articles is
given to illustrate the validity and efficacy of the proposed method.
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1. Introduction

Inspired by Pawlak’s rough sets [37] and probabilistic rough sets [9, 48], Yao [49–51] proposed the
theory of three-way decision (3WD) which provides reasonable semantic interpretation to the positive,
negative and boundary regions of rough sets. The core of 3WD is trisecting the whole and taking
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different strategies for different parts. We can simplify complex problems by dividing the whole into
three parts. 3WD provide us with a framework to solve the generalized uncertainty problem. It might
be considered as part of a more complete decision-making strategy which in situations of e.g., large
computational burden, should only refine the analysis of the alternatives belonging to the positive (and
possibly the boundary) regions. The philosophy of thinking in threes includes not only splitting the
set of alternatives in three parts, it can also evoke thinking in three views, three components, three
categories, three levels or three dimensions [53]. Different interpretations of ternary options make
3WD become a useful and universal theoretical method to solve practical problems. For instance, in a
social choice context, Alcantud and Laruelle [2] characterized a pragmatical model of voting with three
actions. Recently, Laruelle [25] has argued that citizens in democratic countries tend to abstain because
they cannot voice their dissatisfaction in their ballots. She reports the results of a field experiment
that took place during the 2017 French presidential elections: Real voters were entirely satisfied with
ternary voting [2], and understood well its aim and purpose. Many scholars have studied and expanded
the three decision theories and applied them to many disciplines in the past decade. Other researchers
have represented several classifications of methods based on the 3WD theory and favorably practiced
in many fields. For example, Yu et al. [55] offered an effective automatic process by applying the
decision-theoretic rough set model to clustering. Jia et al. [24] developed a mathematical model for
optimal representation of the decision-theoretic rough set. Liang and Liu [28] proposed a risk decision
model based on hesitant fuzzy rough sets. Liang et al. [29] presented a 3WD model with linguistic
features for decision-making problems. Yao [52] established the TAO (“trisecting-acting-outcome”)
framework as a fundamental model for 3WD. Hu et al. [23] presented two kinds of 3WD approaches
and examined their properties. Li et al. [26] introduced 3WD models based on subset-evaluation which
generalize the original models. Liu et al. [30] proposed a new 3WD model with intuitionistic fuzzy
numbers. Li et al. [27] generalized Pawlak’s classical model and introduced rough set models on two
universes. Yang and Yao [47] presented two semantics for interpreting soft sets and constructed two
soft set-based 3WD models. Yao [54] investigated set-theoretic models of 3WD and illustrated the
essential role of the TAO framework in 3WD.

In addition to rough set theory which we have mentioned above, there are other models of
uncertain knowledge whose advantages are used in our study. They incorporate features related to
indiscernibility or granularity (rough set theory), partial membership (fuzzy set theory and its
extension under hesitancy), and parameterized descriptions (soft set theory).

In 1965, Zadeh [56] acquainted fuzzy set (FS) theory to manage the impreciseness in the data.
After its presence, many scholars have spread them to L-fuzzy sets [21], IVFSs (“interval-valued
fuzzy sets”) [42] and IFSs (“Intuitionistic fuzzy sets”) [5]. In practical application, when determining
the membership degree of an element to a fuzzy set, people often hesitate between two or more
possible values and find it difficult to choose. In order to solve this problem, Torra [41] proposed the
concept of a hesitant fuzzy set (HFS). Compared with classical sets and FSs, HFSs contain all the
possible membership values corresponding to each alternative, which if properly handled, can reduce
the information loss in the decision-making process. Based on 3WD theory, Wang et al. [43]
developed a novel approach to MADM (“multiple attribute decision making”) under a hesitant fuzzy
setting.

To build a more comprehensive theoretical structure for representing and administering uncertainty,
the concept of a soft set (SS) was born from a different narrative that concerns parameterization [36].
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As a new type of nonstandard sets, the SS involves not only the domain of objects, but also a parameter
space related to the object domain. In recent years, the research on soft set theory has developed
quickly. Maji et al. [34] applied the theory of SSs to solve a decision-making problem using rough
mathematics. Maji et al. [33] proposed several operations of SSs. They also considered the fuzzy
extension of SSs in [31].

Later on, Maji et al. [32] joined SSs with the features of IFSs and hence stated the notion of an IFSS
(“intuitionistic fuzzy soft set”). Peng et al. [38] combined SSs with PFSs (“Pythagorean fuzzy sets”)
to put forward the concept of Pythagorean fuzzy soft sets. Athira et al. [6] proposed some new entropy
measures for Pythagorean fuzzy soft sets. By virtue of Archimedean t-norm and t-conorm, Garg and
Arora [20] generalized the MSM (“Maclaurin symmetric mean”) aggregation operators to IFSSs. Chen
et al. [8] developed a parameterization reduction method for SSs. Ali et al. [4] revisited and improved
some basic operations such as “intersection”, “union”, “difference”, between the pairs of SSs. Garg
and Arora [19] developed a correlation coefficient-based TOPSIS method to address decision-making
problems with intuitionistic fuzzy soft information. A concept of generalized fuzzy soft sets was stated
and investigated by Majumdar and Samanta [35]. Feng et al. [17] extended the preference ranking
organization method for enrichment evaluation with IFSSs. Agarwal et al. [1] defined the notion of
GIFSSs (“generalized intuitionistic fuzzy soft sets”) and considered practical applications of GIFSSs.
Feng et al. [13] improved the GIFSS and simplified this notion as a combination of an IFSS over a
universal set and an IFS in a parameter set. Garg and Arora [18] put forth group-based GIFSSs and
discussed their applications to group decision-making problems.

Returning to the motivational topic of rough set (RS) theory, we recall that it was introduced by
Pawlak in 1982, who attempted to analyze the granularity-based uncertainty during the decision
process [37]. Driven by the features of FSs and RSs, Dubois and Prade [10] defined the notion of
rough fuzzy sets and fuzzy rough sets. Raszikowaka and Kerre [39] further extended the concepts
presented by Dubois and Prade to (I,T )-fuzzy rough sets. Using the intuitionistic fuzzy overlap
function and its residual implication, Wen et al. [44] presented a new type of intuitionistic fuzzy rough
sets. Given the important role of FSs and RSs, Feng et al. [14] combined SSs with them. Further,
Feng et al. [16] put forth the concept of soft rough sets and demonstrated that Pawlak’s RS model is a
special case of the presented concept when the SS in a soft approximation space is a partition SS. By
combining fuzzy soft sets with fuzzy rough sets, Sun and Ma [40] put forward soft fuzzy rough sets
and considered their application to decision making problems. Xie and Gong [46] presented a notion
called hesitant soft fuzzy rough set based on SSs and HFSs. They ascertained the relationship
between hesitant fuzzy rough sets and hesitant soft fuzzy rough sets as well.

