Mathematics

Research article

Results on the solutions of several second order mixed type partial differential difference equations

Wenju Tang ${ }^{1}$, Keyu Zhang ${ }^{2, *}$ and Hongyan Xu $^{3, *}$

${ }^{1}$ School of Informatics and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi, 333403, China
${ }^{2}$ School of mathematics, Qilu Normal university, Jinan, Shandong, 250200, China
${ }^{3}$ School of Mathematics and Computer Science, Shangrao Normal University, Shangrao Jiangxi, 334001, China

* Correspondence: Email: sduzky @ 163.com, xhyhhh@ 126.com; Tel: +13979893383, +13793178006; Fax: +13979893383, +13793178006.

Abstract

This article is concerned with the existence of entire solutions for the following complex second order partial differential-difference equation $$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{l}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{k}=1
$$ where c_{1}, c_{2} are constants in \mathbb{C} and k, l are positive integers. In addition, we also investigate the forms of finite order transcendental entire solutions for several complex second order partial differentialdifference equations of Fermat type, and obtain some theorems about the existence and the forms of solutions for the above equations. Meantime, we give some examples to explain the existence of solutions for some theorems in some cases. Our results are some generalizations of the previous theorems given by Qi [23], Xu and Cao [35], Liu, Cao and Cao [17].

Keywords: Nevanlinna theory; Fermat type; entire solution; partial differential difference equation Mathematics Subject Classification: 30D35, 35M30, 32W50

1. Introduction and main results

For positive integers m, n, the equation $x^{m}+y^{n}=1$ is called as the Fermat equation. In 1995, A. Wiles and R. Taylor [28,29] pointed out that this equation does not admit nontrivial solutions in rational numbers for $m=n \geq 3$, and this equation does exist nontrivial rational solution for $m=n=2$.

The functional equation $f(z)^{m}+g(z)^{n}=1$ can be regarded as the Fermat type equation. It has attracted the attention of many mathematics workers in the studying of Fermat type equation. We know that the Fermat type equation has no transcendental meromorphic solutions when $n=m \geq 4$ (see [5]); and this equation has no transcendental entire solutions when $n=m \geq 3$ (see [21]). In [10], Iyer pointed out that the entire solutions are of the form $f=\cos a(z), g=\sin a(z)$, where $m=n=2$ and $a(z)$ is an entire function, no other forms exist. In [36], Yang discussed the Fermat type functional equation

$$
\begin{equation*}
a(z) f(z)^{n}+b(z) g(z)^{m}=1, \tag{1.1}
\end{equation*}
$$

where $a(z), b(z)$ are small functions with respect to f and obtained
Theorem A. (see [36]). Let m, n be positive integers satisfying $1 / m+1 / n<1$. Then there are no nonconstant entire solutions f and g that satisfy (1.1).

When g is replaced by f^{\prime} or a differential polynomial of f and $m=n=2$ for Eq (1.1), Yang and Li [37] in 2004 studied the Malmquist type nonlinear differential equational by using Nevanlinna theory of meromorphic functions, and obtained
Theorem B. (see [37]). Let a_{1}, a_{2} and a_{3} be nonzero meromorphic functions. Then a necessary condition for the differential equation

$$
a_{1} f^{2}+a_{2} f^{\prime 2}=a_{3} .
$$

to have a transcendental meromorphic solution satisfying $T\left(r, a_{k}\right)=S(r, f), k=1,2,3$, is $\frac{a_{1}}{a_{3}} \equiv$ constant.
Theorem C. (see [37]). Let n be a positive integer, $b_{0}, b_{1}, \ldots, b_{n-1}$ be constants, b_{n} be a non-zero constant and let $L(f)=\sum_{k=0}^{n} b_{k} f^{(k)}$. Then the transcendental meromorphic solution of the following equation

$$
\begin{equation*}
f(z)^{2}+L(f)^{2}=1 \tag{1.2}
\end{equation*}
$$

must have the form $f(z)=\frac{1}{2}\left(P e^{\lambda z}+\frac{1}{P} e^{-\lambda z}\right)$, where $e^{A}=P, P$ is a non-zero constant and λ satisfies the following equations:

$$
\sum_{k=0}^{n} b_{k} \lambda^{k}=\frac{1}{i}, \quad \sum_{k-0}^{n} b_{k}(-\lambda)^{k}=-\frac{1}{i} .
$$

Remark 1.1. Let $L(f)=f^{(n)}(z)$. From Theorem C, we can see that if n is an odd, then Eq (1.2) has transcendental entire solutions. If n is an even, then $E q(1.2)$ has no transcendental entire solutions.

Over the past two decades, with the help of difference Nevanlinna theory for meromorphic functions (see $[4,6,7]$), the study of the properties of solutions for complex difference equations and complex differential-difference equations has become more and more active, and a series of literatures concerning the existence and forms of solutions for some equations have sprung up (including [15, 16, 18, 19, 23, 30-33]).

When $L(f)$ is replaced by $f(z+c)$ in $\mathrm{Eq}(1.2)$, Liu [15] in 2009 investigated the entire solutions of the equation $f(z)^{2}+f(z+c)^{2}=1$ by using the difference Nevanlinna theory for meromorphic functions and pointed out that the finite order transcendental entire solutions $f(z)$ of the equation $f(z)^{2}+f(z+c)^{2}=1$ must satisfy $f(z)=\frac{1}{2}\left(h_{1}(z)+h_{2}(z)\right)$, where $\frac{h_{1}(z+c)}{h_{1}(z)}=i, \frac{h_{2}(z+c)}{h_{2}(z)}=-i$ and $h_{1}(z) h_{2}(z)=1$. Later, Liu, Cao
and Cao [17] in 2012 studied the existence of solutions for some complex difference equations and obtained

