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Abstract: The H-infinity bipartite consensus problem is addressed for a class of linear multi-agent
systems with external disturbance, where the positive and negative links are allowed in communication
topology. A novel event-triggered communication scheme is presented to save limited network
resources, which dependents on information from neighboring agents at event-triggered instants,
the given event-triggered condition is detected only at discrete sampling times, thus Zeno behavior
can be excluded, two types of event-triggered matrices have been introduced in our event-triggered
communication scheme, which can further reduce the sampled-data transmission compared with some
existed results. Considering the probabilistic actuator faults, the reliable controller is designed based on
sampled-data, then a new distribution-based fault model is constructed by using coordinate transform.
Some H-infinity bipartite consensus criteria can be derived by the Lyapunov stability theory and
algebraic graph theory, at the same time, the feedback matrices and event-triggered matrices can be
obtained by solving some linear matrix inequalities. Finally, a numerical example is employed to show
the validity and advantage of the proposed transmission scheme.
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1. Introduction

Recently, the distributed consensus control for multi-agent systems has received compelling
attentions owing to its potential applications [1–3]. The main objective is to design distributed
control protocol such that all agents can achieve an agreement. Generally speaking, the consensus
problems can be divided into three types, leader-following consensus problem, which means a leader
is designated and all the followers track the leader. Containment control is a consensus-like tracking
problem with multiple leaders, the control target is to let the followers states finally converge to the

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022116


2020

convex hull spanned by the leaders. Leaderless consensus problem means all the agents can eventually
converge to the weighted average value of all the agents. For the above three consensus problems,
many fruitful results have been obtained for linear, nonlinear or stochastic multi-agent systems [4–10],
and so on.

It is noted that most of the existing results are focused on multi-agent systems with cooperative
communication links, that is the elements of adjacency matrix are non-negative, however, the adjacency
matrix with antagonistic links is very common in practical application to describe the competitive
relationship among the agents [11, 12]. Therefore, more and more attention has been paid to the
signed networks with negative and positive elements [13–19] and the references therein. In [11], the
concept of bipartite consensus is introduced for multi-agent systems with structurally balanced graph,
all agents will reach a final state with opposite sign. The authors [13] have extended the concept of
bipartite consensus to interval bipartite consensus, some interval bipartite consensus results are derived
for structurally unbalanced networks. In [14], the distributed bipartite tracking consensus problem has
studied for a class of linear multi-agent systems with a dynamic leader, where the leader’s control
inputs are allowed to be nonzero and unknown to each follower. In [15], a novel concept of node-to-
node bipartite consensus is proposed, where the communication channels of the followers are assumed
to be structurally balanced. For signed directed graphs, the reference [16] has designed two types of
state feedback and dynamic output feedback control laws to achieve bipartite consensus, respectively.
In [17], a pinning scheme is proposed for a class of coupled nonlinear systems with antagonistic
interactions and switching topologies. Additionally, similar to bipartite consensus problem, the reverse
group consensus is firstly studied in the cooperation-competition network [18], the results show that
the couple group consensus can be achieved if the mirror graph is strongly connected, as an extension,
the distributed stabilization problem is considered for multiple heterogeneous agents in the uncertain
strong-weak completion network with exogenous disturbances [19].

In practical multi-agent systems, each agent is equipped with micro-processor, it can collect
information from neighboring agents, therefore, it is desired to implement actuating the controller
updates on a digital platform [20], the scheduling can be done in a time-triggered scheme and an
event-triggered scheme, where time-triggered scheme with a fixed sampling period, which should
be selected to guarantee a desired performance under worst conditions, this kind of triggered
method will lead to send many unnecessary sampling data to neighboring agents. Considering
the limited network resources, the event-triggered scheme is an effective method to improve the
resources utilization while ensuring a satisfactory performance [21, 22]. Event-triggered bipartite
leader-following consensus problems have been studied in [23–26], event-triggering condition is
allowed to be intermittently examined at its own sampling instants in [23], a novel distributed
protocol based on independent sampling period is presented. In [24], a novel event-triggered function
is designed, where the continuous communication can be avoided and the Zeno-behavior can be
excluded. In [25], the distributed static bipartite event-triggered controller and the fully distributed
adaptive bipartite event-triggered controller are designed respectively, where the communication in
both controller updating and triggered condition monitoring is intermittent, thus the communication
resources can be greatly saved. In [26], by using pinning control strategies, a novel event-
triggered controller is designed to achieve bipartite consensus. The refereances [27, 28] discuss fully
distributed bipartite output consensus of heterogeneous multi-agent systems, the fully distributed
bipartite compensator and dynamic event-triggered mechanism are proposed in [27], where the
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proposed compensator is independent of any global information of the network topology. The
reference [28] discusses the distributed bipartite finite-time event-triggered output consensus for
heterogeneous linear multi-agent systems under directed signed communication topology, where a
novel distributed bipartite compensator with intermittent communication mechanism is proposed in
finite time. In [29], distributed event-triggered control strategy is proposed to guarantee the semi-
global bipartite consensus. The reference [30] presents an even-triggered control framework to
achieve bipartite consensus for networked Euler-Lagrange systems with external disturbance. In [31],
event-triggered bipartite consensus is addressed under DoS attacks. Bipartite consensus of multi-
agent systems with switching communication topologies is addressed in [32], where event-triggered
conditions are piecewise functions depending on the variable couplings and topologies. However, the
above schemes still exist some room for improvement. Inspired by [33–35], the next transmission
instant is determined by tk+1h = tkh + min{eT ( jkh)Φe( jkh) > δxT (tkh)Φx(tkh)}, where Φ is a
symmetric positive definite matrix, which can be replaced by tk+1h = tkh + min{eT ( jkh)Φ1e( jkh) >
δxT (tkh)Φ2x(tkh)}, where Φ1 and Φ2 are two symmetric positive definite matrices, some comparisons
are given in Section 4, it can be seen that our event-triggered scheme can lead to larger sampling period.
The lower bound event interval is the sampling period h, which is strictly larger than zero, therefore,
Zeno behavior is excluded in our proposed scheme.

Furthermore, it is well known that actuators often suffer from faults inevitably in practical
applications, which may degrade the performance of even cause instability [36, 37]. In response to
requirements for the reliability of multi-agent systems, some considerable works have been done on
designing control schemes to accommodate actuator faults [38–42]. The leader-following consensus
problem for multi-agent systems with actuator faults [38,39], actuator faults are time-varying [38], for
two cases of the leader without control input and the leaders unknown bounded input, the distributed
event-triggered fault-tolerant protocol is proposed to reach leader-following consensus. For a class of
multi-agent systems against actuator faults and some perturbed factors as state-dependent uncertainties
in [39], the distributed controllers is constructed to ensure leader-following consensus based on
adaptive updates. In [40–42], the adaptive techniques are adopted to achieve the consensus of multi-
agent systems with actuator faults. By the sliding mode control method, the reference [40] investigates
the consensus tracking problem of second-order nonlinear multi-agent systems with disturbance.
In [41], for a class of high-order nonlinear systems with intermittent actuator faults, a novel distributed
adaptive controller is proposed to solve the output consensus tracking problem. In [42], for the actuator
faults of partial loss of effectiveness fault and biased fault, a neural network-based adaptive consensus
protocol is developed based on the Lyapunov analysis. In addition, the disturbance is inevitable
and may degrade the performance in practical applications, H-infinity bipartite consensus problem
is studied of nonlinear multi-agent systems with bounded disturbances in [43], where an performance
criterion from bounded disturbances to the consensus error has been provided. In [44], the bipartite
consensus controller is designed for cooperation-competition multi-agent systems with round-robin
protocols such that the predetermined H-infinity bipartite consensus is satisfied over a given finite
horizon. But in the above references, the event-triggered scheme and probabilistic actuator faults have
not considered, to the best of the author’s knowledge, no result has been reported for H-infinity bipartite
consensus of multi-agent systems with event-triggered scheme and probabilistic actuator faults in
signed networks, which motivates the present study.