The main goal of our paper is to take advantage of a novel construction of SSs derived from HFSs, in
order to justify a 3WD strategy that acts on hesitant fuzzy data. In passing, we study some theoretical
facts that expand our knowledge about the new SS produced from an HFS, which we term as the
canonical soft set. The rest of this article is organized as follows. Section 2 gives a review of the
rudiments on FSs, HFSs, SSs, RSs and 3WD. In Section 3, the notions of canonical soft sets, unit
interval parameterized SSs, and derived HFSs are introduced. The relationships between canonical soft
sets and derived HFSs are discussed. In Section 4, a novel 3WD algorithm is proposed to address group
decision-making problems by using canonical soft sets of HFSs. In addition, an example regarding
paper review is given to illustrate the validity of the proposed algorithm in Section 5. A summary of
this study is given in Section 6.
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2. Preliminaries

Some basic concepts related to FSs, SSs, RSs and 3WD are briefly reviewed in this section. Through
the paper, f denotes the universal set and I = [0, 1]. For any nonempty set K, we use the following
notations:

• P(K) represents the “power set” of K;
• P∗(K) represents the family of all nonempty subsets of K;
• F∗(K) represents the family of all nonempty finite subsets of K;
• Fn(K) represents the family of all finite subsets E of K whose cardinality satisfies |E| = n (n ≥ 1).

2.1. Fuzzy sets and HFSs

Zadeh [56] suggested that a certain type of uncertainty of information can be quantified by partial
membership values. Consequently, a fuzzy set M in f is defined by a mapping M : f → I which
represents the membership function ofM.

This definition extends the usual notion of a characteristic function, which in set theory, is
equivalent to a standard subset. Now when u ∈ f, the valueM(u) is the degree to which u belongs to
M. Let FS(f) denote the class of all FSs on f. A number of relevant operations of fuzzy sets can be
introduced. With the “min-max” system, Zadeh defined the “intersection”, “union”, and
“complement” operations of FSs as follows:

(M∩N)(τ) =M(τ) ∧ N(τ),
(M∪N)(τ) =M(τ) ∨ N(τ),

Mc(τ) = 1 −M(τ),

whereM,N ∈ FS(f) and τ ∈ f. WhenM(τ) ≤ N(τ) for all τ ∈ f, thenM ⊆ N . It is obvious that
M = N if and only ifM ⊆ N and N ⊆ M.

When an object has various viable membership values, it is often tough to ascertain its precise
membership grade. For this, a concept of HFSs (“hesitant fuzzy sets”) was proposed by Torra [41]. In
an HFS, the membership grades of objects are represented by sets containing several (maybe infinitely
many) values in the unit interval I. In the following, we recall some rudiments regarding the theory of
HFSs.

Definition 2.1. [41] An HFS on f is a mapping h : f→ P(I).

Conventionally, an HFS h on f defined as a set of ordered pairs, namely h = {〈τ, h(τ)〉 : τ ∈ f}.
According to [45], an HFE (“hesitant fuzzy element”) means a subset of I. That is, the power setP(I) of
I consists of all HFEs. Given an HFS h and τ ∈ f, the HFE h(τ) contains all the possible membership
grades of τ to the HFS h. Henceforth,HFS(f) denotes the class of all HFSs on f.

Definition 2.2. An HFS h : f→ P∗(I) is said to be a regular HFS (RHFS) on f.

In practical applications, it is justifiable to assume that the employed HFSs are regular. This means
that at least one value in I must be assigned for each element of f as its possible membership grade.
Henceforth, the class of all RHFSs on f is denoted by RHFS(f).
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Definition 2.3. [7] A typical hesitant fuzzy set (THFS) on f is a mapping h : f→ F∗(I).

A nonempty finite subset of I is called a typical hesitant fuzzy element (THFE). It is clear that the
family of all THFEs coincides with F∗(I). Conventionally, the possible membership grades in a THFE
E are listed in ascending order. In other words, E is written in the form E = {τ1, τ2, · · · , τn} ⊆ I such
that τ1 < τ2 < · · · < τn and 1 ≤ |E| = n<∞. Particularly, the THFE E = {1} is said to be full and
E = {0} is referred to as the empty HFE. Accordingly, {〈τ, {1}〉 : τ ∈ f} is called the ideal (or full) HFS
on f, and {〈τ, {0}〉 : τ ∈ f} is called the anti-ideal (or empty) HFS on f In the following, we denote
the class of all THFSs on f by THFS(f).

Definition 2.4. [3] A THFS h on f is n-typical if there exists a positive integer n such that |h(τ)| = n
for all τ ∈ f.

To put it in another way, an n-typical hesitant fuzzy set is a mapping h : f→ Fn(I) for some n ≥ 1.
For an HFS, there are multiple values in HFEs since there is more than one criterion for determining
membership grades. This can be explained by a common application scenario. When multiple experts
determine the membership grades of an object, there might be different values for the same object
because different experts have distinguishing opinions.

2.2. Soft sets

In order to establish a theory framework to describe and deal with uncertainty, Molodtsov [36]
proposed the important concept of SSs from the perspective of parameterization. Let Ef be a set
containing all the relevant parameters of objects in f. Conventionally, the set Ef is called the
parameter space. For convenience, we can simply denote Ef by E. The pair (f, E) is named as a soft
universe. In practical applications, the parameter space E includes all attributes and characteristics of
the object in f. The mathematical definition of SSs is as follows:

Definition 2.5. [36] Assume that (f, E) is a soft universe. An ordered pair T = (G, B) is called a
soft set over f. The subset B ⊆ E is the parameter set of T and the approximate function of T is the
mapping G : B→ P(f).

Definition 2.6. [14] Let T = (G, B) be a soft set over f. Then T is said to be serial if G(%) , ∅ for
all % ∈ B.

Definition 2.7. [14] Let T = (G, B) be a soft set over f. Then T is said to be full if
⋃

%∈B G(%) = f.

A covering C = {Cα | α ∈ Λ} of f is a family of non-empty subsets of f such that for every τ ∈ f,
there exists an α ∈ Λ with τ ∈ Cα. A covering C of f is said to be a partition of f if

Cα , Cβ ⇒ Cα ∩Cβ = ∅

for all α, β ∈ Λ.

Definition 2.8. [14] A soft set T = (G, B) over f is called a covering soft set if it is full and serial.

Definition 2.9. [14] A soft set T = (G, B) over f is called a partition soft set if {G(a) | a ∈ B} forms
a partition of f.
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Definition 2.10. [15] A soft set T = (G, B) over f is said to be injective if

a , b⇒ G(a) , G(b)

for all a, b ∈ B.

Definition 2.11. A soft set T = (G, B) over f is said to be disjoint if

a , b⇒ G(a) ∩G(b) = ∅

for all a, b ∈ B.

Proposition 2.12. Suppose that T = (G, B) is a soft set over f. Then the following are equivalent:

(1) T is an injective partition soft set;

(2) T is a disjoint covering soft set.