Theorem D. (see [17, Theorem 1.1]). The transcendental entire solutions with finite order of the equation $f(z)^{2}+f(z+c)^{2}=1$ must satisfy $f(z)=\sin (A z+B)$, where B is a constant and $A=\frac{(4 k+1) \pi}{2 c}, k$ is an integer.
Theorem E. (see [17, Theorem 1.3]). The transcendental entire solutions with finite order of

$$
f^{\prime}(z)^{2}+f(z+c)^{2}=1,
$$

must satisfy $f(z)=\sin (z \pm B i)$, where B is a constant and $c=2 k \pi$ or $c=(2 k+1) \pi, k$ is an integer.
In 2019, Liu and Gao [20] further studied the entire solutions of second order differential and difference equation when $f^{\prime}(z)$ is replaced by $f^{\prime \prime}(z)$ in Theorem E and obtained

Theorem F. (see [20, Theorem 2.1]). Suppose that f is a transcendental entire solution with finite order of the complex differential-difference equation

$$
f^{\prime \prime}(z)^{2}+f(z+c)^{2}=Q(z)
$$

then $Q(z)=c_{1} c_{2}$ is a constant, and $f(z)$ satisfies

$$
f(z)=\frac{c_{1} e^{a z+b}+c_{2} e^{-a z-b}}{2 a^{2}}
$$

where $a, b \in \mathbb{C}$, and $a^{4}=1, c=\frac{\log \left(-i a^{2}\right)+2 k \pi i}{a}, k \in \mathbb{Z}$.
Let us recall some conclusions on the Fermat type equations in several complex variables. Hereinafter, let $z+w=\left(z_{1}+w_{1}, z_{2}+w_{2}\right)$ for any $z=\left(z_{1}, z_{2}\right), w=\left(w_{1}, w_{2}\right)$. For the equation $f^{2}+g^{2}=1$ in $\mathbb{C}^{2}, \mathrm{Li}[13]$ showed that meromorphic solutions f, g must be constant if and only if $\frac{\partial f}{\partial z_{2}}$ and $\frac{\partial g}{\partial z_{1}}$ have the same zeros. When $f=\frac{\partial u}{\partial z_{1}}$ and $g=\frac{\partial u}{\partial z_{2}}$ in $f^{2}+g^{2}=1$, then any entire solutions of the equation $\left(\frac{\partial u}{\partial z_{1}}\right)^{2}+\left(\frac{\partial u}{\partial z_{2}}\right)^{2}=1$ in \mathbb{C}^{2} are necessarily linear ([11]), which was originally investigated by [14, 26].

Recently, Xu and Cao [34] investigated the existence of the entire and meromorphic solutions for some Fermat-type partial differential-difference equations and obtained the following theorems.
Theorem G. (see [34, Theorem 1.1]). Let $c=\left(c_{1}, c_{2}\right)$ be a constant in \mathbb{C}^{2}. Then the Fermat-type partial differential-difference equation

$$
\left(\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{m}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{n}=1
$$

doesn't have any transcendental entire solution with finite order, where m and n are two distinct positive integers.

Remark 1.2. In fact, the equation

$$
\begin{equation*}
\left(\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+f\left(z_{1}+1, z_{2}+1\right)=1 \tag{1.3}
\end{equation*}
$$

admits a finite order transcendental entire solution. For example, let

$$
f(z)=\frac{5}{4}-\frac{1}{4} z_{1}^{2}+\frac{1}{2}\left(z_{1}-1\right) z_{2}+\left(z_{1}-1\right) e^{2 \pi i z_{2}}-\left(\frac{1}{2}\left(z_{2}-1\right)+e^{2 \pi i z_{2}}\right)^{2},
$$

then $f(z)$ is a finite order transcendental entire solution of Eq (1.3).
Theorem H. (see [34, Theorem 1.2]). Let $c=\left(c_{1}, c_{2}\right)$ be a constant in \mathbb{C}^{2}. Then any transcendental entire solutions with finite order of the partial differential-difference equation

$$
\left(\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1
$$

has the form of $f\left(z_{1}, z_{2}\right)=\sin \left(A z_{1}+B\right)$, where A is a constant on \mathbb{C} satisfying $A e^{i A c_{1}}=1$, and B is a constant on \mathbb{C}; in the special case whenever $c_{1}=0$, we have $f\left(z_{1}, z_{2}\right)=\sin \left(z_{1}+B\right)$.

In view of Theorem G and Remark 1.2, one question can be raised as follows.
Question 1.1. How to deform the equation can guarantee that the conclusion of Theorem G holds under the condition $m \neq n$?

The forms of equations in Theorem F and Theorem G prompts us to consider the following problems.
Question 1.2. What can be said about the solution of equation if $\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}$ is replaced by

$$
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}
$$

in Theorem G?
Question 1.3. What can be said about the existence and the forms of the entire solution of the equation when $\frac{\partial f\left(z_{1}, z_{2}\right)}{\partial z_{1}}$ is replaced by

$$
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}} \text { or } \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}
$$

in Theorem H?
Motivated by Questions 1.1-1.3, we investigate the existence and the forms of solutions for some second order partial differential-difference equations, by utilizing the Nevanlinna theory and difference Nevanlinna theory of several complex variables (see [3,12]). We give some existence theorems and the forms of entire solutions for some partial differential-difference equations, and also list some examples. Our results are some generalizations of the previous theorems given by Xu and Cao, Liu, Cao and Cao [17, 34].

The first theorem is as follows.
Theorem 1.1. If $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$, and l, k be two distinct positive integers, then the Fermat-type partial differential-difference equation

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{l}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{k}=1 \tag{1.4}
\end{equation*}
$$

does not have any transcendental entire solution with finite order.

Remark 1.3. In fact, on the basis of the proof of Theorem 1.1, it is easily to get that the conclusions of Theorem 1.1 still hold if $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}$ or $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}$ is replaced by $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}$.