Motivated by the aforementioned discussion, this paper is devoted to investigate H-infinity bipartite
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consensus for a class of linear multi-agent systems with external disturbance in signed networks. The
main contributions can be summarized as follows: (1) A novel concept of H-infinity bipartite consensus
is introduced to quantify against the exogenous disturbance. (2) The proposed event-triggered scheme
can ensure the desired performance while further reducing the frequency of data transmission, Zeno
behavior is excluded owing to the lower bound of inter event interval is the sampling period. (3) The
generalized random variables are introduced to describe probabilistic actuator failures, which represent
the case of complete measurement failure , partial failure and complete normal of the actuator, but also
including the case of the measured value of the actuator bigger than the real value.

The remainder of this paper is organized as follows: In Section 2, some preliminaries are introduced.
In Section 3, main results are presented for H-infinity bipartite consensus. A numerical simulation is
provided to verify the theoretical results in Section 4. Some conclusions and future works are provided
in Section 5.

Notation Rn denotes the n-dimensional Euclidean space and Rn×m is a set of real n × m matrices.
Notation ‖.‖ is the Euclidean norms of vector and matrix. If A is positive definite (or semi-definite),
denote A > 0 (or A ≥ 0). Suppose that matrix M ∈ Rn×n is a real symmetric matrix, λmax(M) and
λmin(M) denote the maximum and minimum eigenvalues of matrix M, respectively. The notation ⊗
means the Kronecker product. diag{· · · } stands for a block-diagonal matrix. The superscript 1n(0n)
indicates the n-dimensional column vector with each entry being 1(0). sgn(·) is the standard sign
function. E(·) stands the mathematical expectation of random variable.

2. Problem formulation and preliminaries

The communication topology can be described as a signed graph g = (v, ε, A), where v =

(v1, v2, . . . , vN) denotes a set of vertices, ε ⊆ v × v is a set of edges, A = (ai j)N×N denotes a weighted
adjacency matrix representing the communication topology, where the entry ai j of the matrix A can be
allowed to negative and positive, ai j > 0 indicating node i and node j are cooperative relationship, if
ai j < 0 indicating node i and node j are competitive relationship, otherwise, ai j = 0 means node i and
node j have no information communication. The Laplacian matrix of the signed graph g can be defined
as L = (li j)N×N , where lii =

∑
k=1,k,i

|aik|, and li j = −ai j (i , j). A signed graph g is called structurally

balance if the node set v can be divided into two sub-networks V1 and V2, which satisfy V1 ∪ V2 = v
and V1 ∩ V2 = Φ, ai j ≥ 0 holds for any i, j ∈ Vp, p ∈ {1, 2} and ai j < 0 holds for all i ∈ Vq, j ∈ Vr,
where q , r, otherwise, the signed graph g is called structurally unbalance.

Consider a group of N identical agents with general linear dynamics, in which the dynamics of
agent i is described as follow:

ẋi(t) = Axi(t) + Bui(t) + Dwi(t) (i = 1, 2, . . . ,N), (2.1)

where xi(t) ∈ Rn, ui(t) ∈ Rn and wi(t) ∈ Rq represent the system state, control input and external
disturbance of the ith agent, respectively. A ∈ Rn×n, B ∈ Rn×m and D ∈ Rn×q are some known constant
matrices with compatible dimensions.

In what follows, some key lemmas are summarized, which play the important roles to derive the
main results.

Lemma 1. [11] Suppose that signed network g is structurally balance, if and only if there is a gauge
transformation W such that WT AW = Ā has all nonnegative entries, where a gauge transformation is a
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change of orthant order by W = diag{w1,w2, . . . ,wN} with wi ∈ {1,−1}, A = (ai j)N×N and Ā = (|ai j|)N×N

are the adjacency matrices of the signed and unsigned networks, respectively. In addition, W provides
a partition, that is V1 = {vi|wi = 1} and V2 = {vi|wi = −1}.

Lemma 2. [45] If x(t) : (a, b) → Rn is absolutely continuous function satisfying x(a) = 0 and
M ∈ Rn×n is a positive definite matrix, then the following wirtinger’s inequality holds:∫ b

a
xT (s)Mx(s)ds ≤

4(b − a)2

π2

∫ b

a
ẋT (s)Mẋ(s)ds. (2.2)

Lemma 3. [46] It is assumed that there exists a positive definite matrix M ∈ Rn×n and a vector
function x(t) : (a, b)→ Rn, the following integrations are well defined, then

(b − a)
∫ b

a
xT (s)Mx(s)ds ≥ [

∫ b

a
x(s)ds]T M[

∫ b

a
x(s)ds]. (2.3)

Lemma 4. [47] For any two real vector functions y1(t) ∈ Rn and y2(t) ∈ Rn, a positive definite matrix
R ∈ Rn×n and any matrix S ∈ Rn×n, then

1
α

yT
1 (t)Ry1(t) +

1
1 − α

yT
2 (t)Ry2(t) ≥ yT (t)

[
R S T

S R

]
y(t), (2.4)

where y(t) =

[
y1(t)
y2(t)

]
,
[

R S T

S R

]
> 0 and 0 < α < 1.

Lemma 5. [48] The following linear matrix inequality

S =

[
S 11 S 12

S 21 S 22

]
> 0,

where S 11 = S T
11, S 12 = S T

21, S 22 = S T
22 are some constant matrices with appropriate dimensions, the

following matrix inequalities hold:

(i) S 11 > 0, S 22 − S 21S −1
11 S 12 > 0,

(ii) S 22 > 0, S 11 − S 12S −1
22 S 21 > 0.

For reducing the communication burden among the agents, and considering the unreliable channel
from control to actuator, the sampled control algorithm is designed as follow:

ui(t) = −cΞK
N∑

j=1

|ai j|[xi(tkh) − sgn(ai j)x j(tkh)] (i = 1, 2, . . . ,N; t ∈ [tkh, tk+1h); k ∈ Z+), (2.5)

where c > 0 is the coupling strength, Ξ = diag{Ξ1,Ξ2, . . . ,Ξm} with Ξi being m unrelated random
variables, taking on the interval [0, θ] with θ ≥ 1. K ∈ Rm×n is the feedback matrix to be designed. tkh
(k = 0, 1, 2, . . .) is the release times, t0h = 0, {t0, t1, . . .} ⊂ {0, 1, 2, . . .}, the data will be updated until
next event-triggered instant t = tk+1h.
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Remark 1. Inspired by some related literatures [49, 50], the random variable Ξ is used to describe
the actuator fault. For the case of Ξ = 0, it means complete failure of the ith actuator. For Ξ ∈ (0, 1),
it means partial failure of the ith actuator. For the case of Ξ = 1, it means the ith actuator is in good
working condition. For Ξ > 1, it means the data distortion with the measurement of the ith actuator.

