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1. Introduction

The world within which humans leave is very complex and can exhibit many different behavior.
Some of these behaviors are very difficult to be analyzed via observation only. However, some can be
replicate using mathematical formulas. Mathematicians have classified some real world behaviors as
they were able to replicate those using mathematical formulas. In the literature, one will find, concepts
like fractal, chaos, random walk, Levy flight motions [1], Brownian motions [2], Bernoulli process,
Markovian process [3], non-Markovian process [4] and many other that will not be listed here. The
concept of fractal have attracted attention of researchers from all background due to their appearance
in real world [5–9]. It is even believed that, this concept was already developed in Africas cultures as
many of their constructions resembled self-similarities, for example, the structure of their traditional
kingdom resembled the structure of the villages. It has also mentioned that, their traditional clothes
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could be seeing as fractal designs. The concept has been developed in mathematics, for example
some mathematical mapping have been used to replicate these fractal behaviors observed in real
world problems. Some of the well-known mapping are the Julia, Mandelbrot, Fatou and Newton
mappings. These mapping have been intensively studies as they are able to produce many different
type of theoretical fractal behaviors. In particular these mapping are derived using polynomials with
two dimensional complex numbers. The concept was extended in system call quaternion which is a
4 dimensional complex numbers. However, Atangana and Toufik argued that the nature within which
humans leave is neither two dimensional nor 4 dimensional therefore fractal represented by these two
sets may not be very representative in humans world therefore they suggested a set 3-dimensional
complex numbers and called it Trinition [10]. The Trinition polynomial are able to reproduce fractal
in 3-dimension which can be found in many real world problems. Above this concept of mapping,
mathematicians have suggested other operators called fractal differentiation and integration, these
mathematical operators are able to depict some degree of self-similarities. Recall that many authors
have applied the concept of fractal-fractional operator in number of mathematical circumstances and
proposed many related applications in connection to real life phenomena. Some of them are found
in [11–14]. Some researchers have applied the concept of fractal-fractional in various processes related
to real life phenomena, such as mathematical epidemiology, control theory, Levy statistics continuous
time random walk, biomedical engineering, fractional signal and image processing, fractional filters
motion and nonlocal phenomena [8, 11, 15–18]. We can also mention the concept of self-similarity
found in the nature around us which takes into account the fractal dimension applicable in the domain
of engineering and including aspects like fatigue loading conditions and fracture surface analysis [19].
The authors in [20] pointed out the fractal impact on microstructure and its relationship to properties
such as fracture toughness or fracture energy. The variety of these works and publications show the
vast range and scope that cover the application of fractional processes combined with fractal dynamics
in various domains of sciences. In this paper, we shall analyze some real world problems using fractal-
fractional differential operators.

2. Preliminaries on fractal-fractional derivatives

The concept of fractal-fractional derivative was developed and introduced recently with the aim
of attracting and describing a considerable amount of non-local problems found in nature and also
respecting the fractal structure that characterize them [11, 13, 15]. It is defined to be the convolution
of fractal differential operator with the usual functions (power, exponential and Mittag-Leffler laws)
of fractional calculus. The literature comprises various definitions of the fractal-fractional derivative
depending on the type of law used. Some are given as follow:

Definition 2.1. We consider X ∈ R3, a, b ∈ R, and assume that h(t, x) defined on (a, b)×X is t−fractal
differentiable with the order γ on the interval (a, b) then, the fractal-fractional derivative of h of order
γ in the sense of Riemann-Liouville with power law reads as:

FRpDγ
t h(t, x) =

1
Γ (1 − γ)

∂

∂tγ

∫ t

0
h (ϑ, x) (t − ϑ)−γdϑ, (2.1)
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where ∂
∂tγ h is defined as

∂

∂tγ
h(t0, x) = lim

t→t0

h(t, x) − h(t0, x)
tγ − tγ0

.

The generalized version of (2.1) is defined by

FRpDγ,ς
t h(t, x) =

1
Γ (1 − γ)

∂ς

∂tγ

∫ t

0
h (ϑ, x) (t − ϑ)−γdϑ, (2.2)

with ς > 0 and ∂ς

∂tγ h given by

∂ς

∂tγ
h(t0, x) = lim

t→t0

hς(t, x) − hς(t0, x)
tγ − tγ0

.