Next, we proceed to study the existence and forms of entire solutions of $\mathrm{Eq}(1.4)$ for $l=k=2$.
Theorem 1.2. Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$ and $c_{2} \neq 0$. If the second order Fermat-type partial differentialdifference equation

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}\right)^{2}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1 \tag{1.5}
\end{equation*}
$$

admits a transcendental entire solution with finite order $f\left(z_{1}, z_{2}\right)$, then $f\left(z_{1}, z_{2}\right)$ has the following form

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}+e^{-i\left(a_{12}+a_{2} z_{2}+B\right)}}{2}
$$

where $\eta, c_{1}, c_{2}, a_{1}, a_{2}, B$ are constants in \mathbb{C}, and satisfy one of the following cases
(i) $L(c)=2 k \pi+\frac{1}{2} \pi, a_{1}^{2}=1$, and $\eta=-1$, where $L(c):=a_{1} c_{1}+a_{2} c_{2}$, here and below k is a integer;
(ii) $L(c)=2 k \pi-\frac{1}{2} \pi, a_{1}^{2}=-1$, and $\eta=1$.

Two examples are given to explain the existence of solutions for Eq (1.5).
Example 1.1. Let $a=\left(a_{1}, a_{2}\right)=(1,-1), c=\left(c_{1}, c_{2}\right)=\left(\pi, \frac{1}{2} \pi\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=-\frac{e^{i\left(z_{1}-z_{2}+B\right)}+e^{-i\left(z_{1}-z_{2}+B\right)}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}\right)^{2}+f\left(z_{1}+\pi, z_{2}+\frac{1}{2} \pi\right)^{2}=1
$$

Example 1.2. Let $a=\left(a_{1}, a_{2}\right)=(i, 1), c=\left(c_{1}, c_{2}\right)=\left(\pi i, \frac{1}{2} \pi\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=\frac{e^{i\left(i z_{1}+z_{2}+B\right)}+e^{-i\left(i z_{1}+z_{2}+B\right)}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}\right)^{2}+f\left(z_{1}+2 \pi i, z_{2}-\frac{1}{2} \pi\right)^{2}=1
$$

Corollary 1.1. Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$ and $c_{1} \neq 0$. If the second order Fermat-type partial differentialdifference equation

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{2}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1 \tag{1.6}
\end{equation*}
$$

admits a transcendental entire solution with finite order $f\left(z_{1}, z_{2}\right)$, then $f\left(z_{1}, z_{2}\right)$ has the following form

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}+e^{-i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}}{2}
$$

where $\eta, c_{1}, c_{2}, a_{1}, a_{2}, B$ are constants in \mathbb{C}, and satisfy one of the following cases
(i) $L(c)=2 k \pi+\frac{1}{2} \pi, a_{2}^{2}=1$, and $\eta=-1$, where $L(c):=a_{1} c_{1}+a_{2} c_{2}$;
(ii) $L(c)=2 k \pi-\frac{1}{2} \pi, a_{2}^{2}=-1$, and $\eta=1$.

Theorem 1.3. Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$ and $c_{1} c_{2} \neq 0$. If the second order Fermat-type partial differentialdifference equation

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}\right)^{2}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1 \tag{1.7}
\end{equation*}
$$

admits a transcendental entire solution with finite order $f\left(z_{1}, z_{2}\right)$, then $f\left(z_{1}, z_{2}\right)$ has the following form

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}+e^{-i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}}{2}
$$

where $\eta, c_{1}, c_{2}, a_{1}, a_{2}, B$ are constants in \mathbb{C}, and satisfy one of the following cases
(i) $L(c)=2 k \pi+\frac{1}{2} \pi, a_{1} a_{2}=1$, and $\eta=-1$;
(ii) $L(c)=2 k \pi-\frac{1}{2} \pi, a_{1} a_{2}=-1$, and $\eta=1$.

Theorem 1.4. Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$ and $c_{1} \neq 0, c_{2} \neq 0$. If the second order Fermat-type partial differential-difference equation

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{2}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1 \tag{1.8}
\end{equation*}
$$

admits a transcendental entire solution with finite order $f\left(z_{1}, z_{2}\right)$, then $f\left(z_{1}, z_{2}\right)$ has the following form

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}+e^{-i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}}{2}
$$

where $\eta, c_{1}, c_{2}, a_{1}, a_{2}, B$ are constants in \mathbb{C}, and satisfy one of the following cases
(i) $L(c)=2 k \pi+\frac{1}{2} \pi, a_{1}^{2}+a_{2}^{2}=1$, and $\eta=-1$;
(ii) $L(c)=2 k \pi-\frac{1}{2} \pi, a_{1}^{2}+a_{2}^{2}=-1$, and $\eta=1$.

Theorem 1.5. Let $c=\left(c_{1}, c_{2}\right) \in \mathbb{C}^{2}$ and $c_{1} \neq 0, c_{2} \neq 0$. If the second order Fermat-type partial differential-difference equation

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}\right)^{2}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{2}=1 \tag{1.9}
\end{equation*}
$$

admits a transcendental entire solution with finite order $f\left(z_{1}, z_{2}\right)$, then $f\left(z_{1}, z_{2}\right)$ has the following form

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}+e^{-i\left(a_{1} z_{1}+a_{2} z_{2}+B\right)}}{2}
$$

where $\eta, c_{1}, c_{2}, a_{1}, a_{2}, B$ are constants in \mathbb{C}, and satisfy one of the following cases
(i) $L(c)=2 k \pi+\frac{1}{2} \pi, a_{1}\left(a_{1}+a_{2}\right)=1$, and $\eta=-1$;
(ii) $L(c)=2 k \pi-\frac{1}{2} \pi, a_{1}\left(a_{1}+a_{2}\right)=-1$, and $\eta=1$.