Assumption 1. Supposed that mathematical expectation of Ξi (i = 1, 2, . . . ,m) is αi, the variance
of Ξi is δ2

i , denoted as E(Ξi) = αi and D(Ξi) = δ2
i , respectively.

Substituting (2.5) into (2.1), one has

ẋi(t) = Axi(t) − cBΞK
N∑

j=1

|ai j|[xi(tkh) − sgn(ai j)x j(tkh)] + Dwi(t). (2.6)

Based on the definition of Laplacian matrix, Eq (2.6) can be rewritten as

ẋi(t) = Axi(t) − cBΞK
N∑

j=1

li jx j(tkh) + Dwi(t). (2.7)

Considering limited bandwidth of the communication network, to further reduce the data
transmission among the agents, the event-triggered communication scheme is proposed for
system (2.1), which is utilized to determine whether or not the current sampled data should be
transmitted to neighboring agents. Supposed that the latest transmitted data is x(tkh), then for
i = 2, 3, . . . ,N, the next transmission instant tk+1h can be determined by

tkh + min{lh|[ei(tkh + lh) − ei(tkh)]T Φ
(1)
i [ei(tkh + lh) − ei(tkh)] > σieT

i (tkh + lh)Φ(2)
i ei(tkh + lh)}, (2.8)

where the error ei(t) = wixi(t)−w1x1(t), Φ
(1)
i and Φ

(2)
i are some positive definite event-triggered matrices

to be designed, σi > 0 is event-triggered parameter, tk+1h − tkh denotes the release period which
corresponds to the sampling period given by the event-triggered scheme.

Remark 2. Noted that the sampled state x(tkh) satisfying the inequality (2.8) will be sent to the
neighbour agents, some of the sampled states that violate (2.8) will not be transmitted. Obviously,
the communication burden of the network is reduced, the corresponding transmission energy can also
be saved.

Remark 3. The above event-triggered communication scheme (2.8) includes the following special
cases: (i) if Φ

(1)
i = Φ

(2)
i = Φi (i = 2, 3, . . . ,N), the scheme shrinks to a discrete event-triggered

transmission scheme. (ii) if σi = 0, one has tk+1h = tkh + h, then transmission scheme shrinks to
a periodic transmission scheme. (iii) if Φ

(1)
i = Φ

(2)
i = In (i = 2, 3, . . . ,N), transmission scheme

becomes a discrete absolute error-based transmission scheme. Hence the proposed event-triggered
communication scheme includes some existing schemes. The framework of the event-triggered
communication can be found in Figure 1.

Remark 4. The proposed transmission scheme (2.8) is different from a continuous absolute error-
based needed to monitor the continuous measurement, where only the sampled-data is used, the lower
bound event interval is the sampling period h, which is strictly larger than zero, therefore, Zeno
behavior is excluded in our proposed scheme.
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Figure 1. The framework of event-triggered communication between agent i and j.

Let x̄i(t) = wixi(t) (i = 1, 2, . . . ,N), here wi = 1 (i ∈ V1) and wi = −1 (i ∈ V2), it follows
from (2.7) that

˙̄xi(t) = Ax̄i(t) − cBΞK
N∑

j=1

l̄i j x̄ j(tkh) + wiDwi(t), (2.9)

where L̄ = (l̄i j)N×N is the Laplacian matrix of unsigned graph with zero-row-sum, l̄ii =
∑

k=1,k,i
|aik|,

l̄i j = wili jw j = −|ai j| (i , j).
In views of (2.9) and ei(t) = x̄i(t) − x̄1(t) (i = 2, 3, . . . ,N), one has

ėi(t) = Aei(t) − cBΞK
N∑

j=2

(l̄i j − l̄1 j)e j(tkh) + wiDwi(t) − w1Dw1(t). (2.10)

Inspired by [34, 35], the interval [tkh, tk+1h) can be expressed as the union of several subintervals
as follow:

[tkh, tk+1h) = ∪
tk+1−1
l=0 [tkh + lh, tkh + lh + h). (2.11)

Define τ(t) = t − (tkh + lh), for t ∈ [tkh + lh, tkh + lh + h), it can be derived that 0 ≤ τ(t) < h, let
ēi(tkh + lh) = ei(tkh + lh) − ei(tkh) (i = 2, 3, . . . ,N), we have

ei(tkh) = ei(t − τ(t)) − ēi(tkh + lh). (2.12)

Applying (2.12) into (2.10), one has

ėi(t) = Aei(t) − cBΞK
N∑

j=2

(l̄i j − l̄1 j)[e j(t − τ(t)) − ē j(tkh + lh)] + wiDwi(t) − w1Dw1(t). (2.13)
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Rewrite (2.13) in compact matrix form, we can get

ė(t) = (IN−1 ⊗ A)e(t) − c(L̂ ⊗ BΞK)e(t − τ(t)) + c(L̂ ⊗ BΞK)ē(tkh + lh)
+(W̄ ⊗ D)w(t) − (1N−1 ⊗ w1D)w1(t), (2.14)

where

e(t) = [eT
2 (t), eT

3 (t), . . . , eT
N(t)]T ,

W̄ = diag{w2,w3, . . . ,wN},

w(t) = [wT
2 (t),wT

3 (t), . . . ,wT
N(t)]T ,

L̂ = (l̂pq) ∈ R(N−1)×(N−1),

l̂pq = l̄(p+1)×(q+1) − l̄1×(q+1) (p, q = 1, 2, . . . ,N − 1),
1N−1 = [1, 1, . . . , 1︸      ︷︷      ︸

N−1

]T .

Definition 1. For signed networks g, H-infinity bipartite consensus can be achieved for coupled linear
system (2.1), if for given a weighting positive-definite matrix S ∈ Rn×n, a performance index γ > 0 and
the initial disagreement vector e(0), its solution satisfies

E{
∫ ∞

0
eT (t)e(t)dt} ≤ γE{

∫ ∞

0
w̄T (t)w̄(t)dt + eT (0)(IN−1 ⊗ S )e(0)}. (2.15)

Definition 2. For given function V : Cb
F0

([−τM, 0],Rn) × S , its infinitesimal operator L is defined as

LV(t) = lim
∆→0+

E(V(xt+∆)|xt) − V(xt)
∆

. (2.16)

3. Main result

In this section, H-infinity bipartite leaderless consensus problem is investigated under event-
triggered scheme, supposed that the topology is directed signed graph and structurally balance.