Proof. Suppose that T = (G, B) is an injective partition soft set over f. By Definition 2.9, {G(a) | a ∈
B} forms a partition of f. Thus T is a covering soft set such that

G(a) , G(b)⇒ G(a) ∩G(b) = ∅

for all a, b ∈ B. Note also that T is an injective soft set. Thus for all a, b ∈ B, we have

a , b⇒ G(a) , G(b).

It follows that a , b implies G(a) ∩G(b) = ∅ for all a, b ∈ B. This shows that T is a disjoint covering
soft set over f.

Conversely, assume that T is a disjoint covering soft set over f. According to Definition 2.8, T is
both full and serial. Thus we have

⋃
b∈B G(b) = f and G(b) , ∅ for all b ∈ B. Since T is disjoint,

we can deduce that T is an injective soft set such that G(a) , G(b) implies G(a) ∩ G(b) = ∅ for all
a, b ∈ B. Thus {G(a) | a ∈ B} forms a partition of f. This shows that T is an injective partition soft set
over f. �

2.3. Rough sets and soft rough sets

Let Γ represent an equivalence relation on f. The pair (f, Γ) is said to be a Pawlak approximation
space [37]. For any τ1, τ2 ∈ f, if (τ1, τ2) ∈ Γ we said that τ1 and τ2 are Γ-indiscernible. The
equivalence class of τ1 ∈ f is denoted by [τ1]Γ. The quotient set of f with respect to Γ is denoted by
f/Γ.

Assume that Γ is an equivalence relation on f and Υ is a subset of f. Then Υ can be characterized
by means of the following two approximations:

Γ∗Υ = {τ ∈ f : [τ]Γ ⊆ Υ},

Γ∗Υ = {τ ∈ f : [τ]Γ ∩ Υ , ∅}.

The sets Γ∗Υ and Γ∗Υ are called the lower and upper approximations of Υ with respect to the
approximation space (f, Γ). We say that the set Υ is definable if Γ∗Υ = Γ∗Υ; otherwise, Υ is said to
be rough or inexact.
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Furthermore, we can define the positive region, boundary region and negative region of Υ

respectively as follows:

PosΓΥ = Γ∗Υ,

BndΓΥ = Γ∗Υ − Γ∗Υ,

NegΓΥ = f − Γ∗Υ.

Assume that C = Γ∗Υ and D = Γ∗Υ where Υ ⊆ f. Sometimes, a rough set can also be represented
by the pair (C,D) ∈ P(f) ×P(f). If Υ is defined by a predicate H and τ ∈ f, we have the following:

• τ ∈ Γ∗Υ means that τ certainly has property H;
• τ ∈ Γ∗Υ means that τ possibly has property H;
• τ ∈ NegΓΥ means that τ definitely does not have property H.

Feng et al. [16] considered the generalization of Pawlak’s rough sets based on soft set theory, and
put forward the concept of soft rough sets. Different from rough sets based on Pawlak approximation
space, soft rough sets are based on the granular structure given by a soft approximation space (SAS).
An SAS is an ordered pair (f,T ), where T is a soft set over f. More specifically, the soft lower and
upper approximations are defined in the following way:

Definition 2.13. [16] Assume that T = (G, B) is a soft set over f, H ⊆ f and P = (f,T ) is a
soft approximation space. The soft lower approximation apr

P
(H) and the soft upper approximation

aprP(H) of H with respect to the SAS P = (f,T ) are defined as:

apr
P

(H) = {τ ∈ f : ∃% ∈ B (τ ∈ G(%) ⊆ H)},

aprP(H) = {τ ∈ f : ∃% ∈ B (τ ∈ G(%),G(%) ∩ H , ∅)}.

When apr
P

(H) = aprP(H), we say that the set H is soft P-definable; otherwise, H is said to be a soft
P-rough set.

Below the concepts given in Definition 2.13 are reformulated:

Proposition 2.14. [16] Suppose that T = (G, B) is a soft set over f and P = (f,T ) is an SAS. Then

apr
P

(H) =
⋃
%∈B

{G(%) : G(%) ⊆ H},

aprP(H) =
⋃
%∈B

{G(%) : G(%) ∩ H , ∅},

where H is a subset of f.

Continuing with the framework of Definition 2.13, we recall some useful properties:

Theorem 2.15. [14] Assume that T = (G, B) is a soft set over f and P = (f,T ) is an SAS. For
H, J ⊆ f, we have

(1) apr
P

(∅) = aprP(∅) = ∅;
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(2) apr
P

(f) = aprP(f) =
⋃

%∈B G(%);

(3) H ⊆ J ⇒ apr
P

(H) ⊆ apr
P

(J);

(4) H ⊆ J ⇒ aprP(H) ⊆ aprP(J);

(5) apr
P

(H ∩ J) ⊆ apr
P

(H) ∩ apr
P

(J);

(6) apr
P

(H ∪ J) ⊇ apr
P

(H) ∪ apr
P

(J);

(7) aprP(H ∪ J) = aprP(H) ∪ aprP(J);

(8) aprP(H ∩ J) ⊆ aprP(H) ∩ aprP(J).

Theorem 2.16. [16] Suppose that T is a soft set overf and P = (f,T ) is an SAS. Then the following
are equivalent:

(1) T is a full soft set;

(2) apr
P

(f) = f;

(3) aprP(f) = f;

(4) Υ ⊆ aprP(Υ) for all Υ ⊆ f;

(5) aprP({τ}) , ∅ for all τ ∈ f.

2.4. Three-way decision

3WD is an uncertain framework based on theory of probability rough sets and decision rough sets.
The basic philosophy of 3WD is thinking in threes which means to understand and process a whole
through three different and related parts. Based on the trisecting-acting-outcome framework, Yao [52]
has proposed a generalized 3WD model. Hereinafter, the framework trisecting-acting-outcome is
simply named TAO. The TAO model of 3WD concentrates on the following three works:

(1) To divide the universe into three parts;
(2) To take actions on the three parts separately;
(3) To optimize the results and obtain a desirable outcome.
It is clear that the TAO model of 3WD is an interpretative case of thinking in threes. The

fundamental notion of 3WD is trisecting the whole. Three parts of trisection can be seen as three
different aspects, perspectives or components of the whole and their integration represents and covers
the whole. Hence the three parts are both independent and interrelated.

Yao [51] introduced a general model for building a trisection with a single evaluation function.
In this model, a linearly ordered set (L,≤) is used as the codomain of an evaluation function, which
specifies the scale of the evaluation. Given two evaluation values n,m ∈ L, n < m means n ≤ m and
n , m. Moreover, we also write n < m as m > n.

Definition 2.17. [51] Let E : f −→ (L,≤) be an evaluation function on f. Given two thresholds
λ, µ ∈ L with λ < µ, a trisection of f can be derived as follows:

Pos[µ,.)(E) = {τ ∈ f : µ ≤ E(τ)},
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Bnd(λ,µ)(E) = {τ ∈ f : λ < E(τ) < µ},
Neg(.,λ](E) = {τ ∈ f : E(τ) ≤ λ}.