Remark 1.4. From Theorems 1.1-1.5, the Eq (1.4) has no nonconstant entire solution for the case $l=k>2$, and has no nonconstant meromorphic solutions for the case $l=k>3$. Hence based on Theorems 1.1-1.5, an open question is: What will happen for the meromorphic solutions of the Fermat type partial difference-differential equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{3}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{3}=1
$$

in \mathbb{C}^{2} ?
Similar to Examples 1.1 and 1.2, it is easy to give some solutions for Eqs (1.7), (1.8) and (1.9).
Example 1.3. Let $a=\left(a_{1}, a_{2}\right)=(i,-i), c=\left(c_{1}, c_{2}\right)=\left(-\pi i,-\frac{1}{2} \pi i\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=-\frac{e^{-\left(z_{1}-z_{2}+B\right)}+e^{\left(z_{1}-z_{2}+B\right)}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}\right)^{2}+f\left(z_{1}-\pi i, z_{2}-\frac{1}{2} \pi i\right)^{2}=1
$$

Example 1.4. Let $a=\left(a_{1}, a_{2}\right)=(1,-1), c=\left(c_{1}, c_{2}\right)=\left(\frac{1}{2} \pi, \pi\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=\frac{e^{i\left(z_{1}-z_{2}+B\right)}+e^{-i\left(z_{1}-z_{2}+B\right)}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}\right)^{2}+f\left(z_{1}+\frac{1}{2} \pi, z_{2}+\pi\right)^{2}=1
$$

Example 1.5. Let $a=\left(a_{1}, a_{2}\right)=(\sqrt{2}, i), c=\left(c_{1}, c_{2}\right)=\left(\frac{\pi}{\sqrt{2}}, \frac{\pi i}{2}\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=-\frac{e^{i\left(\sqrt{2} z_{1}+i z_{2}+B\right)}+e^{-i\left(\sqrt{2} z_{1}+i z_{2}+B\right)}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{2}+f\left(z_{1}+\frac{\pi}{\sqrt{2}}, z_{2}+\frac{\pi i}{2}\right)^{2}=1
$$

Example 1.6. Let $a=\left(a_{1}, a_{2}\right)=(\sqrt{2} i, 1), c=\left(c_{1}, c_{2}\right)=\left(\frac{\sqrt{2}}{2} \pi i, \frac{\pi}{2}\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=\frac{e^{i\left(\sqrt{2} i z_{1}+z_{2}+B\right)}+e^{-i\left(\sqrt{2} i z_{1}+z_{2}+B\right)}}{2} .
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{2}+f\left(z_{1}+\frac{\sqrt{2}}{2} \pi i, z_{2}+\frac{\pi}{2}\right)^{2}=1
$$

Example 1.7. Let $a=\left(a_{1}, a_{2}\right)=(i,-2 i), c=\left(c_{1}, c_{2}\right)=\left(-\pi i,-\frac{\pi i}{4}\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=-\frac{e^{-\left(z_{1}-2 z_{2}\right)+B}+e^{z_{1}-2 z_{2}-B}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}\right)^{2}+f\left(z_{1}-\pi i, z_{2}-\frac{\pi i}{4}\right)^{2}=1
$$

Example 1.8. Let $a=\left(a_{1}, a_{2}\right)=(1,-2), c=\left(c_{1}, c_{2}\right)=\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, and $B \in \mathbb{C}$. Thus, the function

$$
f\left(z_{1}, z_{2}\right)=\frac{e^{i\left(z_{1}-2 z_{2}+B\right)}+e^{-i\left(z_{1}-2 z_{2}+B\right)}}{2}
$$

satisfies the following equation

$$
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1} \partial z_{2}}\right)^{2}+f\left(z_{1}+\frac{\pi}{2}, z_{2}+\frac{\pi}{2}\right)^{2}=1
$$

2. Proof of Theorem 1.1

To prove Theorem 1.1, the following lemmas should be required.
Lemma 2.1. ([2]). Let f be a nonconstant meromorphic function on \mathbb{C}^{n} and let $I=\left(i_{1}, \ldots, i_{n}\right)$ be a multi-index with length $|I|=\sum_{j=1}^{n} i_{j}$. Assume that $T\left(r_{0}, f\right) \geq$ efor some r_{0}. Then

$$
m\left(r, \frac{\partial^{I} f}{f}\right)=S(r, f)
$$

holds for all $r \geq r_{0}$ outside a set $E \subset(0,+\infty)$ of finite logarithmic measure $\int_{E} \frac{d t}{t}<\infty$, where $\partial^{I} f=$ $\frac{\partial^{i^{l} f} f}{\partial z_{1}^{i_{1}} \cdots \cdot d z_{n}^{i_{n}^{n}}}$.
Lemma 2.2. ($[3,12])$. Let f be a nonconstant meromorphic function on \mathbb{C}^{n} such that $f(0) \neq 0, \infty$, and let $\varepsilon>0$. If $\sigma_{2}(f):=\sigma<1$, then

$$
m\left(r, \frac{f(z)}{f(z+c)}\right)=o\left(\frac{T_{f}(r)}{r^{1-\sigma-\varepsilon}}\right),
$$

holds for all $r \geq r_{0}$ outside a set $E \subset(0,+\infty)$ of finite logarithmic measure $\int_{E} \frac{d t}{t}<\infty$, where

$$
\sigma_{2}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{+} \log ^{+} T_{f}(r)}{\log r}
$$

Remark 2.1. In view of Lemma 2.2, one can get that if f is a nonconstant meromorphic function with finite order on \mathbb{C}^{n} such that $f(0) \neq 0, \infty$, for $c \in \mathbb{C}^{n}$, then

$$
m\left(r, \frac{f(z)}{f(z+c)}\right)+m\left(r, \frac{f(z+c)}{f(z)}\right)=S(r, f),
$$

where $S(r, f)$ denotes any quantity satisfying $S(r, f)=o(T(r, f))$ as r sufficiently large outside possibly a set E of r with finite Lebesgue measure.