Let Ξ̄ = diag{α1, α2, . . . , αm} =
m∑

i=1
αiCi, here Ci = diag{0, 0, . . . , 0︸      ︷︷      ︸

i−1

, 1, 0, . . . , 0︸  ︷︷  ︸
m−i

}, then system (2.14) can

be formulated as follow:

ė(t) = (IN−1 ⊗ A)e(t) − c(L̂ ⊗ BΞ̄K)e(t − τ(t)) + c(L̂ ⊗ BΞ̄K)ē(tkh + lh) − c[L̂ ⊗ B(Ξ − Ξ̄)K]
×e(t − τ(t)) + c[L̂ ⊗ B(Ξ − Ξ̄)K]ē(tkh + lh) + (W̄ ⊗ D)w(t) − (1N−1 ⊗ w1D)w1(t). (3.1)

Combining (2.8) and (2.12), for t ∈ [tkh, tk+1h), the event-triggered scheme can be rewritten as

[ei(tkh + lh) − ei(tkh)]T Φ
(1)
i [ei(tkh + lh) − ei(tkh)] < σieT

i (t − τ(t))Φ(2)
i ei(t − τ(t)). (3.2)

From the above analysis, it can be known from (3.2) that the current sampled data ei(tkh + lh) will
not be sent, which will be employed in the following consensus analysis.

By using Kronecher product, it can be derived from (3.2) that

ēT (tkh + lh)Φ(1)ē(tkh + lh) < eT (t − τ(t))(σ ⊗ In)Φ(2)e(t − τ(t)), (3.3)
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where

Φ(1) = diag{Φ(1)
2 ,Φ(1)

3 , . . . ,Φ(1)
N },

Φ(2) = diag{Φ(2)
2 ,Φ(2)

3 , . . . ,Φ(2)
N },

σ = diag{σ2, σ3, . . . , σN}.

Theorem 1. Suppose that signed network is directed and structurally balance, for given sampled
period h > 0, triggered parameters σi > 0 (i = 2, 3, . . . ,N) , coupled strength c > 0, feedback matrix
K ∈ Rn×n, and a disturbance attenuation γ > 0, H-infinity bipartite consensus can be achieved in
system (2.1) under the control algorithm (2.5) and event-triggered scheme (2.8), if there exist some
n × n positive definite matrices P > 0, Q > 0, R > 0, Ω > 0, Φ(1) > 0, Φ(2) > 0, and matrix U ∈ Rn×n,
such that the following matrix inequalities hold:

Σ =


Γ ∗ ∗ ∗ ∗

hA −(IN−1 ⊗ R)−1 ∗ ∗ ∗

hA 0 −(IN−1 ⊗Ω)−1 ∗ ∗

hcB 0 0 −R̃ ∗

hcB 0 0 0 −Ω̃


< 0, (3.4)

[
R ∗

U R

]
> 0, (3.5)

where

Γ =



Γ11 ∗ ∗ ∗ ∗ ∗ ∗

Γ21 Γ22 ∗ ∗ ∗ ∗ ∗

Γ31 Γ32 Γ33 ∗ ∗ ∗ ∗

Γ41 0 0 −Φ(1) ∗ ∗ ∗

Γ51 0 0 0 −π
2

4 (IN−1 ⊗Ω) ∗ ∗

Γ61 0 0 0 0 −1
2γI(N−1)q ∗

Γ71 0 0 0 0 0 −1
2γIq


,

Γ11 = IN−1 ⊗ AT P + IN−1 ⊗ Q − IN−1 ⊗ R −
π2

4
(IN−1 ⊗Ω) +

1
2

IT
N−1 ⊗ P,

Γ21 = −c(L̂T ⊗ KT ΞT BT )(IN−1 ⊗ P) + IT
N−1 ⊗ (R − U),

Γ22 = IN−1 ⊗ (U + UT − 2R) + (σ ⊗ In)Φ(2),

Γ31 = IN−1 ⊗ U,

Γ32 = IN−1 ⊗ (R − U),
Γ33 = −IN−1 ⊗ (Q + R),
Γ41 = c(L̂T ⊗ KT ΞT BT )(IN−1 ⊗ P),

Γ51 =
π2

4
(IN−1 ⊗Ω),

Γ61 = (W̄T ⊗ DT )(IN−1 ⊗ P),
Γ71 = −(1T

N−1 ⊗ DT w1)(IN−1 ⊗ P),

A =
[

IN−1 ⊗ A −c(L̂ ⊗ BΞ̄K) 0 c(L̂ ⊗ BΞ̄K) 0 W̄ ⊗ D −1N−1 ⊗ w1D
]
,
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B =


0 δ1(L̂ ⊗ BC1K) 0 −δ1(L̂ ⊗ BC1K) 0 0 0
0 δ2(L̂ ⊗ BC2K) 0 −δ2(L̂ ⊗ BC2K) 0 0 0
...

...
...

...
...

...
...

0 δm(L̂ ⊗ BCmK) 0 δm(L̂ ⊗ BCmK) 0 0 0

 ,
R̃ = diag{(IN−1 ⊗ R)−1, (IN−1 ⊗ R)−1, . . . , (IN−1 ⊗ R)−1︸                                                  ︷︷                                                  ︸

m

},

Ω̃ = diag{(IN−1 ⊗Ω)−1, (IN−1 ⊗Ω)−1, . . . , (IN−1 ⊗Ω)−1︸                                                    ︷︷                                                    ︸
m

}.

Proof. Construct the following Lyapunov function candidate

V(t) =

4∑
i=1

Vi(t), (3.6)

where

V1(t) = eT (t)(IN−1 ⊗ P)e(t),

V2(t) =

∫ t

t−h
eT (s)(IN−1 ⊗ Q)e(s)ds,

V3(t) = h
∫ t

t−h

∫ t

s
ėT (v)(IN−1 ⊗ R)ė(v)dvds,

V4(t) = h2
∫ t

tkh+lh
ėT (s)(IN−1 ⊗Ω)ė(s)ds

−
π2

4

∫ t

tkh+lh
[e(s) − e(tkh + lh)]T (IN−1 ⊗Ω)[e(s) − e(tkh + lh)]ds,

where P,Q,R,Ω ∈ Rn×n > 0.
Next, some necessary explanations are given to show the Lyapunov function V4(t) is valid. By using

the Wirtinger’s inequality in Lemma 2, one has

h2
∫ t

tkh+lh
ėT (s)(IN−1 ⊗Ω)ė(s)ds

= h2
∫ t

tkh+lh
[ė(s) − ė(tkh + lh)]T (IN−1 ⊗Ω)[ė(s) − ė(tkh + lh)]ds

≥
h2π2

4[t − (tkh + lh)]2

∫ t

tkh+lh
[e(s) − e(tkh + lh)]T (IN−1 ⊗Ω)[e(s) − e(tkh + lh)]ds

≥
π2

4

∫ t

tkh+lh
[e(s) − e(tkh + lh)]T (IN−1 ⊗Ω)[e(s) − e(tkh + lh)]ds. (3.7)

It can be easily derived that V4(t) ≥ 0 from (3.7), thus the Lyapunov function V4(t) is valid.
For convenient description, Eq (3.1) can be rewritten as the following concise form:

ė(t) = A1ξ1(t) +A2ξ2(t), (3.8)
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where

A1 =
[

IN−1 ⊗ A −cL̂ ⊗ BΞ̄K cL̂ ⊗ BΞ̄K W̄ ⊗ D −1N−1 ⊗ w1D
]
,

A2 =
[
−cL̂ ⊗ B(Ξ − Ξ̄)K cL̂ ⊗ B(Ξ − Ξ̄)K

]
,

ξT
1 (t) =

[
eT (t) eT (t − τ(t)) ēT (tkh + lh) wT (t) wT

1 (t)
]
,

ξT
2 (t) =

[
eT (t − τ(t)) eT (tkh + lh)

]
.