Intuitively, we refer to elements in the disjoint sets Pos[µ,.)(E), Bnd(λ,µ)(E) and Neg(.,λ](E) as positive,
neutral and negative objects, respectively. The above model plays a fundamental role in constructing
set-theoretic models of 3WDs [51]. It should be noted that how to select easy-to-understand and
meaningful scales is an issue of great importance. In many practical applications, it is sufficient to
consider subsets of real numbers as evaluation scales. More specifically, as a special case of Definition
2.17, we have the following notion.

Definition 2.18. [54] Suppose that E : f −→ [b, a] is an evaluation on f where b < a are two real
numbers. Given two thresholds γ, δ with b ≤ γ < δ ≤ a, a trisection of f can be derived as follows:

H[δ,a](E) = {τ ∈ f : δ ≤ E(τ) ≤ a},

M(γ,δ)(E) = {τ ∈ f : γ < E(τ) < δ},
L[b,γ](E) = {τ ∈ f : b ≤ E(τ) ≤ γ}.

Elements in the disjoint sets H[δ,a](E), M(γ,δ)(E) and L[b,γ](E) are called objects with high, medium
and low values, respectively.

To facilitate the reading of this article, the abbreviations of some frequently used terminologies are
listed in Table 1.

Table 1. Abbreviations of terminologies.

Abbreviations Full terminologies

3WD three-way decision
CSS canonical soft set
DHFS derived hesitant fuzzy set
FS fuzzy set
GIFSS generalized intuitionistic fuzzy soft set
HFE hesitant fuzzy element
HFS hesitant fuzzy set
IFS intuitionistic fuzzy set
IFSS intuitionistic fuzzy soft set
IVFS interval-valued fuzzy set
IVIFS interval-valued intuitionistic fuzzy set
MADM multi-attribute decision making
RHFS regular hesitant fuzzy set
RS rough set
SAS soft approximation space
SS soft set
TAO trisecting-acting-outcome
THFE typical hesitant fuzzy element
THFS typical hesitant fuzzy set
UIPSS unit interval parameterized soft set
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3. Mutual representations between HFSs and SSs

In this section, we define some useful concepts including canonical soft sets, unit interval
parameterized SSs and derived HFSs. The relationships among these notions are examined in detail.

Definition 3.1. Suppose that h : f→ P(I) is an HFS. Then

Vh =
⋃
τ∈f

h(τ)

is called the value space of the HFS h.

In other words, the value space of an HFS is a set containing all possible membership values of
objects in f.

Definition 3.2. Let h : f→ P(I) be an HFS with its value space Vh. Then

h
−1(κ) = {τ ∈ f : κ ∈ h(τ)}

is called the value coset of κ ∈ Vh.

Definition 3.3. A soft set T = (G, B) over f is called a unit interval parameterized soft set (UIPSS)
if B ⊆ I.

Definition 3.4. [12] Let T = (G, B) be a soft set over f and ν ∈ f. Then

CoT (ν) = {% ∈ B : ν ∈ G(%)}

is said to be the parameter coset of the alternative ν in G.

Note that CoT (ν) contains all the parameters of the alternative ν, according to the information carried
by T .

Definition 3.5. Let T = (G, B) be a UIPSS over f and ν ∈ f. Then we can define an HFS hT : f →
P(I) on f by

hT (ν) = CoT (ν) = {% ∈ B : ν ∈ G(%)},

which is said to be the derived hesitant fuzzy set (DHFS) of the UIPSS T .

Definition 3.6. Let h : f → P(I) be an HFS. A soft set Ch = (Ĉh,Vh) over f is called the canonical
soft set (CSS) of the HFS h, where Vh =

⋃
τ∈f h(τ) and Ĉh(κ) = h−1(κ) for all κ ∈ Vh.

Example 3.7. Let f = {τ1, τ2, τ3, τ4} and h1 be an HFS over f. Suppose that the HFEs of h1 are
given by h1(τ1) = {0.2, 0.4, 0.5}, h1(τ2) = {0.4, 0.5}, h1(τ3) = {0.4, 0.7, 0.8}, h1(τ4) = {0.5, 0.8}. By
Definition 3.1, the value space of h1 is Vh1 = {0.2, 0.4, 0.5, 0.7, 0.8} = V1. According to Definition 3.2,
the value cosets of h1 can be computed. The obtained results are h−1

1 (0.2) = {τ1}, h−1
1 (0.4) = {τ1, τ2, τ3},

h−1
1 (0.5) = {τ1, τ2, τ4}, h−1

1 (0.7) = {τ3} and h−1
1 (0.8) = {τ3, τ4}. The CSS Ch1 = (h−1

1 ,V1) of the HFS h1 is
shown in Table 2.
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Table 2. The CSS Ch1 = (h−1
1 ,V1) of the HFS h1.

f 0.2 0.4 0.5 0.7 0.8

τ1 1 1 1 0 0
τ2 0 1 1 0 0
τ3 0 1 0 1 1
τ4 0 0 1 0 1

The following result shows an explicit mutual connection between UIPSSs and HFSs:

Theorem 3.8. Assume that T = (G, B) is a serial UIPSS over f and hT : f → P(I) is the DHFS of
T . Then we have ChT = T , where ChT is the CSS of hT .

Proof. Let T = (G, B) be a serial UIPSS over f and hT : f → P(I) be the DHFS of T . By
Definition 3.5, the DHFS hT of T is given by hT (ν) = CoT (ν) = {% ∈ B : ν ∈ G(%)} with ν ∈ f. Then
according to Definition 3.6, the CSS of hT is a UIPSS ChT = (ĈhT ,VhT ) over f and ĈhT (κ) = h−1

T
(κ) for

all κ ∈ VhT .
Firstly, we prove VhT = B. By Definition 3.1, we have VhT =

⋃
ν∈f hT (ν). For any κ ∈ VhT , there

exist a ν0 ∈ f such that κ ∈ hT (ν0). It is clear that κ ∈ CoT (ν0) such that κ ∈ B. Hence we have VhT ⊆ B.
Conversely, assume that T = (G, B) is a serial UIPSS. By Definition 2.6, we have G(%) , ∅ for any
% ∈ B. This means that for any % ∈ B there exist a ν0 ∈ f such that ν0 ∈ G(%). Then, by definition, we
have % ∈ CoT (ν0) and then % ∈ hT (ν0). It is clear that % ∈ VhT for any % ∈ B. Thus we have B ⊆ VhT .
We have proved VhT = B.