The proof of Theorem 1.1: The proof of Theorem 1.1 is very similar to the argument as in Ref. [35]. Assume that f is a finite order transcendental entire solution of $\mathrm{Eq}(1.4)$, then $f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)$ is transcendental. Thus, in view of (1.4), $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}$ is also transcendental. Here, two cases will be considered below.

Case 1. $k>l$. Thus, it follows from Lemma 2.2 that

$$
\begin{equation*}
m\left(r, \frac{f\left(z_{1}, z_{2}\right)}{f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right)=S(r, f) \tag{2.1}
\end{equation*}
$$

holds for all $r>0$ outside of a possible exceptional set $E \subset[1,+\infty)$ with finite logarithmic measure $\int_{E} \frac{d t}{t}<\infty$. Thus, by (2.1) and combining with the properties of $m(r, f)$, we can deduce that

$$
\begin{align*}
T\left(r, f\left(z_{1}, z_{2}\right)\right) & =m\left(r, f\left(z_{1}, z_{2}\right)\right)=m\left(r, \frac{f\left(z_{1}, z_{2}\right)}{f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)} f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right) \\
& \leq m\left(r, \frac{f\left(z_{1}, z_{2}\right)}{f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right)+m\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right)+\log 2 \\
& =m\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right)+\log 2+S(r, f) \\
& =T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right)+\log 2+S(r, f), \tag{2.2}
\end{align*}
$$

for all $r \notin E$. In view of (2.2), by applying Lemma 2.1 and the Mokhon'ko theorem in several complex variables [8, Theorem 3.4], we have

$$
\begin{align*}
k T\left(r, f\left(z_{1}, z_{2}\right)\right) & \leq k T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right)+S(r, f) \\
& =T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{k}\right)+S(r, f) \\
& =T\left(r,\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)-1\right)+S(r, f) \\
& =l T\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)+S(r, f) \\
& =\operatorname{lm}\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)+S(r, f) \\
& \leq l\left(m\left(r, \frac{\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}}{f_{1}\left(z_{1}, z_{2}\right)}\right)+m\left(r, f\left(z_{1}, z_{2}\right)\right)\right)+\log 2+S(r, f) \\
& =l T\left(r, f\left(z_{1}, z_{2}\right)\right)+\log 2+S(r, f), \tag{2.3}
\end{align*}
$$

for all $r \notin E$. This means

$$
\begin{equation*}
(k-l) T\left(r, f\left(z_{1}, z_{2}\right)\right) \leq \log 2+S(r, f), \quad r \notin E . \tag{2.4}
\end{equation*}
$$

Since f is transcendental, so this is a contradiction.
Case 2. $l>k \geq 2$. Then $\frac{1}{l}+\frac{1}{k} \leq \frac{2}{k}<1$. Thus, it follows that $l>\frac{k}{k-1}$. In view of the Nevanlinna second fundamental theorem, Lemma 2.2, and Eq (1.4), we have

$$
(l-1) T\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)
$$

$$
\begin{align*}
& \leq \bar{N}\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)+\sum_{q=1}^{l} \bar{N}\left(r, \frac{1}{\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}-w_{q}}\right) \\
& +S\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{l}-1}\right)+S\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right)+S(r, f) \\
& \leq T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right)+S(r, f), \tag{2.5}
\end{align*}
$$

where w_{q} is a root of $w^{l}-1=0$.
On the other hand, in view of Eq (1.4), and by applying the Mokhon'ko theorem in several complex variables [8, Theorem 3.4], it yields that

$$
\begin{align*}
l T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right) & =T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)^{l}\right)+S(r, f) \\
& =T\left(r,\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{k}-1\right)+S(r, f) \\
& =k T\left(r, \frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)+S(r, f) . \tag{2.6}
\end{align*}
$$

In view of (2.5)-(2.6) and $l>\frac{k}{k-1}$, it follows

$$
\left(l-\frac{k}{k-1}\right) T\left(r, f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right) \leq S(r, f) .
$$

This is impossible since f is transcendental.
Case 3. $l>k=1$. Then it follows

$$
\begin{equation*}
\left(\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}\right)^{l}+f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=1 \tag{2.7}
\end{equation*}
$$

Differentiating this equation for z_{1}, z_{2}, respectively, we have

$$
l\left(\frac{\partial^{2} f}{\partial z_{1}^{2}}+\frac{\partial^{2} f}{\partial z_{2}^{2}}\right)^{l-1} Q(f)=-\left(\frac{\partial f(z+c)}{\partial z_{1}}+\frac{\partial f(z+c)}{\partial z_{2}}\right)
$$

where $Q(f)$ is a differential polynomial in $\frac{\partial f}{\partial z_{1}}$ and $\frac{\partial f}{\partial z_{2}}$ of the form

$$
Q(f)=\left(\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{2}}\right)\left(\frac{\partial^{2} f}{\partial z_{1}^{2}}+\frac{\partial^{2} f}{\partial z_{2}^{2}}\right) .
$$

Divide both sides of the above equation by f^{l}, it follows that

$$
\begin{equation*}
l\left(\frac{\frac{\partial^{2} f}{\partial z_{1}^{2}}+\frac{\partial^{2} f}{\partial z_{2}^{2}}}{f}\right)^{l-1} \frac{Q(f)}{f}=-\frac{\frac{\partial f(z+c)}{\partial z_{1}}+\frac{\partial f(z+c)}{\partial z_{2}}}{f} \frac{1}{f^{l-1}} . \tag{2.8}
\end{equation*}
$$

By Lemmas 3.1 and 2.2, we have

$$
\begin{equation*}
m\left(r, \frac{\frac{\partial^{2} f}{\partial z_{1}^{2}}+\frac{\partial^{2} f}{\partial z_{2}^{2}}}{f}\right)=S(r, f), m\left(r, \frac{Q(f)}{f}\right)=S(r, f) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(r, \frac{\frac{\partial f(z+c)}{\partial z_{1}}+\frac{\partial f(z+c)}{\partial z_{2}}}{f}\right)=S(r, f) . \tag{2.10}
\end{equation*}
$$

Thus, in view of (2.8)-(2.10), it follows

$$
m\left(r, \frac{1}{f^{l-1}}\right)=S(r, f)
$$

which is a contradiction with the assumption of f being transcendental and $l>1$.
Therefore, this completes the proof of Theorem 1.1.