By using the fact E{Ξ−Ξ̄} = 0, and infinitesimal operator (2.16) in Definition 2, taking the derivative
of Vi(t) (i = 1, 2, 3, 4) along the trajectories (3.8), one gets

E{LV1(t)} = E{2eT (t)(IN−1 ⊗ P)(A1ξ1(t) +A2ξ2(t))}
= E{2eT (t)(IN−1 ⊗ P)A1ξ1(t)}, (3.9)

E{LV2(t)} = E{eT (t)(IN−1 ⊗ Q)e(t) − eT (t − h)(IN−1 ⊗ Q)e(t − h)}, (3.10)

E{LV3(t)} = E{h2ėT (t)(IN−1 ⊗ R)ė(t) − h
∫ t

t−h
ėT (s)(IN−1 ⊗ R)ė(s)ds}, (3.11)

E{LV4(t)} = E{h2ėT (t)(IN−1 ⊗Ω)ė(t)

−
π2

4
[e(t) − e(tkh + lh)]T (IN−1 ⊗Ω)[e(t) − e(tkh + lh)]}. (3.12)

For any τ(t) ∈ [0, h), it follows from Jensen’s inequality in Lemma 3 and the reciprocally convex
approach in Lemma 4 that

E{−h
∫ t

t−h
ėT (s)(IN−1 ⊗ R)ė(s)ds}

= E{−h
∫ t

t−τ(t)
ėT (s)(IN−1 ⊗ R)ė(s)ds − h

∫ t−τ(t)

t−h
ėT (s)(IN−1 ⊗ R)ė(s)ds}

≤ E{−
h
τ(t)

[e(t) − e(t − τ(t))]T (IN−1 ⊗ R)[e(t) − e(t − τ(t))]

−
h

t − τ(t)
[e(t − τ(t)) − e(t − h)]T (IN−1 ⊗ R)[e(t − τ(t)) − e(t − h)]}

≤ E{−
[

e(t) − e(t − τ(t))
e(t − τ(t)) − e(t − h)

]T
(IN−1 ⊗

[
R UT

U R

]
)
[

e(t) − e(t − τ(t))
e(t − τ(t)) − e(t − h)

]
}

= E{−


e(t)

e(t − τ(t))
e(t − h)


T

(IN−1 ⊗


R UT − R −UT

−R + U 2R − U − UT UT − R
−U U − R R

)


e(t)
e(t − τ(t))
e(t − h)

}. (3.13)

It can be derived from (3.12) that

E{−
π2

4
[e(t) − e(tkh + lh)]T (IN−1 ⊗Ω)[e(t) − e(tkh + lh)]}

= E{−
π2

4

[
e(t)

e(tkh + lh)

]T
(IN−1 ⊗

[
Ω −Ω

−Ω Ω

]
)
[

e(t)
e(tkh + lh)

]
}. (3.14)
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Recalling (3.8), (3.11) and (3.12), we can obtain

E{h2ėT (t)[IN−1 ⊗ (R + Ω)]ė(t)}
= E{h2[A1ξ1(t) +A2ξ2(t)]T [IN−1 ⊗ (R + Ω)][A1ξ1(t) +A2ξ2(t)]}
= E{h2ξT

1 (t)AT
1 [IN−1 ⊗ (R + Ω)]A1ξ1(t) + h2ξT

2 (t)AT
2 [IN−1 ⊗ (R + Ω)]A2ξ2(t)}

= E{h2ξT
1 (t)AT

1 [IN−1 ⊗ (R + Ω)]A1ξ1(t)}

+h2c2E{
m∑

j=1

δ2
je

T (t − τ(t))(L̂T ⊗ KTCT
j BT )[IN−1 ⊗ (R + Ω)](L̂ ⊗ BC jK)e(t − τ(t))}

−2h2c2E{
m∑

j=1

δ2
je

T (t − τ(t))(L̂T ⊗ KTCT
j BT )[IN−1 ⊗ (R + Ω)](L̂ ⊗ BC jK)ē(tkh + lh)}

+h2c2E{
m∑

j=1

δ2
j ē

T (tkh + lh)(L̂T ⊗ KTCT
j BT )[IN−1 ⊗ (R + Ω)](L̂ ⊗ BC jK)ē(tkh + lh)}, (3.15)

where C j = diag{0, 0, . . . , 0︸      ︷︷      ︸
j−1

, 1, 0, . . . , 0︸  ︷︷  ︸
m− j

}.

Combing Eqs (3.9–3.15), one gets

E{LV(t)} ≤ E{ξ̄T (t)Γξ̄(t) + h2ξT
1 (t)AT

1 [IN−1 ⊗ (R + Ω)]A1ξ1(t)

+h2c2
m∑

j=1

δ2
je

T (t − τ(t))(L̂T ⊗ KTCT
j BT )[IN−1 ⊗ (R + Ω)](L̂ ⊗ BC jK)e(t − τ(t))

−2h2c2
m∑

j=1

δ2
je

T (t − τ(t))(L̂T ⊗ KTCT
j BT )[IN−1 ⊗ (R + Ω)](L̂ ⊗ BC jK)ē(tkh + lh)

+h2c2
m∑

j=1

δ2
j ē

T (tkh + lh)(L̂T ⊗ KTCT
j BT )[IN−1 ⊗ (R + Ω)](L̂ ⊗ BC jK)ē(tkh + lh)

−ēT (tkh + lh)Φ(1)ē(tkh + lh) + eT (t − τ(t))(σ ⊗ In)Φ(2)e(t − τ(t))

+
1
2

eT (t)(IN−1 ⊗ P)e(t) −
1
2
γw̄T (t)w̄(t)

−
1
2

eT (t)(IN−1 ⊗ P)e(t) +
1
2
γw̄T (t)w̄(t)}, (3.16)

where

ξ̄T (t) =
[

eT (t) eT (t − τ(t)) eT (t − h) ēT (tkh + lh) eT (tkh + lh) wT (t) wT
1 (t)
]
,

w̄T (t) =
[

wT
1 (t) wT

2 (t) . . . wT
n (t)
]
,

Γ =



Γ11 ∗ ∗ ∗ ∗ ∗ ∗

Γ21 Γ22 ∗ ∗ ∗ ∗ ∗

Γ31 Γ32 Γ33 ∗ ∗ ∗ ∗

Γ41 0 0 −Φ(1) ∗ ∗ ∗

Γ51 0 0 0 −π
2

4 (IN−1 ⊗Ω) ∗ ∗

Γ61 0 0 0 0 −1
2γIN−1 ∗

Γ71 0 0 0 0 0 −1
2γ


,
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and the other elements can be found in Theorem 1.
By using Schur complement in Lemma 5 to (3.4), we can obtain (3.16), then

E{LV(t)} ≤ E{−
1
2

eT (t)(IN−1 ⊗ P)e(t) +
1
2
γw̄T (t)w̄(t)}. (3.17)

Next, integrating both sides of Eq (3.17) from 0 to∞, one has

E{
∫ ∞

0
eT (t)e(t)dt} < γE{

∫ ∞

0
w̄T (t)w̄(t)dt + V(0)}, (3.18)

where γ = 2
λmin(P) , which indicates H-infinity bipartite consensus is achieved by using Definition 1. This

completes the proof. �

Notice that if σi = 0 (i = 2, 3, . . . ,N), then event-triggered scheme reduces to time-triggered
scheme, from Theorem 1, we can obtain H-infinity bipartite consensus under sampled-data control.