Similarly, the Caputo version od that definition can be given:

Definition 2.2. We consider X ∈ R3, a, b ∈ R, and assume that h(t, x) defined on (a, b)×X is t−fractal
differentiable with the order γ on the interval (a, b) then, the fractal-fractional derivative of h of order
γ in the sense of Caputo with power law reads as:

FCpDγ
t h(t, x) =

1
Γ (1 − γ)

∫ t

0

∂

∂ϑγ
h (ϑ, x) (t − ϑ)−γdϑ, (2.3)

with the generalized version

FCpDγ,ς
t h(t, x) =

1
Γ (1 − γ)

∫ t

0

∂ς

∂ϑγ
h (ϑ, x) (t − ϑ)−γdϑ. (2.4)

The following definitions are related to exponential law:

Definition 2.3. We consider X ∈ R3, a, b ∈ R, and assume that h(t, x) defined on (a, b)×X is t−fractal
differentiable with the order γ on the interval (a, b) then, the fractal-fractional derivative of h of order
γ in the sense of Riemann-Liouville with exponential law reads as:

FReDγ
t h(t, x) =

q(γ)
(1 − γ)

∂

∂tγ

∫ t

0
h (ϑ, x) exp

(
−γ(t − ϑ)

1 − γ

)
dϑ, (2.5)

where q(0) = q(1) = 1 with the generalized version

FReDγ,ς
t h(t, x) =

q(γ)
(1 − γ)

∂ς

∂tγ

∫ t

0
h (ϑ, x) exp

(
−γ(t − ϑ)

1 − γ

)
dϑ. (2.6)

Definition 2.4. We consider X ∈ R3, a, b ∈ R, and assume that h(t, x) defined on (a, b)×X is t−fractal
differentiable with the order γ on the interval (a, b) then, the fractal-fractional derivative of h of order
γ in the sense of Caputo with exponential law reads as:

FCeDγ
t h(t, x) =

q(γ)
(1 − γ)

∫ t

0

∂

∂ϑγ
h (ϑ, x) exp

(
−γ(t − ϑ)

1 − γ

)
dϑ, (2.7)

with the generalized version

FCeDγ,ς
t h(t, x) =

q(γ)
(1 − γ)

∫ t

0

∂ς

∂ϑγ
h (ϑ, x) exp

(
−γ(t − ϑ)

1 − γ

)
dϑ. (2.8)
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The following definitions are related to Mittag-Leffler law:

Definition 2.5. We consider X ∈ R3, a, b ∈ R, and assume that h(t, x) defined on (a, b)×X is t−fractal
differentiable with the order γ on the interval (a, b) then, the fractal-fractional derivative of h of order
γ in the sense of Riemann-Liouville with Mittag-Leffler law reads as:

FRmDγ
t h(t, x) =

w(γ)
(1 − γ)

∂

∂tγ

∫ t

0
h (ϑ, x) Eγ

(
−γ(t − ϑ)γ

1 − γ

)
dϑ, (2.9)

where w(γ) is a regularization function. Here the generalized version

FRmDγ,ς
t h(t, x) =

w(γ)
(1 − γ)

∂ς

∂tγ

∫ t

0
h (ϑ, x) Eγ

(
−γ(t − ϑ)γ

1 − γ

)
dϑ. (2.10)

Definition 2.6. We consider X ∈ R3, a, b ∈ R, and assume that h(t, x) defined on (a, b)×X is t−fractal
differentiable with the order γ on the interval (a, b) then, the fractal-fractional derivative of h of order
γ in the sense of Caputo with Mittag-Leffler law reads as:

FCmDγ
t h(t, x) =

w(γ)
(1 − γ)

∫ t

0

∂

∂ϑγ
h (ϑ, x) Eγ

(
−γ(t − ϑ)γ

1 − γ

)
dϑ, (2.11)

where w(γ) is a regularization real function related to the definition and with a more general version
given as

FCmDγ,ς
t h(t, x) =

w(γ)
(1 − γ)

∫ t

0

∂ς

∂ϑγ
h (ϑ, x) Eγ

(
−γ(t − ϑ)γ

1 − γ

)
dϑ. (2.12)

3. Numerical solution with the definition in Caputo sense with exponential law

We use the Definition 2.2 formulated in the previous section and express the numerical solution
for the fractal-fractional differential equations using the predictor-correction method. This scheme
was suggested very recently to help recover some missing terms the scheme suggested by Atangana
and Seda [21]. Hence, we consider a general non-linear equation with fractal-fractional differential
operator given as

{
FReDγ

t Y(t) = f (t,Y(t)),
Y(0) = Y0.