Then we prove ĈhT (κ) = G(κ) for any κ ∈ VhT = B. Assume that ν0 ∈ G(κ) for any κ ∈ B. According
to Definition 3.5, we have κ ∈ hT (ν0). Then, by Definition 3.2, we have ν0 ∈ h

−1
T

(κ). So it is easy to
see ν0 ∈ ĈhT (κ). Hence we have proved that G(κ) ⊆ ĈhT (κ) for any κ ∈ B. Conversely, Assume that
ν0 ∈ ĈhT (κ). From the definition of CSSs, we have ν0 ∈ h

−1
T

(κ). Then by definition of value coset,
we have κ ∈ hT (ν0) and then κ ∈ CoT (ν0). So it is easy to see ν0 ∈ G(κ). Thus we have proved that
ĈhT (κ) ⊆ G(κ) for any κ ∈ B. We have proved that ĈhT (κ) = G(κ) established for any κ ∈ VhT = B.
Hence, we conclude that ChT = T , which completes the proof. �

It should be noted that ChT = T might not hold when the UIPSS T is not serial. To demonstrate
this, let us consider the following example.

Example 3.9. Let f = {τ1, τ2, τ3, τ4} and T = (G, B) be an UIPSS over f. The parameter set of T is
B = {0.1, 0.5, 0.7, 0.9, 1} and the approximate function of T is given by G(0.1) = {τ1, τ4},
G(0.5) = {τ1, τ2, τ3}, G(0.7) = {τ1, τ2, τ4}, G(0.9) = {τ3, τ4} and G(1) = ∅. The tabular representation
of T is shown in Table 3. By Definition 3.5, the DHFS hT of T is an HFS with its HFEs given by:
hT (τ1) = {0.1, 0.5, 0.7}, hT (τ2) = {0.5, 0.7}, hT (τ3) = {0.5, 0.9} and hT (τ4) = {0.1, 0.7, 0.9}. According
to Definition 3.6, we can obtain the CSS ChT = (ĈhT ,VhT ) of the DHFS hT , which is shown in Table 4.
As we know, the parameter set VhT of ChT is the value space of the DHFS hT . It is clear that

VhT = {0.1, 0.5, 0.7, 0.9} , {0.1, 0.5, 0.7, 0.9, 1} = B.

This shows that ChT , T if T is not a serial UIPSS.
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Table 3. The UIPSS T = (G, B) over f.

f 0.1 0.5 0.7 0.9 1

τ1 1 1 1 0 0
τ2 0 1 1 0 0
τ3 0 1 0 1 0
τ4 1 0 1 1 0

Table 4. The CSS ChT = (ĈhT ,VhT ) of the DHFS hT .

f 0.1 0.5 0.7 0.9

τ1 1 1 1 0
τ2 0 1 1 0
τ3 0 1 0 1
τ4 1 0 1 1

Theorem 3.10. Suppose that h is an HFS onf and Ch = (Ĉh,Vh) is the CSS of h. Then we have hCh = h,
where hCh is the DHFS of Ch.

Proof. Let h : f → P(I) be an HFS on f and Ch = (Ĉh,Vh) be the CSS of h. By Definition 3.6,
Ch is an UIPSS and Ĉh(a) = h−1(a) for all a ∈ Vh. Let hCh be the DHFS of Ch and be given by
hCh(ν) = CoCh(ν) = {a ∈ Vh : ν ∈ Ĉh(a)}.

Assume that a ∈ h(ν0) for any ν0 ∈ f. By Definition 3.2, it is clear that ν0 ∈ h
−1(a). Then we have

ν0 ∈ Ĉh(a). From the definition of DHFS, it is easy to see a ∈ hCh(ν0). Thus we have h(ν0) ⊆ hCh(ν0) for
any ν0 ∈ f. Conversely, assume that a ∈ hCh(ν0). By definition of DHFS, we have ν0 ∈ Ĉh(a) which
also show that ν0 ∈ h

−1(a). From the definition of value cosets, it is easy to see that a ∈ h(ν0). Thus we
have hCh(ν0) ⊆ h(ν0) for any ν0 ∈ f. We have proved that hCh(ν0) = h(ν0) for any ν0 ∈ f. �

The following result presents some characterizations of RHFSs in terms of their CSSs.

Theorem 3.11. Assume that h is an HFS on f with its CSS Ch = (Ĉh,Vh). Then the following are
equivalent:

(1) h is an RHFS;

(2) Ch is a full soft set;

(3) Ch is a covering soft set.

Proof. Firstly, we show that (1) implies (2). Assume that h is an RHFS. For every u ∈ f, h(u) is
non-empty, whence there exists α ∈ h(u). That is, u ∈ Ĉh(α) for some α ∈ Vh. Thus f ⊆

⋃
α∈Vh Ĉh(α).

Clearly, we also have
⋃

α∈Vh Ĉh(α) ⊆ f. Thus
⋃

α∈Vh Ĉh(α) = f. Therefore, Ch = (Ĉh,Vh) is a full soft
set over f.
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Next, assume that Ch = (Ĉh,Vh) is a full soft set. To prove that Ch is a covering soft set, we only
need to show that Ĉh(α) , ∅ for all α ∈ Vh. In fact, let α ∈ Vh. Then we have α ∈ h(u) for some u ∈ f.
Hence, Ĉh(α) is non-empty since u ∈ Ĉh(α). This shows that (2) implies (3).

Lastly, we show that (3) implies (1). Assume that Ch = (Ĉh,Vh) is a covering soft set. By Definition
2.8, Ch is a full soft set over f. Thus we have

⋃
α∈Vh Ĉh(α) = f. Therefore, there exists α ∈ Vh with

u ∈ Ĉh(α) for all u ∈ f. It follows that h(u) is non-empty since α ∈ h(u). That is, h is an RHFS. �

At the end of this section, we give several interesting characterizations of fuzzy sets by virtue of
CSSs of HFSs.

Theorem 3.12. Let h be an HFS on f with its CSS Ch = (Ĉh,Vh). Then the following are equivalent:

(1) h is a fuzzy set;

(2) h(τ) is a singleton for all τ ∈ f;

(3) Ch is a disjoint full soft set;

(4) Ch is a disjoint covering soft set;

(5) Ch is an injective partition soft set.

Proof. Note first that h is a fuzzy set if and only if |h(τ)| = 1 for all τ ∈ f. Thus it is clear that (1)
and (2) are equivalent.

Next, assume that h(τ) is a singleton for all τ ∈ f. It is obvious that h is an RHFS since |h(τ)| = 1
for all τ ∈ f. According to Theorem 3.11, it follows that the CSS Ch = (Ĉh,Vh) of the HFS h is a full
soft set. We can also show that Ch is a disjoint soft set. In fact, assume that there exist κ1, κ2 ∈ Vh such
that κ1 , κ2 and h−1(κ1) ∩ h−1(κ2) , ∅. Take τ0 ∈ h

−1(κ1) ∩ h−1(κ2). Then we have {κ1, κ2} ⊆ h(τ0). Note
also that κ1 , κ2. It follows that |h(τ0)| ≥ 2, which leads to a contradiction. Therefore, Ch is a disjoint
full soft set. Conversely, suppose that Ch = (Ĉh,Vh) is a disjoint full soft set. From Definition 2.11, it
follows that κ1 , κ2 implies h−1(κ1) ∩ h−1(κ2) = ∅ for all κ1, κ2 ∈ Vh. This means that |h(τ)| ≤ 1 for all
τ ∈ f. Since Ch is also a full soft set, it follows from Theorem 3.11 that h is an RHFS. Hence, |h(τ)| ≥ 1
for all τ ∈ f. Therefore, h(τ) is a singleton for all τ ∈ f. This shows that (2) and (3) are equivalent.