Corollary 1. Suppose that signed network is directed and structurally balance, for given sampled
period h > 0, coupled strength c > 0, feedback matrix K ∈ Rn×n, and a disturbance attenuation γ > 0,
H-infinity bipartite consensus can be achieved in system (2.1) under the control algorithm (2.5) , if
there exist some n× n positive definite matrices P > 0, Q > 0, R > 0, Ω > 0 and matrix U ∈ Rn×n, such
that the following matrix inequalities hold:

Σ̄ =


Γ̄ ∗ ∗ ∗ ∗

hĀ −(IN−1 ⊗ R)−1 ∗ ∗ ∗

hĀ 0 −(IN−1 ⊗Ω)−1 ∗ ∗

hcB̄ 0 0 −R̃ ∗

hcB̄ 0 0 0 −Ω̃


< 0, (3.19)

[
R ∗

U R

]
> 0, (3.20)

where

Γ̄ =



Γ11 ∗ ∗ ∗ ∗ ∗

Γ̄21 Γ22 ∗ ∗ ∗ ∗

Γ31 Γ32 Γ33 ∗ ∗ ∗

Γ41 0 0 −π
2

4 (IN−1 ⊗Ω) ∗ ∗

Γ51 0 0 0 −1
2γI(N−1)q ∗

Γ61 0 0 0 0 −1
2γIq


,

Γ11 = IN−1 ⊗ AT P + IN−1 ⊗ Q − IN−1 ⊗ R −
π2

4
(IN−1 ⊗Ω) +

1
2

IT
N−1 ⊗ P,

Γ̄21 = −c(L̂T ⊗ KT ΞT BT )(IN−1 ⊗ P) + IT
N−1 ⊗ (R − U),

Γ22 = IN−1 ⊗ (U + UT − 2R),
Γ31 = IN−1 ⊗ U,

Γ32 = IN−1 ⊗ (R − U),
Γ33 = −IN−1 ⊗ (Q + R),
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Γ41 =
π2

4
(IN−1 ⊗Ω),

Γ51 = (W̄T ⊗ DT )(IN−1 ⊗ P),
Γ61 = −(1T

N−1 ⊗ DT w1)(IN−1 ⊗ P),
R̃ = diag{(IN−1 ⊗ R)−1, (IN−1 ⊗ R)−1, . . . , (IN−1 ⊗ R)−1︸                                                  ︷︷                                                  ︸

m

},

Ω̃ = diag{(IN−1 ⊗Ω)−1, (IN−1 ⊗Ω)−1, . . . , (IN−1 ⊗Ω)−1︸                                                    ︷︷                                                    ︸
m

},

Ā =
[

IN−1 ⊗ A −c(L̂ ⊗ BΞ̄K) 0 0 W ⊗ D −1N−1 ⊗ w1D
]
,

B̄ =


0 δ1(L̂ ⊗ BC1K) 0 0 0 0
0 δ2(L̂ ⊗ BC2K) 0 0 0 0
...

...
...

...
...

...

0 δm(L̂ ⊗ BCmK) 0 0 0 0

 .
Remark 5. When σi → 0+, it can be concluded that (3.3) can not be satisfied, the data of each
sampling time will be transmitted to the neighbor agents, that is, event-triggered scheme reduces
to time-triggered scheme, thus bipartite leaderless consensus can be derived based on the sampled
control algorithm.

In the following, we will design the reliable protocol to achieve H-infinity bipartite consensus for
multi-agent system (2.1) with probabilistic actuator faults.

Theorem 2. Suppose that signed network is directed and structurally balance, for given sampled
period h > 0, triggered parameters σi > 0 (i = 2, 3, . . . ,N) , coupled strength c > 0, any a positive
scalar ε > 0, and a disturbance attenuation γ > 0, H-infinity bipartite consensus can be achieved in
system (2.1) under the control algorithm (2.5) and event-triggered scheme (3.3), if there exist some
positive definite matrices X > 0, Q̂ > 0, R̂ > 0, Ω̂ > 0, Φ̂(1) = diag{XΦ̂

(1)
2 X, XΦ̂

(1)
3 X, . . . , XΦ̂

(1)
N X} > 0,

Φ̂(2) = diag{XΦ̂
(2)
2 X, XΦ̂

(2)
3 X, . . . , XΦ̂

(2)
N X} > 0, and matrix Û ∈ Rn×n, Y ∈ Rm×n, such that the following

linear matrix inequalities hold:

Σ̂ :


Γ̂ ∗ ∗ ∗ ∗

hÂ −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂) ∗ ∗ ∗

hÂ 0 −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂) ∗ ∗

hcB̂ 0 0 Ř ∗

hcB̂ 0 0 0 Ω̌


< 0, (3.21)

[
R̂ ∗

Û R̂

]
> 0, (3.22)

where

B̂ =


0 δ1(L̂BC1)(IN−1 ⊗ Y) 0 −δ1(L̂BC1)(IN−1 ⊗ Y) 0 0 0
0 δ2(L̂BC2)(IN−1 ⊗ Y) 0 −δ2(L̂BC2)(IN−1 ⊗ Y) 0 0 0
...

...
...

...
...

...
...

0 δm(L̂BCm)(IN−1 ⊗ Y) 0 −δm(L̂BCm)(IN−1 ⊗ Y) 0 0 0

 ,
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Γ̂ =



Γ̂11 ∗ ∗ ∗ ∗ ∗ ∗

Γ̂21 Γ̂22 ∗ ∗ ∗ ∗ ∗

Γ̂31 Γ̂32 Γ̂33 ∗ ∗ ∗ ∗

Γ̂41 0 0 −Φ̂1 ∗ ∗ ∗
π2

4 (IN−1 ⊗ Ω̂) 0 0 0 −π
2

4 (IN−1 ⊗ Ω̂) ∗ ∗

WT ⊗ DT 0 0 0 0 −1
2γI(N−1)q ∗

−1T
N−1 ⊗ DT w1 0 0 0 0 0 −1

2γIq


,

Γ̂11 = IN−1 ⊗ AT + IN−1 ⊗ Q̂ − IN−1 ⊗ R̂ −
π2

4
(IN−1 ⊗ Ω̂) +

1
2

(IN−1 ⊗ X),

Γ̂21 = −c(IN−1 ⊗ YT )(L̂T ⊗ Ξ̄T BT ) + IN−1 ⊗ (R̂ − Û),
Γ̂22 = IN−1 ⊗ (Û + ÛT − 2R̂) + (σ ⊗ In)Φ̂2,

Γ̂31 = IN−1 ⊗ Û,

Γ̂32 = IN−1 ⊗ (R̂ − Û),
Γ̂33 = −IN−1 ⊗ (R̂ + Q̂),
Γ̂41 = c(IN−1 ⊗ YT )(L̂T ⊗ Ξ̄T BT ),

Ř = diag{−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂), . . . ,−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂)︸                                                                                ︷︷                                                                                ︸
m

},

Ω̌ = diag{−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂), . . . ,−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂)︸                                                                                ︷︷                                                                                ︸
m

},

Â =
[

IN−1 ⊗ AX −c(L̂ ⊗ BΞ̄)(IN−1 ⊗ Y) 0 c(L̂ ⊗ BΞ̄)(IN−1 ⊗ Y) 0 W̄ ⊗ D −1N−1 ⊗ w1D
]
,

then the feedback matrix K = YX−1.