(3.1)

To proceed we convert the equation into Volterra version as

Y(t) = Y(0) +
β

Γ(γ)

∫ t

0
τ1−β f (τ,Y(τ))(t − τ)γ−1dτ.

For simplicity, we set τ1−β f (τ,Y(τ)) = F(τ,Y(τ)). Following the result by [22], we have
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Yn+1 = Y0 + δn+1 +
(∆t)γ

Γ(γ + 1)
F(t0,Y0)[(n + 1)γ − nγ]

+
(∆t)γ

Γ(γ + 2)
[F(t1,Y1) − F(t0,Y0)][(n + 1)γ+1 − nγ+1 − (γ + 1)nγ]

+
(∆t)γ

Γ(γ + 1)
F(tn+1,Y

p
n+1) +

γ(∆t)γ

Γ(γ + 2)

(
F(tn,Yn) − F(tn+1,Y

p
n+1)

)
−

γ(∆t)γ

2Γ(γ + 3)

(
F(tn+1,Y

p
n+1) − 2F(tn,Yn)

)
+ F(tn−1,Yn−1),

(3.2)

where the predictor is given as

Y p
n+1 = Y0 +

(∆t)γ

Γ(γ + 1)

1∑
k=0

F(tk,Yk)[(n − k + 1)γ − (n − k)γ]

+
(∆t)γ

Γ(γ + 2)

1∑
k=0

[F(tk+1,Yk+1) − F(tk,Yk)]
[
(n − k + 1)γ+1

−(n − k)γ+1 − (γ + 1)(n − k)γ
]

+
(∆t)γ

Γ(γ + 1)

n∑
k=2

F(tk−2,Yk−2)[(n − k + 1)γ − (n − k)γ]

+
(∆t)γ

Γ(γ + 2)

n∑
k=2

[F(tk−1,Yk−1) − F(tk−2,Yk−2)]
[
(n − k + 1)γ(n − k + 3 + 2γ)

−(n − k)γ(n − k + 3 + 3γ)
]

+
(∆t)γ

2Γ(γ + 3)

n∑
k=2

[F(tk,Yk) − 2F(tk−1,Yk−1) + F(tk−2,Yk−2)]
[
(n − k + 1)γ

(
2(n − j)2

+(3γ + 10)(n − k) + 2γ2 + 9γ + 12
)
− (n − k)γ

(
2(n − k)2

+(5γ + 10)(n − k) + 6γ2 + 18γ + 12
)]
.

(3.3)

Finally

δn =
(∆t)γ

Γ(γ + 1)

n∑
k=1

[F(tk+1,Yk+1)[(n − k + 1)γ − (n − k)γ]

+
(∆t)γ

Γ(γ + 2)

n∑
k=1

[F(tk+1,Yk+1) − F(tk,Yk)][(n − k + γ)(n − k + 1)γ − (n − k)γ+1]

+
(∆t)γ

2Γ(γ + 3)

n∑
k=1

(F(tk+1,Yk+1) − 2F(tk,Yk) + F(tk−1,Yk−1))
[
(n − k + 1)γ

(
2(n − k)2

−γ(n − k + 1) + 2(n − k)) − (n − k)γ(2(n − k)2 − γ(n − k) + 2(n − k))
]
.

(3.4)
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4. Numerical solution with the definition in Atangana-Baleanu sense with Mittag-Leffler law

Using the Definition 2.5, we consider a general non-linear equation with fractal-fractional
differential operator given as

{
FRmDγ

t Y(t) = f (t,Y(t)),
Y(0) = Y0

(4.1)

Following the same approach, we convert the equation into Volterra version as

Y(t) = Y(0) +
βγ

W(γ)Γ(γ)

∫ t

0
τ1−β f (τ,Y(τ))(t − τ)γ−1dτ +

1 − γ
W(γ)

f (t,Y(t)).