According to Theorem 3.11, it can be seen that the CSS Ch is a full soft set if and only if it is a
covering soft set. This implies that (3) and (4) are equivalent.

In addition, it follows from Proposition 2.12 that (4) and (5) are equivalent. �

4. A novel 3WD model

The purpose of this section is to state a novel 3WD algorithm with potential to help us in
decision-making with hesitant fuzzy information. This strategy will benefit from the novel idea of
CSSs associated with HFSs.

4.1. Soft approximations based on HFSs

Suppose that h is an HFS and Ch = (Ĉh,Vh) is its CSS. Then P = (f,Ch) forms an SAS. According
to Definition 2.13, we state the soft lower and upper approximations as:

Υ
h

=
⋃
κ∈Vh

{Ĉh(κ) | Ĉh(κ) ⊆ Υ}, (4.1)
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Υh =
⋃
κ∈Vh

{Ĉh(κ) | Ĉh(κ) ∩ Υ , ∅}, (4.2)

where Υ is a subset of f.
Furthermore, the positive, boundary and the negative regions of Υ can be defined from h as follows:

Posh(Υ) = Υ
h
,

Bndh(Υ) = Υh − Υ
h
,

Negh(Υ) = f − Υh.

Example 4.1. Suppose that a transport company intends to deliver a batch of relief supplies to the
disaster area. There are four available transport modes f = {τ1, τ2, τ3, τ4}. The meaning of the objects
in f is given as below:

• τ1: highway transportation;
• τ2: air transportation;
• τ3: railway transportation;
• τ4: sea transportation.

The transportation company invites several experts to evaluate the four methods of transportation and
take into account factors such as time, cost and weather. Based on the evaluation results, an HFS
h2 is constructed. Assume that the h2 is given by h2(τ1) = {0.4, 0.8}, h2(τ2) = {0.6, 0.8, 1}, h2(τ3) =

{0.2, 0.4, 0.8}, h2(τ4) = {0, 0.2}. It is easy to see that

Vh2 = h2(τ1) ∪ h2(τ2) ∪ h2(τ3) ∪ h2(τ4) = {0, 0.2, 0.4, 0.6, 0.8, 1} = V2

is the value space of h2. By Definition 3.6, we can establish the CSS Ch2 = (h−1
2 ,V2) of HFS h2. The

obtained results are shown in Table 5.

Table 5. The CSS Ch2 = (h−1
2 ,V2) of HFS h2.

f 0 0.2 0.4 0.6 0.8 1

τ1 0 0 1 0 1 0
τ2 0 0 0 1 1 1
τ3 0 1 1 0 1 0
τ4 1 1 0 0 0 0

Let P = (f,Ch2) be the corresponding SAS. For Υ = {τ1, τ2} ⊆ f, the soft lower approximation of
Υ is

Υ
h2

=
⋃
κ∈V2

{Ĉh2(κ) | Ĉh2(κ) ⊆ Υ} = h−1
2 (0.6) ∪ h−1

2 (1) = {τ2}

and the soft upper approximation of Υ is

Υh2 =
⋃
κ∈V2

{Ĉh2(κ) | Ĉh2(κ) ∩ Υ , ∅} = h−1
2 (0.4) ∪ h−1

2 (0.6) ∪ h−1
2 (0.8) ∪ h−1

2 (1) = {τ1, τ2, τ3}.

AIMS Mathematics Volume 7, Issue 2, 2061–2083.



2075

Moreover, we can obtain the positive region Posh2(Υ) = Υ
h2

= {τ2}, the negative region Negh2(Υ) =

f−Υh2 = {τ4} and the boundary region Bndh2(Υ) = Υh2 −Υ
h2

= {τ1, τ3}. These results indicate that the
air transportation is the best choice for this task while the sea transportation should not be considered.

The next result simplifies the computation of the soft upper approximations of singletons. Notice
that their soft lower approximations are quite trivial: ∀τi ∈ f, {τi} = {τi} if and only if Ĉh(κ) = {τi} for
some κ ∈ Vh; otherwise, {τi} = ∅.

Proposition 4.2. Let h be an HFS on f and Ch = (Ĉh,Vh) be the CSS of h . For every τi ∈ f, the soft
upper approximation of {τi} can be calculated by

{τi}h =
⋃
κ∈h(τi)

h
−1(κ). (4.3)

Proof. According to Eq (4.2), we immediately have {τi}h =
⋃

κ∈Vh{Ĉh(κ) | Ĉh(κ) ∩ {τi} , ∅}. By
Definition 3.2 and Definition 3.6, we can deduce that

{τi}h =
⋃
κ∈Vh

{h−1(κ) | h−1(κ) ∩ {τi} , ∅} =
⋃
κ∈Vh

{h−1(κ) | τi ∈ h
−1(κ)} =

⋃
κ∈Vh

{h−1(κ) | κ ∈ h(τi)}.

It follows that {τi}h =
⋃

κ∈h(τi) h
−1(κ), which completes the proof. �

4.2. A 3WD method with CSSs of HFSs

Suppose there is a director who is in charge of a group of specialists. All the specialists are requested
to evaluate each alternative in a universe of discourse f = {τ1, τ2, · · · , τn}. For the sake of simplicity,
we assume that the evaluation scores given by the experts are chosen from the unit interval [0,1], and a
higher score means a more positive evaluation on the concerned alternative. Based on these evaluation
results, an HFS h can be constructed on f, which stores the decision information collected from the
group of specialists. After checking the evaluation from the expert group, the director select several
alternatives in f to form a pre-decision set R. In this 3WD process, the main purpose is to derive
a trisection of f as a general consensus among all the specialists together with the director. In the
following, we present a novel approach for solving 3WD problems by virtue of HFSs and their CSSs.

Firstly, we can transform the HFS h into its CSS Ch = (Ĉh,Vh). Using the CSS Ch, we construct
an SAS P = (f,Ch). Based on the SAS P, we can calculate the soft upper approximations {τi}h of
each alternative τi ∈ f (i = 1, 2, · · · , n) according to Eq (4.3). It should be noted that {τi}h can be
interpreted as the set of alternatives in f which have at least one evaluation score in common with the
alternative τi.

Secondly, we should select an appropriate evaluation function E : f −→ [0, 1] which plays a
core role in 3WD process. As pointed out by Hu [22], a cogent evaluation function should satisfy
the monotonicity axiom. In other words, an alternative with higher value of evaluation function is
considered to be more positive than an alternative with lower value. Actually, this can also be seen
from the trisection as given in Definition 2.17. Furthermore, it is more reasonable and flexible for us to
consider the following two cases when addressing decision-making problems in real-world scenarios:

• The director would like to select favorable alternatives in f to form a positive pre-decision set R;
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• The director would like to select rejective alternatives in f to form a negative pre-decision set R.