3. Proofs of Theorems $\mathbf{1 . 2 - 1 . 5}$

The following lemmas play the key roles in proving Theorems 1.2-1.5.
Lemma 3.1. ([9, Lemma 3.1]). Let $f_{j}(\not \equiv 0), j=1,2,3$, be meromorphic functions on \mathbb{C}^{m} such that f_{1} is not constant, and $f_{1}+f_{2}+f_{3}=1$, and such that

$$
\sum_{j=1}^{3}\left\{N_{2}\left(r, \frac{1}{f_{j}}\right)+2 \bar{N}\left(r, f_{j}\right)\right\}<\lambda T\left(r, f_{1}\right)+O\left(\log ^{+} T\left(r, f_{1}\right)\right),
$$

for all r outside possibly a set with finite logarithmic measure, where $\lambda<1$ is a positive number. Then either $f_{2}=1$ or $f_{3}=1$.
Remark 3.1. Here, $N_{2}\left(r, \frac{1}{f}\right)$ is the counting function of the zeros of f in $|z| \leq r$, where the simple zero is counted once, and the multiple zero is counted twice.

Lemma 3.2. ($[25,27])$. For an entire function F on $\mathbb{C}^{n}, F(0) \neq 0$ and put $\rho\left(n_{F}\right)=\rho<\infty$. Then there exist a canonical function f_{F} and a function $g_{F} \in \mathbb{C}^{n}$ such that $F(z)=f_{F}(z) e^{g_{F}(z)}$. For the special case $n=1, f_{F}$ is the canonical product of Weierstrass.
Remark 3.2. Here, denote $\rho\left(n_{F}\right)$ to be the order of the counting function of zeros of F.
Lemma 3.3. ([22]). If g and h are entire functions on the complex plane \mathbb{C} and $g(h)$ is an entire function of finite order, then there are only two possible cases: either
(a) the internal function h is a polynomial and the external function g is of finite order; or else
(b) the internal function h is not a polynomial but a function of finite order, and the external function g is of zero order.

3.1. The Proof of Theorem 1.2

Proof. Suppose that f is a finite order transcendental entire solutions of Eq (1.5), then it follows that $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}$ is transcendental. Otherwise, $f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)$ is not transcendental, this is a contradiction with the condition. Firstly, Eq (1.5) can be represented as the following form

$$
\begin{equation*}
\left[\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+i f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right]\left[\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}-i f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)\right]=1 \tag{3.1}
\end{equation*}
$$

Since $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}$ and $f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)$ are transcendental, then by Lemma 3.2 and Lemma 3.3, from (3.1), there exists a nonconstant polynomial $p(z)$ in \mathbb{C}^{2} such that

$$
\left\{\begin{array}{l}
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+i f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=e^{i p\left(z_{1}, z_{2}\right)} \tag{3.2}\\
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}-i f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=e^{-i p\left(z_{1}, z_{2}\right)}
\end{array}\right.
$$

Thus, in view of (3.2), it yields

$$
\left\{\begin{array}{l}
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}=\frac{e^{i p\left(z_{1}, z_{2}\right)}+e^{-i p\left(z_{1}, z_{2}\right)}}{2} \tag{3.3}\\
f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=\frac{e^{i p\left(z_{1}, z_{2}\right)}-e^{-i p\left(z_{1}, z_{2}\right)}}{2 i}
\end{array}\right.
$$

In view of (3.3), we have

$$
\begin{align*}
& e^{i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}+e^{-i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)} \\
= & \left(\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+i\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}\right) e^{i p\left(z_{1}, z_{2}\right)} \\
& +\left(\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}-i\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}\right) e^{-i p\left(z_{1}, z_{2}\right)} . \tag{3.4}
\end{align*}
$$

Now, we claim that $\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}-i\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2} \equiv 0$. If $\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}} \equiv 0$, then Eq (3.4) becomes $e^{i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}+$ $e^{-i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)} \equiv 0$, this is impossible since $p(z)$ is a nonconstant polynomial. If $\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}-i\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2} \equiv 0$ and $\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}} \not \equiv 0$, then $\frac{\partial u}{\partial z_{1}}=i u^{2}$, where $u=\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}$. Solving this equation, we have $-\frac{1}{u}=i z_{1}+\varphi_{1}\left(z_{2}\right)$, that is, $\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}=u=-\frac{1}{i z_{1}+\varphi_{1}\left(z_{2}\right)}$, where $\varphi_{1}\left(z_{2}\right)$ is a polynomial in z_{2}. Thus, it follows that $p\left(z_{1}, z_{2}\right)=$ $i \log \left[i z_{1}+\varphi_{1}\left(z_{2}\right)\right]+\varphi_{2}\left(z_{2}\right)$, where $\varphi_{2}\left(z_{2}\right)$ is a polynomial in z_{2}. This is a contradiction with the assumption of $p\left(z_{1}, z_{2}\right)$ being a nonconstant polynomial. Hence, $\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}-i\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2} \not \equiv 0$. Similarly, we have $\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+i\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2} \not \equiv 0$. Thus, (3.4) becomes

$$
\begin{equation*}
\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}+i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)+p(z))}+\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}-i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)-p(z))}-e^{2 i p(z+c)} \equiv 1 \tag{3.5}
\end{equation*}
$$