Taking again τ1−β f (τ,Y(τ)) = F(τ,Y(τ)), we obtain

Yn+1 = Y0 +
γ

W(γ)

[
δn+1 +

(∆t)γ

Γ(γ + 1)
F(t0,Y0)[(n + 1)γ − nγ]

]
+

γ

W(γ)
(∆t)γ

Γ(γ + 2)
[F(t1,Y1) − F(t0,Y0)][(n + 1)γ+1 − nγ+1 − (γ + 1)nγ]

+
γ

W(γ)

[
(∆t)γ

Γ(γ + 1)
F(tn+1,Y

p
n+1) +

γ(∆t)γ

Γ(γ + 2)

(
F(tn,Yn) − F(tn+1,Y

p
n+1)

)]
−

γ

W(γ)
γ(∆t)γ

2Γ(γ + 3)

(
F(tn+1,Y

p
n+1) − 2F(tn,Yn)

)
+ F(tn−1,Yn−1)

+
1 − γ
W(γ)

F(tn,Yn)
t1−β ,

(4.2)

where the predictor is given as
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Y p
n+1 = Y0 +

γ

W(γ)
(∆t)γ

Γ(γ + 1)

1∑
k=0

F(tk,Yk)[(n − k + 1)γ − (n − k)γ]

+
γ

W(γ)
(∆t)γ

Γ(γ + 2)

1∑
k=0

[F(tk+1,Yk+1) − F(tk,Yk)]
[
(n − k + 1)γ+1

−(n − k)γ+1 − (γ + 1)(n − k)γ
]

+
γ

W(γ)
(∆t)γ

Γ(γ + 1)

n∑
k=2

F(tk−2,Yk−2)[(n − k + 1)γ − (n − k)γ]

+
γ

W(γ)
(∆t)γ

Γ(γ + 2)

n∑
k=2

[F(tk−1,Yk−1) − F(tk−2,Yk−2)]
[
(n − k + 1)γ(n − k + 3 + 2γ)

−(n − k)γ(n − k + 3 + 3γ)
]

+
γ

W(γ)
(∆t)γ

2Γ(γ + 3)

n∑
k=2

[F(tk,Yk) − 2F(tk−1,Yk−1)

+F(tk−2,Yk−2)]
[
(n − k + 1)γ

(
2(n − j)2

+(3γ + 10)(n − k) + 2γ2 + 9γ + 12
)
− (n − k)γ

(
2(n − k)2

+(5γ + 10)(n − k) + 6γ2 + 18γ + 12
)]

+
1 − γ
W(γ)

F(tn,Yn)
t1−β .

(4.3)

Finally

δn =
γ

W(γ)
(∆t)γ

Γ(γ + 1)

n∑
k=1

[F(tk+1,Yk+1)[(n − k + 1)γ − (n − k)γ]

+
γ

W(γ)
(∆t)γ

Γ(γ + 2)

n∑
k=1

[F(tk+1,Yk+1) − F(tk,Yk)][(n − k + γ)(n − k + 1)γ − (n − k)γ+1]

+
γ

W(γ)
(∆t)γ

2Γ(γ + 3)

n∑
k=1

(F(tk+1,Yk+1) − 2F(tk,Yk) + F(tk−1,Yk−1))
[
(n − k + 1)γ

(
2(n − k)2

−γ(n − k + 1) + 2(n − k)) − (n − k)γ(2(n − k)2 − γ(n − k) + 2(n − k))
]

+
1 − γ
W(γ)

F(tn,Yn)
t1−β .

(4.4)

5. Application to some real life phenomena

We use the schemes proposed in the previous section to solve some nature related models and access
their behavior when they are under the influence of the fractal fractional operator.