In light of the above-mentioned issues, we define the evaluation function as follows:

E(τi) =


|{τi}h ∩ R|

|{τi}h|
, if R is positive,

|{τi}h \ R|

|{τi}h|
, if R is negative,

(4.4)

where τi ∈ f (i = 1, 2, · · · , n), “\” denotes the set difference operation and R is the pre-decision set.
Finally, given two thresholds γ, δ with 0 ≤ γ < δ ≤ 1, we can obtain the trisection of all alternatives

in f as follows:
H[δ,1](E) = {τi ∈ f : δ ≤ E(τi) ≤ 1},

M(γ,δ)(E) = {τi ∈ f : γ < E(τi) < δ},

L[0,γ](E) = {τi ∈ f : 0 ≤ E(τi) ≤ γ}.

The alternatives in high value region H[δ,1](E) should be accepted. The alternatives in medium value
region M(γ,δ)(E) need further consideration. The alternatives in low value region L[0,γ](E) should be
rejected. The complete process of the proposed method is summarized as Algorithm 1 in Table 6.

Table 6. An HFS-CSS based 3WD approach.

Algorithm 1. An HFS-CSS based 3WD approach.

Input: An HFS h on f = {τ1, τ2, · · · , τn} and a pre-decision set R;
Output: The three regions H[δ,1](E), M(γ,δ)(E) and L[0,γ](E);
Step 1: Transform the HFS h into its CSS Ch = (Ĉh,Vh) by Definition 3.6;
Step 2: Construct the SAS P = (f,Ch) and compute the soft upper approximations {τi}h of every
τi ∈ f by Eq (4.3);
Step 3: Determine the evaluation function E : f −→ [0, 1] and compute the evaluation value E(τi)
of every τi ∈ f by Eq (4.4);
Step 4: Specify a pair of low and high thresholds γ, δ with 0 ≤ γ < δ ≤ 1;
Step 5: Compute the regions H[δ,1](E), M(γ,δ)(E) and L[0,γ](E);
Step 6: Return H[δ,1](E), M(γ,δ)(E) and L[0,γ](E) for taking action accordingly.

5. An illustrative example

To confirm the reliability of the proposed 3WD method with CSSs of HFSs, we consider an example
regarding peer review of research papers given as follows.

In the peer-review process of academic papers, each manuscript is reviewed by a group of referees
who are professional in the field of their expertise. The reviewers are usually invited by an Associate
Editor of an academic journal. Based on the comments from all the reviewers and the Associate Editor,
the Editor-in-Chief can make a final decision to accept, revise or reject the manuscript.
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Suppose that an Associate Editor of an academic journal is in charge of the review process of
seven research papers. These articles constitute the universe of discourse f = {τ1, τ2, · · · , τ7}. In
this context, it is cleat that the Associate Editor serves as the director of the expert group constituted
by several reviewers. For simplicity, we assume that the Associate Editor invites three referees to
review each paper in f and give their evaluation scores valued in the unit interval [0,1]. Clearly, a
higher score reflects a better evaluation on the reviewed paper. Based on the evaluation scores given
by three referees, we can construct an HFS h on f, which is a 3-THFS by Definition 2.4. Assume
that the HFEs of h are given by h(τ1) = {0.1, 0.3, 0.5}, h(τ2) = {0.5, 0.6, 0.7}, h(τ3) = {0.1, 0.2, 0.4},
h(τ4) = {0.4, 0.5, 0.7}, h(τ5) = {0.3, 0.6, 0.7}, h(τ6) = {0.6, 0.7, 0.9} and h(τ7) = {0.6, 0.8, 0.9}. The
membership grades in the HFE h(τi) (i = 1, 2, · · · , 7) represent the scores given by three reviewers.
After checking all these manuscripts and related review comments, the Associate Editor chooses three
papers in f to form a negative pre-decision set R = {τ1, τ3, τ4}. This means that the Associate Editor
intends to reject papers τ1, τ3 and τ4.

In the following, we demonstrate how to help the Editor-in-Chief to achieve a general consensus
among all the reviewers and the Associate Editor so as to make final decisions on seven papers by
using Algorithm 1.

Step 1. Based on Definition 3.6, we first transform the 3-THFS h into its CSS Ch = (Ĉh,Vh) as
shown in Table 7. It is easy to see that

Vh =
⋃
τi∈f

h(τi) = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Table 7. The CSS Ch = (Ĉh,Vh) of the 3-THFS h.

f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

τ1 1 0 1 0 1 0 0 0 0
τ2 0 0 0 0 1 1 1 0 0
τ3 1 1 0 1 0 0 0 0 0
τ4 0 0 0 1 1 0 1 0 0
τ5 0 0 1 0 0 1 1 0 0
τ6 0 0 0 0 0 1 1 0 1
τ7 0 0 0 0 0 1 0 1 1

By Definition 3.2, we can compute the value cosets of all evaluation scores in Vh. The obtained
results are as follows: h−1(0.1) = {τ1, τ3}, h−1(0.2) = {τ3}, h−1(0.3) = {τ1, τ5}, h−1(0.4) = {τ3, τ4},
h−1(0.5) = {τ1, τ2, τ4}, h−1(0.6) = {τ2, τ5, τ6, τ7}, h−1(0.7) = {τ2, τ4, τ5, τ6}, h−1(0.8) = {τ7} and
h−1(0.9) = {τ6, τ7}. It should be noted that the approximation function of the CSS Ch is specified by
these value cosets.

Step 2. Using the CSS Ch = (Ĉh,Vh), we can construct an SAS P = (f,Ch). By Eq (4.3), the soft
upper approximations {τi}h of each paper τi ∈ f (i = 1, 2, · · · , 7) with respect to the SAS P = (f,Ch)
can be calculated as follows:

{τ1}h = h−1(0.1) ∪ h−1(0.3) ∪ h−1(0.5) = {τ1, τ2, τ3, τ4, τ5},
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{τ2}h = h−1(0.5) ∪ h−1(0.6) ∪ h−1(0.7) = {τ1, τ2, τ4, τ5, τ6, τ7},

{τ3}h = h−1(0.1) ∪ h−1(0.2) ∪ h−1(0.4) = {τ1, τ3, τ4},

{τ4}h = h−1(0.4) ∪ h−1(0.5) ∪ h−1(0.7) = {τ1, τ2, τ3, τ4, , τ5, τ6},

{τ5}h = h−1(0.3) ∪ h−1(0.6) ∪ h−1(0.7) = {τ1, τ2, τ4, τ5, τ6, τ7},

{τ6}h = h−1(0.6) ∪ h−1(0.7) ∪ h−1(0.9) = {τ2, τ4, τ5, τ6, τ7},

{τ7}h = h−1(0.6) ∪ h−1(0.8) ∪ h−1(0.9) = {τ2, τ5, τ6, τ7}.