Proof. Denote X = P−1, Q̂ = XQX, R̂ = XRX, Ω̂ = XΩX, Û = XUX, Φ̂(1) =

diag{XΦ̂
(1)
2 X, XΦ̂

(1)
3 X, . . . , XΦ̂

(1)
N X}, Φ̂(2) = diag{XΦ̂

(2)
2 X, XΦ̂

(2)
3 X, . . . , XΦ̂

(2)
N X} and Y = KX, then pre-

multiplying and post-multiplying Eq (3.4) with

X = diag{IN−1 ⊗ X, IN−1 ⊗ X, IN−1 ⊗ X, IN−1 ⊗ X, IN−1 ⊗ X︸                                                        ︷︷                                                        ︸
5

, I, I, . . . , I︸     ︷︷     ︸
2m+2

}. (3.23)

Due to the fact

[IN−1 ⊗ R̂ − ε−1(IN−1 ⊗ X)]T (IN−1 ⊗ R̂)[IN−1 ⊗ R̂ − ε−1(IN−1 ⊗ X)] ≥ 0, (3.24)

it can be derived from (3.23) that

−(IN−1 ⊗ X)T (IN−1 ⊗ R̂)−1(IN−1 ⊗ X) ≤ −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂), (3.25)

then

−(IN−1 ⊗ R)−1 = −(IN−1 ⊗ X)T [(IN−1 ⊗ X)(IN−1 ⊗ R)(IN−1 ⊗ X)]−1(IN−1 ⊗ X)
= −(IN−1 ⊗ X)T (IN−1 ⊗ R̂)−1(IN−1 ⊗ X)
≤ −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂). (3.26)
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Similar to Eq (3.25), we have

−(IN−1 ⊗Ω)−1 ≤ −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂). (3.27)

Replace the term R̃ = diag{(IN−1 ⊗ R)−1, (IN−1 ⊗ R)−1, . . . , (IN−1 ⊗ R)−1︸                                                  ︷︷                                                  ︸
m

} by the following matrix

Ř = diag{−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂), . . . ,−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂)︸                                                                                ︷︷                                                                                ︸
m

}. (3.28)

Replace the term Ω̃ = diag{(IN−1 ⊗Ω)−1, (IN−1 ⊗Ω)−1, . . . , (IN−1 ⊗Ω)−1︸                                                    ︷︷                                                    ︸
m

} by the following matrix

Ω̌ = diag{−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂), . . . ,−2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂)︸                                                                                ︷︷                                                                                ︸
m

}. (3.29)

Combining (3.22–3.28), then Eqs (3.21) and (3.22) can be obtained. This completes the proof. �

Corollary 2. Suppose that signed network is directed and structurally balance, for given sampled
period h > 0 , coupled strength c > 0, any a positive scalar ε > 0, and a disturbance attenuation
γ > 0, H-infinity bipartite consensus can be achieved in system (2.1) under the control algorithm (2.5),
if there exist some positive definite matrices X > 0, Q̂ > 0, R̂ > 0, Ω̂ > 0, and matrix Û ∈ Rn×n,
Y ∈ Rm×n, such that the following linear matrix inequalities hold:

Σ̆ :


Γ̆ ∗ ∗ ∗ ∗

hĂ −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ R̂) ∗ ∗ ∗

hĂ 0 −2ε(IN−1 ⊗ X) + ε2(IN−1 ⊗ Ω̂) ∗ ∗

hcB̆ 0 0 Ř ∗

hcB̆ 0 0 0 Ω̌


< 0, (3.30)

[
R̂ ∗

Û R̂

]
> 0, (3.31)

where

Γ̂ =



Γ̂11 ∗ ∗ ∗ ∗ ∗

Γ̆21 Γ̂22 ∗ ∗ ∗ ∗

IN−1 ⊗ Û IN−1 ⊗ (R̂ − Û) −IN−1 ⊗ (R̂ + Q̂) ∗ ∗ ∗
π2

4 (IN−1 ⊗ Ω̂) 0 0 −π
2

4 (IN−1 ⊗ Ω̂) ∗ ∗

W̄T ⊗ DT 0 0 0 −1
2γI(N−1)q ∗

−1T
N−1 ⊗ DT w1 0 0 0 0 −1

2γIq


,

Γ̆21 = −c(IN−1 ⊗ YT )(L̂T ⊗ Ξ̄T BT ) + IN−1 ⊗ (R̂ − Û),
Ă =

[
IN−1 ⊗ AX −c(L̂ ⊗ BΞ̄)(IN−1 ⊗ Y) 0 0 W̄ ⊗ D −1N−1 ⊗ w1D

]
,

B̆ =


0 δ1(L̂BC1)(IN−1 ⊗ Y) 0 0 0 0
0 δ2(L̂BC2)(IN−1 ⊗ Y) 0 0 0 0
...

...
...

...
...

...

0 δm(L̂BCm)(IN−1 ⊗ Y) 0 0 0 0

 ,
then the feedback matrix K = YX−1.
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4. A numerical example

Consider the following linear multi-agent systems consisting of seven agents

ẋi(t) = Axi(t) + Bui(t) + Dwi(t) (i = 1, 2, . . . , 7), (4.1)

where

xi(t) =


xi1(t)
xi2(t)
xi3(t)

 , A =


0.5598 −1.3018 0

1 −1 1
0 0.0135 0.0297

 , B =


0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900

 ,
D =


0.001
−0.001
0.002

 , wi(t) = 0.001sin(5t).

The network topology is structurally balance in Figure 2, which can be divided into two sub-
networks V1 = {1, 2, 3, 4} and V2 = {5, 6, 7}, the agents are cooperative relationship in V1 or V2, the
agents are competitive relationship between V1 and V2, by using Lemma 1, we can obtain the gauge
transformation W = diag{1, 1, 1, 1,−1,−1,−1}, then we have w1 = 1 and W̄ = diag{1, 1, 1,−1,−1,−1}.

Figure 2. Illustration for the communication topology.