5.1. Application 1: The three-dimentional fractal in tornado system

On the system, we analyze and assess here, the impact of the fractal-fractional derivative in
Riemann-Liouville sense with exponential law given in Definition 2.3. To that effect, we combine
it with the three-dimensional tornado system proposed in [10, (42)] to get:
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FReDγ

t x(t) = C − d
x2+y2+r2 ,

FReDγ
t y(t) = a + b(x cos z + y sin z),

FReDγ
t z(t) = z2 − b(x sin z − y cos z),

(5.1)

and 
FReDγ,ς

t x(t) = C − d
x2+y2+r2 ,

FReDγ,ς
t y(t) = a + b(x cos z + y sin z),

FReDγ,ς
t z(t) = z2 − b(x sin z − y cos z).

(5.2)

In order to conveniently solve the combined fractional and fractal system, it is important to associate it
with the following initial conditions:

x(0) = x̃(x), y(0) = ỹ(y), z(0) = z̃(z). (5.3)

Numerical simulations of model (5.1) and (5.3) are shown in Figure 1 to Figure 6 which show
the three-dimensional fractal structures to be in a self-replication process with the influence of the
fractional derivative that extends the self-replication in number and shape as the derivative order varies.
Similar behavior is produced and observed for the model (5.2) and (5.3) as shown in Figure 7 and
Figure 8.

Figure 1. The tornado system representing the model (5.1) and (5.3) for γ = 0.9 and x(0) =

x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) = z̃(z) = 0.01 The other parameters used are a =

2.2, b = 0.9, c = 4, d = 61
2 , r = 1

√
6
.
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Figure 2. Representation of model (5.1)-(5.3) for γ = 0.7 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01 The other parameters used are a = 2.2, b = 0.9, c = 4, d =
61
2 , r = 1

√
6
. The dynamics show three-dimensional fractal structures in a self-replication

process with the influence of the fractional derivative that extends the self-replication in
number and shape as the derivative order varies.

Figure 3. Representation of model (5.1)-(5.3) for γ = 0.4 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01 The other parameters used are a = 2.2, b = 0.9, c = 4, d =
61
2 , r = 1

√
6
. The dynamics show three-dimensional fractal structures in a self-replication

process with the influence of the fractional derivative that further extends the self-replication
in number and shape as the derivative order varies.
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Figure 4. Representation of model (5.1)-(5.3) for γ = 0.4 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01 The other parameters used are a = 2.2, b = 0.9, c =

14, d = 61
2 , r = 1

√
9
. The dynamics show three-dimensional fractal structures in a self-

replication process with the influence of the fractional derivative that further extends the
self-replication in number and shape as the derivative order varies.

Figure 5. Representation of model (5.1)-(5.3) for γ = 0.3 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01 The other parameters used are a = 2.2, b = −0.9, c =

14, d = 61
2 , r = 1

√
9
. The dynamics show three-dimensional fractal structures in a self-

replication process with the influence of the fractional derivative that further extends the
self-replication in number and shape as the derivative order varies.
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Figure 6. Representation of model (5.1)–(5.3) for γ = 0.3 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01 The other parameters used are a = 2.2, b = −0.9, c =

14, d = 61
2 , r = 1

√
9
. The dynamics show three-dimensional fractal structures in a self-

replication process with the influence of the fractional derivative that further extends the
self-replication in number and shape as the derivative order varies.

Figure 7. Representation of model (5.2) and (5.3) for γ = 0.9, ς = 1 and x(0) = x̃(x) =

0.2, y(0) = ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 2.2, b =

0.9, c = 4, d = 61
2 , r = 1

√
6
. The dynamics show three-dimensional fractal structures in a

self-replication process with the influence of the fractional derivative that extends the self-
replication in number and shape as the derivative order varies.
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Figure 8. Representation of model (5.2) and (5.3) for γ = 0.9, ς = 0.8 and x(0) = x̃(x) =

0.2, y(0) = ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 2.2, b =

0.9, c = 4, d = 61
2 , r = 1

√
6
. The dynamics show three-dimensional fractal structures in a

self-replication process with the influence of the fractional derivative that further extends the
self-replication in number and shape as the derivative order varies.