The first equality {τ1}h = {τ1, τ2, τ3, τ4, τ5} indicates that the papers τ1, τ2, τ3, τ4, τ5 have at least
one evaluation score in common with the paper τ1. Also, it can be seen that the papers τ1, τ2, τ4,
τ5, τ6, τ7 have at least one evaluation score in common with the paper τ2, since we have {τ2}h =

{τ1, τ2, τ4, τ5, τ6, τ7}. The rest of the above results can be explained in a similar fashion.
Step 3. Now, let us consider the evaluation function E : f −→ [0, 1] in this particular case. It is

clear that the pre-decision set R = {τ1, τ3, τ4} is negative since it contains the papers that the Associate
Editor intends to reject. According to Eq (4.4), we calculate the evaluation values E(τi) of each paper
τi ∈ f (i = 1, 2, · · · , 7) as follows:

E(τ1) =
|{τ1}h \ R|

|{τ1}h|
=
|{τ1, τ2, τ3, τ4, τ5} \ {τ1, τ3, τ4}|

|{τ1, τ2, τ3, τ4, τ5}|
= 0.4,

E(τ2) =
|{τ2}h \ R|

|{τ2}h|
=
|{τ1, τ2, τ4, τ5, τ6, τ7} \ {τ1, τ3, τ4}|

|{τ1, τ2, τ4, τ5, τ6, τ7}|
= 0.67,

E(τ3) =
|{τ3}h \ R|

|{τ3}h|
=
|{τ1, τ3, τ4} \ {τ1, τ3, τ4}|

|{τ1, τ3, τ4}|
= 0,

E(τ4) =
|{τ4}h \ R|

|{τ4}h|
=
|{τ1, τ2, τ3, τ4, , τ5, τ6} \ {τ1, τ3, τ4}|

|{τ1, τ2, τ3, τ4, , τ5, τ6}|
= 0.5,

E(τ5) =
|{τ5}h \ R|

|{τ5}h|
=
|{τ1, τ2, τ4, τ5, τ6, τ7} \ {τ1, τ3, τ4}|

|{τ1, τ2, τ4, τ5, τ6, τ7}|
= 0.67,

E(τ6) =
|{τ6}h \ R|

|{τ6}h|
=
|{τ2, τ4, τ5, τ6, τ7} \ {τ1, τ3, τ4}|

|{τ2, , τ4, τ5, τ6, τ7}|
= 0.8,

E(τ7) =
|{τ7}h \ R|

|{τ7}h|
=
|{τ2, τ5, τ6, τ7} \ {τ1, τ3, τ4}|

|{τ2, τ5, τ6, τ7}|
= 1.

In this context, the evaluation value E(τi) can be interpreted as the proportion of papers in {τi}h which
are not rejected by the Associate Editor. For instance, the evaluation value E(τ1) = 0.4 shows that
40% of the papers which have at least one evaluation score in common with τ1 are not rejected by the
Associate Editor. Based on the evaluation values, we can rank τi and τ j as follows:

• τi � τ j if and only if E(τi) > E(τ j);
• τi ≺ τ j if and only if E(τi) < E(τ j);
• τi ≈ τ j if and only if E(τi) = E(τ j).
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Specifically, we have the following ranking of all the papers:

τ7 � τ6 � τ5 ≈ τ2 � τ4 � τ1 � τ3.

Step 4. Next, we need to select a pair of thresholds γ, δ from the unit interval [0,1] with γ < δ.
These thresholds are used to attain the trisection of the universe of discourse. In this problem, we
choose γ = 0.4 and δ = 0.7 as the low and high thresholds, respectively.

Step 5. Based on the evaluation values and the thresholds, we can obtain the trisection of all the
papers in f as follows:

(1) High value region: H[0.7,1](E) = {τ6, τ7};

(2) Medium value region: M(0.4,0.7)(E) = {τ2, τ4, τ5};

(3) Low value region: L[0,0.4](E) = {τ1, τ3}.

Step 6. It can be seen that the above results are obtained by taking into account both the evaluation
scores given by three referees and the pre-decision provided by the Associate Editor. According to the
obtained trisection, the Editor-in-Chief is advised to make the final decision regarding papers in f as
follows:

(1) The papers τ6, τ7 in high value region H[0.7,1](E) should be accepted;

(2) The papers τ2, τ4, τ5 in medium value region M(0.4,0.7)(E) should be revised;

(3) The papers τ1, τ3 in low value region L[0,0.4](E) should be rejected.

6. Conclusions

We defined the unit interval parameterized SS, CSS and derived HFS in this study. With the
proposed notions, mutual representations between HFSs and SSs have been investigated. By
transforming an HFS into its CSS, we developed a soft rough model based on HFSs. By virtue of this
soft rough model, a novel 3WD method has been proposed for solving decision-making problems
with hesitant fuzzy information. A numerical example was presented to illustrate the validity and
feasibility of our 3WD method. It has shown that the proposed approach achieved a general consensus
between the expert group and the director. In the future, we will further explore other potential
applications of CSSs and examine more properties of HFSs from the perspective of SSs. In addition, it
would be interesting to discover inner connections between probabilistic HFSs [57] and probabilistic
SSs [11] by using similar techniques. These links might prompt new 3WD techniques in the context
of group decision-making with partial memberships, hesitation, and probabilistic information.

Acknowledgments

The authors are highly grateful to the anonymous referees for their valuable comments and
suggestions. This work was partially supported by the National Natural Science Foundation of China
[Grant No. 11301415], the Shaanxi Provincial Key Research and Development Program [Grant No.
2021SF-480], and the Natural Science Basic Research Plan in Shaanxi Province of China [Grant No.
2018JM1054].

AIMS Mathematics Volume 7, Issue 2, 2061–2083.



2080

Conflict of interest

The authors declare no conflict of interest.

References

1. M. Agarwal, K. K. Biswas, M. Hanmandlu, Generalized intuitionistic fuzzy soft sets
with applications in decision-making, Appl. Soft Comput., 13 (2013), 3552–3566. doi:
10.1016/j.asoc.2013.03.015.

2. J. C. R. Alcantud, A. Laruelle, Dis&approval voting: A characterization, Soc. Choice Welf., 43
(2014), 1–10. doi: 10.1007/s00355-013-0766-7.

3. J. C. R. Alcantud, V. Torra, Decomposition theorems and extension principles for hesitant fuzzy
sets, Inf. Fusion, 41 (2018), 48–56. doi: 10.1016/j.inffus.2017.08.005.

4. M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory,
Comput. Math. Appl., 57 (2009), 1547–1553. doi: 10.1016/j.camwa.2008.11.009.

5. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96.

6. T. M. Athira, J. J. Sunil, H. Garg, A novel entropy measure of Pythagorean fuzzy soft sets, AIMS
Math., 5 (2020), 1050–1061. doi: 10.3934/math.20200073.
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