Since $p(z)$ is a nonconstant polynomial, we have that $e^{2 i p(z+c)}$ is not a constant, and

$$
\begin{aligned}
N\left(r,\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}+i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)+p(z))}\right) & =N\left(r,\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}-i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)-p(z))}\right) \\
& =N\left(r,-e^{2 i p(z+c)}\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(r, \frac{1}{\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}+i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)+p(z))}}\right)=O(\log r)=S\left(r, e^{2 i p(z+c)}\right), \\
& N\left(r, \frac{1}{\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}-i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)-p(z))}}\right)=O(\log r)=S\left(r, e^{2 i p(z+c)}\right) .
\end{aligned}
$$

Thus, by Lemma 3.1, it yields

$$
\begin{equation*}
\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}-i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z+c)-p(z))} \equiv 1 . \tag{3.6}
\end{equation*}
$$

In view of (3.5) and (3.6), it follows

$$
\begin{equation*}
\left(\frac{\partial^{2} p}{\partial z_{1}^{2}}+i\left(\frac{\partial p}{\partial z_{1}}\right)^{2}\right) e^{i(p(z)-p(z+c))} \equiv 1 . \tag{3.7}
\end{equation*}
$$

Here, we claim that $p(z)=L(z)+B$, where $L(z)$ is a linear function as the form $L(z)=a_{1} z_{1}+a_{2} z_{2}, B$ is a constant in \mathbb{C}. In fact, since $p(z)$ is a nonconstant polynomial, and in view of (3.6) and (3.7), we conclude that $p(z)=L(z)+H(s)+B$, where $H(s)$ is a polynomial in $s, s:=c_{2} z_{1}-c_{1} z_{2}$. Thus, it follows from (3.6) that $H^{\prime \prime} c_{2}-i\left(H^{\prime} c_{2}+a_{1}\right)^{2}$ must be a constant in \mathbb{C}. By combining with $c_{2} \neq 0$, then we have $\operatorname{deg}_{s} H \leq 1$. Thus, $L(z)+H(s)+B$ is still a linear form of z_{1}, z_{2}. Hence, we have $p(z)=L(z)+B$ and $L(z)=a_{1} z_{1}+a_{2} z_{2}$. Thus, it follows

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial z_{1}^{2}} \equiv 0, \quad-i a_{1}^{2} e^{i L(c)}=1, \quad i a_{1}^{2} e^{-i L(c)}=1 . \tag{3.8}
\end{equation*}
$$

Thus, it follows from (3.8) that

$$
\begin{equation*}
a_{1}^{2}=1, \quad L(c)=2 k \pi+\frac{1}{2} \pi, \quad \text { or } \quad a_{1}^{2}=-1, \quad L(c)=2 k \pi-\frac{1}{2} \pi . \tag{3.9}
\end{equation*}
$$

By observing the second equation in (3.3), we can define the form of $f\left(z_{1}, z_{2}\right)$ as

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\frac{e^{i(L(z)-L(c)+B)}-e^{-i(L(z)-L(c)+B)}}{2 i} . \tag{3.10}
\end{equation*}
$$

By combining with (3.9) and (3.10), it yields

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i(L(z)+B)}+e^{-i(L(z)+B)}}{2}
$$

where η, a_{1}, a_{2}, B are constants in \mathbb{C} satisfying one of the following conditions
(i) $\eta=-1, a_{1}^{2}=1$, and $L(c)=2 k \pi+\frac{1}{2} \pi$;
(ii) $\eta=1, a_{1}^{2}=-1$, and $L(c)=2 k \pi-\frac{1}{2} \pi$.

Therefore, this completes the proof of Theorem 1.2.

3.2. The Proof of Theorem 1.4

Proof. Suppose that f is a finite order transcendental entire solutions of Eq (1.8), then it follows that $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}$ is transcendental. Otherwise, $f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)$ is not transcendental, this is a contradiction with the condition. Firstly, Eq (1.8) can be rewritten as the following form

$$
\begin{equation*}
\left[\frac{\partial^{2} f(z)}{\partial z_{1}^{2}}+\frac{\partial^{2} f(z)}{\partial z_{2}^{2}}+i f(z+c)\right]\left[\frac{\partial^{2} f(z)}{\partial z_{1}^{2}}+\frac{\partial^{2} f(z)}{\partial z_{2}^{2}}-i f(z+c)\right]=1 . \tag{3.11}
\end{equation*}
$$

Since $\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}$ and $f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)$ are transcendental, then by Lemma 3.2 and 3.3, it follows from (3.11) that

$$
\left\{\begin{array}{l}
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}+i f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=e^{i p\left(z_{1}, z_{2}\right)} \tag{3.12}\\
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}-i f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=e^{-i p\left(z_{1}, z_{2}\right)}
\end{array}\right.
$$

where $p(z)$ is a nonconstant polynomial in \mathbb{C}^{2}. Thus, in view of (3.12), it yields

$$
\left\{\begin{array}{l}
\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} f\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}=\frac{e^{i p\left(z_{1}, z_{2}\right)}+e^{-i p\left(z_{1}, z_{2}\right)}}{2} \tag{3.13}\\
f\left(z_{1}+c_{1}, z_{2}+c_{2}\right)=\frac{e^{i p\left(z_{1}, z_{2}\right)}-e^{-i p\left(z_{1}, z_{2}\right)}}{2 i}
\end{array}\right.
$$

In view of (3.13), we have

$$
\begin{align*}
& e^{i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}+e^{-i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)} \\
= & \left(A_{1}+i A_{2}\right) e^{i p\left(z_{1}, z_{2}\right)}+\left(A_{1}-i A_{2}\right) e^{-i p\left(z_{1}, z_{2}\right)} \tag{3.14}
\end{align*}
$$

where $A_{1}=\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{1}^{2}}+\frac{\partial^{2} p\left(z_{1}, z_{2}\right)}{\partial z_{2}^{2}}$ and $A_{2}=\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{1}}\right)^{2}+\left(\frac{\partial p\left(z_{1}, z_{2}\right)}{\partial z_{2}}\right)^{2}$.
If $A_{1}+i A_{2} \equiv 0$, then it follows that

$$
\begin{equation*}
e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}=\left(A_{1}-i A_{2}\right) e^{i\left(p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)-p\left(z_{1}, z_{2}\right)\right)}-1 . \tag{3.15}
\end{equation*}
$$