5.2. Application 2: The three-dimentional fractal in Dubai superposed roads mapping system

we perform another application by combining the Definition 2.5 to the three-dimensional
superposed roads mapping system proposed in [10, (45)] to get


FRmDγ

t x(t) = y − sign(x) sin
(
log |bx − c|)

)
arctan

(
(cx − b)2

)
,

FRmDγ
t y(t) = a − x,

FRmDγ
t z(t) = sign(z)xy − 1

10z + x,
(5.4)

with the following initial conditions:

x(0) = x̃(x), y(0) = ỹ(y), z(0) = z̃(z). (5.5)

Numerical simulations of model (5.4) and (5.5) are shown in Figure 9 to Figure 12 which, again,
show the three-dimensional fractal structures of the superposed roads mapping system to be in a self-
replication process with the influence of the fractional derivative that extends the self-replication in
number and shape as the derivative order varies.

AIMS Mathematics Volume 7, Issue 2, 1982–2000.



1994

Figure 9. The superposed roads mapping system representing the model (5.4)-(5.5) for γ =

0.9 and x(0) = x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters
used are a = 34, b = 1, c = 5.

Figure 10. Representation of model (5.4)-(5.5) for γ = 0.8 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 34, b = 1, c = 5.
The dynamics show three-dimensional fractal structures in a self-replication process with the
influence of the fractional derivative that extends the self-replication in number and shape as
the derivative order varies.
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Figure 11. Representation of model (5.4)-(5.5) for γ = 0.6 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 34, b = 1, c = 5.
The dynamics show three-dimensional fractal structures in a self-replication process with the
influence of the fractional derivative that further extends the self-replication in number and
shape as the derivative order varies.

Figure 12. Representation of model (5.4)-(5.5) for γ = 0.4 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 34, b = −2, c = −5.
The dynamics show three-dimensional fractal structures in a self-replication process with the
influence of the fractional derivative that further extends the self-replication in number and
shape as the derivative order varies.
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5.3. Application 3: The three-dimentional fractal in trinition system

lastly, we combine the Definition 2.3 to the trinition system defined in [10, (26)] to obtain


FReDγ

t x(t) = x2 − y2 + z2 − 2yz + ax,
FReDγ

t y(t) = 2xy + ay,
FReDγ

t z(t) = 2xsign(z) + az − sign(c),
(5.6)

with the following initial conditions:

x(0) = x̃(x), y(0) = ỹ(y), z(0) = z̃(z). (5.7)

Numerical simulations of model (5.6) and (5.7) are shown in Figure 13 to Figure 16 which, again,
show the three-dimensional fractal structures of the trinition system to be in a self-replication process
with the influence of the fractional derivative that extends the self-replication in number and shape as
the derivative order varies.

Figure 13. The trinition system representing the model (5.6) and (5.7) for γ = 0.9 and
x(0) = x̃(x) = 0.2, y(0) = ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are
a = 13, c = 5.
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Figure 14. Representation of model (5.6)-(5.7) for γ = 0.7 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 13, c = 5. The dynamics
show three-dimensional fractal structures in a self-replication process with the influence of
the fractional derivative that extends the self-replication in number and shape as the derivative
order varies.

Figure 15. Representation of model (5.6) and (5.7) for γ = 0.5 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 13, c = 5. The dynamics
show three-dimensional fractal structures in a self-replication process with the influence of
the fractional derivative that further extends the self-replication in number and shape as the
derivative order varies.
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Figure 16. Representation of model (5.6)–(5.7) for γ = 0.3 and x(0) = x̃(x) = 0.2, y(0) =

ỹ(y) = 0.02, z(0) = z̃(z) = 0.01. The other parameters used are a = 13, c = 5. The dynamics
show three-dimensional fractal structures in a self-replication process with the influence of
the fractional derivative that further extends the self-replication in number and shape as the
derivative order varies.

6. Concluding remarks

Existence of mathematically produced three-dimensional fractal structures with fractional impact
has been shown in this paper. Indeed, we have used the fractal operator combined to the fractional
operator with both exponential and Mittag-leffler laws to analyze and solve generalized three-
dimensional systems related to real life phenomena. Related numerical solutions have been provided in
each case and applications to some related systems have been performed. The three-dimensional fractal
structures is proven to be in a self-replication process with the influence of the fractional derivative
that extends the self-replication in number and shape as the derivative order γ varies. This paper
improves the preceding ones as it opens doors for further investigations that shall lead to the analysis
and development of higher dimensional fractal structures produced by mathematical models.
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