Case 1: Event-triggered matrices Φ(1) , Φ(2)

Let the coupling strength c = 1, the sampling period h = 0.01, event-triggered parameter σi = 0.01
(i = 2, 3, . . . , 7), H-infinity performance index γ = 0.001, the positive scale ε = 0.01, the mathematical
expectation Ξ̄ = diag{0.5, 0.1}, and the variance δ1 = 0.1, δ2 = 0.2, by using Theorem 2, the related
matrices can be obtained, which means bipartite leaderless consensus can be achieved, the event-
triggered matrices Φ

(1)
i and Φ

(2)
i (i = 2, 3, . . . , 7) is given as follows:

Φ
(1)
2 =


1.4330 −0.0158 0.0026
−0.0158 1.4451 0.0061
0.0026 0.0061 1.4659

 , Φ
(2)
2 =


1.4615 −0.0155 0.0071
−0.0155 1.4502 0.0067
0.0071 0.0067 1.4731

 ,
AIMS Mathematics Volume 7, Issue 2, 2019–2043.



2036

Φ
(1)
3 =


1.3597 −0.0314 0.0045
−0.0314 1.3884 0.0116
0.0045 0.0116 1.4278

 , Φ
(2)
3 =


1.2926 0.0203 −0.0088
0.0203 1.3032 −0.0080
−0.0088 −0.0080 1.2745

 ,
Φ

(1)
4 =


1.3593 −0.0307 0.0045
−0.0307 1.3872 0.0112
0.0045 0.0112 1.4245

 , Φ
(2)
4 =


1.2925 0.0204 −0.0088
0.0204 1.3030 −0.0081
−0.0088 −0.0081 1.2741

 ,
Φ

(1)
5 =


1.3777 −0.0591 0.0083
−0.0591 1.4328 0.0224
0.0083 0.0224 1.5105

 , Φ
(2)
5 =


1.2958 0.0174 −0.0070
0.0174 1.3053 −0.0081
−0.0070 −0.0081 1.2777

 ,
Φ

(1)
6 =


1.3612 −0.0338 0.0048
−0.0338 1.3925 0.0128
0.0048 0.0128 1.4365

 , Φ
(2)
6 =


1.2934 0.0191 −0.0086
0.0191 1.3050 −0.0075
−0.0086 −0.0075 1.2790

 ,
Φ

(1)
7 =


1.3596 −0.0311 0.0045
−0.0311 1.3880 0.0115
0.0045 0.0115 1.4265

 , Φ
(2)
7 =


1.2925 0.0204 −0.0089
0.0204 1.3030 −0.0081
−0.0089 −0.0081 1.2740

 ,
then the feedback gain can be obtained

K =

[
0.0209 −0.0359 −0.0756
0.1291 −0.1649 −0.1996

]
, (4.2)

taking t ∈ [0, 20), the simulation results show that only 38 sampled data are sent out, which take 1.9%
of the sampled signals. It can be computed that the average sampling period is 0.5263 by our proposed
event-triggered scheme. The release instants and release intervals are illustrated in Figure 3. The
curve of xi j(t) (i = 1, 2, . . . , 7, j = 1, 2, 3) are presented in Figure 4, it can be seen H-infinity bipartite
consensus is achieved. In order to show the benefits of our proposed triggered scheme than [34, 35],
some comparisons are given in Table 1, it can be seen that our event-triggered scheme can lead to larger
sampling period h.

Figure 3. The release instants and release intervals under the event-triggered scheme for
event-triggered matrices Φ(1) , Φ(2).
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Figure 4. The trajectories of the state xi j(t)(i = 1, 2, . . . , 7; j = 1, 2, 3) for H∞ bipartite
consensus for event-triggered matrices Φ(1) , Φ(2).

Table 1. The upper bound of sampling period h for bipartite leaderless consensus (i =

2, 3, . . . , 7).

Trigger
scheme

Trigger matrix Coupling
strength

Trigger
parameter

Upper bound
of h

Our scheme Φ
(1)
i , Φ

(2)
i c = 1 σi = 0.01 h=0.8292

[34, 35] Φ
(1)
i = Φ

(2)
i c = 1 σi = 0.01 h=0.8281

Case 2: Event-triggered matrices Φ(1) = Φ(2)

Suppose that the dynamics of linear multi-agent systems and the related parameters are the same
with Case 1. By using Theorem 2, the event-triggered matrix Φi (i = 2, 3, . . . , 7) can be obtained as
follows:

Φ2 =


1.3277 −0.0087 −0.0017
−0.0087 1.3503 0.0027
−0.0017 0.0027 1.3580

 , Φ3 =


1.3350 −0.0202 −0.0002
−0.0202 1.3688 0.0071
−0.0002 0.0071 1.3920

 ,
Φ4 =


1.3346 −0.0195 −0.0003
−0.0195 1.3676 0.0066
−0.0003 0.0066 1.3887

 , Φ5 =


1.3540 −0.0487 −0.0043
−0.0487 1.4132 0.0173
−0.0043 0.0173 1.4737

 ,
Φ6 =


1.3369 −0.0231 0.0001
−0.0231 1.3737 0.0085
0.0001 0.0085 1.4027

 , Φ7 =


1.3348 −0.0199 −0.0002
−0.0199 1.3683 0.0069
−0.0002 0.0069 1.3906

 ,
then the feedback gain can be obtained

K =

[
0.0206 −0.0355 −0.0146
0.1275 −0.1628 −0.1970

]
. (4.3)
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Taking t ∈ [0, 20), the simulation results show that only 106 sampled data are sent out, which
take 5.3% of the sampled signals. Moreover, it can be computed that our event-triggered scheme can
obtain a average sampling period of 0.1887, the release instants and release intervals are illustrated in
Figure 5. The curve of xi j(t) (i = 1, 2, . . . , 7; j = 1, 2, 3) are presented in Figure 6, which can be seen
H∞ bipartite consensus is achieved.

Figure 5. The release instants and release intervals under the event-triggered scheme for
event-triggered matrices Φ(1) = Φ(2).

Figure 6. The trajectories of the state xi j(t)(i = 1, 2, . . . , 6; j = 1, 2, 3) for H∞ bipartite
consensus for event-triggered matrices Φ(1) = Φ(2).

Remark 6. It can be shown from Case 1 that the sampled times are 38 for the event-triggered matrices
Φ(1) , Φ(2), for Case 2, the sampled times are 106 for the event-triggered matrices Φ(1) = Φ(2),

AIMS Mathematics Volume 7, Issue 2, 2019–2043.



2039

obviously, our event-triggered scheme can further reduce the sampled data transmission. From the
perspective of average sampling period, in Case 1, the average sampling period is 0.4444, and the
average sampling period is 0.1887 in Case 2, which can be seen from Figures 3 and 5, that is, our
results are less conservative.

5. Conclusions

In this paper, a novel event-triggered communication scheme has been proposed to study H-infinity
bipartite consensus with external disturbance in the signed networks. Compared with some existing
event-triggered results, the proposed event-triggered communication scheme has the advantage to
achieve a better performance while saving the limited network resources. A more generalized random
variable is introduced to describe probabilistic actuator failure. Some H-infinity bipartite consensus
criteria can be derived, the feedback matrices and event-triggered matrices can be obtained by solving
some linear matrix inequalities. Notice that the above results are based on the given event-triggered
parameters, it would be interesting to further investigate adaptive event-triggered communication
scheme, where the triggered parameters can be adjusted with respect to the dynamic errors. The related
results can also be extended to the cases of nonlinear multi-agent systems and stochastic multi-agent
systems and so on.
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