By making use of the Nevanlinna second fundamental theorem and (3.15), it follows that

$$
\begin{align*}
& T\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right) \\
\leq & N\left(r, \frac{1}{e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}}\right)+N\left(r, \frac{1}{e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}+1}\right)+S\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right) \\
\leq & N\left(r, \frac{1}{\left(A_{1}-i A_{2}\right) e^{\left.i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)-p\left(z_{1}, z_{2}\right)\right)}}\right)+S\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right) \\
\leq & N\left(r, \frac{1}{A_{1}-i A_{2}}\right)+S\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right) . \tag{3.16}
\end{align*}
$$

If $A_{1}-i A_{2} \equiv 0$, in view of (3.15), it yields that $e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}=-1$, a contradiction. If $A_{1}-i A_{2} \not \equiv 0$, then from (3.16), it leads to

$$
T\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right) \leq T\left(r, A_{1}-i A_{2}\right)+S\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right)
$$

$$
\leq O(T(r, p))+S\left(r, e^{2 i p\left(z_{1}+c_{1}, z_{2}+c_{2}\right)}\right)
$$

outside possibly a set of finite Lebesgue measure. This is a contradiction with the fact

$$
\lim _{r \rightarrow+\infty} \frac{T\left(r, e^{2 i p}\right)}{T(r, p)}=+\infty
$$

for $p(z)$ is a nonconstant polynomial. Thus, it follows that $A_{1}+i A_{2} \not \equiv 0$. Similarly, we have $A_{1}-i A_{2} \not \equiv 0$. Thus, (3.14) becomes

$$
\begin{equation*}
\left(A_{1}+i A_{2}\right) e^{i(p(z+c)+p(z))}+\left(A_{1}-i A_{2}\right) e^{i(p(z+c)-p(z))}-e^{2 i p(z+c)} \equiv 1 \tag{3.17}
\end{equation*}
$$

Since $p(z)$ is a nonconstant polynomial, we have that $e^{2 i p(z+c)}$ is not a constant, and

$$
\begin{aligned}
N\left(r,\left(A_{1}+i A_{2}\right) e^{i(p(z+c)+p(z))}\right) & =N\left(r,\left(A_{1}-i A_{2}\right) e^{i(p(z+c)-p(z))}\right) \\
& =N\left(r,-e^{2 i p(z+c)}\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(r, \frac{1}{\left(A_{1}+i A_{2}\right) e^{i(p(z+c)+p(z))}}\right)=O(\log r)=S\left(r, e^{2 i p(z+c)}\right), \\
& N\left(r, \frac{1}{\left(A_{1}-i A_{2}\right) e^{i(p(z+c)-p(z))}}\right)=O(\log r)=S\left(r, e^{2 i p(z+c)}\right) .
\end{aligned}
$$

Thus, by Lemma 3.1, it yields

$$
\begin{equation*}
\left(A_{1}-i A_{2}\right) e^{i(p(z+c)-p(z))} \equiv 1 . \tag{3.18}
\end{equation*}
$$

In view of (3.17) and (3.18), it follows

$$
\begin{equation*}
\left(A_{1}+i A_{2}\right) e^{i(p(z)-p(z+c))} \equiv 1 \tag{3.19}
\end{equation*}
$$

Since $p(z)$ is a nonconstant polynomial, in view of (3.18) and (3.19), similar to the argument as in the proof of Theorem 1.2, we conclude that $p(z)=L(z)+B$, where $L(z)$ is a linear function as the form $L(z)=a_{1} z_{1}+a_{2} z_{2}, B$ is a constant in \mathbb{C}. Thus, it follows

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial z_{1}^{2}} \equiv 0, \quad \frac{\partial^{2} p}{\partial z_{2}^{2}} \equiv 0 \quad-i\left(a_{1}^{2}+a_{2}^{2}\right) e^{i L(c)}=1, \quad i\left(a_{1}^{2}+a_{2}^{2}\right) e^{-i L(c)}=1 \tag{3.20}
\end{equation*}
$$

Thus, it follows from (3.20) that

$$
\begin{equation*}
\left(a_{1}^{2}+a_{2}^{2}\right)=1, \quad L(c)=2 k \pi+\frac{1}{2} \pi, \quad \text { or } \quad\left(a_{1}^{2}+a_{2}^{2}\right)=-1, \quad L(c)=2 k \pi-\frac{1}{2} \pi . \tag{3.21}
\end{equation*}
$$

By observing the second equation in (3.13), we can define the form of $f\left(z_{1}, z_{2}\right)$ as

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\frac{e^{i(L(z)-L(c)+B)}-e^{-i(L(z)-L(c)+B)}}{2 i} \tag{3.22}
\end{equation*}
$$

By combining with (3.21) and (3.22), it yields

$$
f\left(z_{1}, z_{2}\right)=\eta \frac{e^{i(L(z)+B)}+e^{-i(L(z)+B)}}{2}
$$

where η, a_{1}, a_{2}, B are constants in \mathbb{C} satisfying one of the following conditions
(i) $\eta-1,\left(a_{1}^{2}+a_{2}^{2}\right)=1$, and $L(c)=2 k \pi+\frac{1}{2} \pi$;
(ii) $\eta=1,\left(a_{1}^{2}+a_{2}^{2}\right)=-1$, and $L(c)=2 k \pi-\frac{1}{2} \pi$.

Therefore, this completes the proof of Theorem 1.4.

3.3. Proofs of Theorems 1.3 and 1.5

By using the same argument as in the proof of Theorem 1.4, we can easily prove the conclusions of Theorems 1.3 and 1.5.

4. Conclusions

We can see that Theorem 1.1 is an extension of Theorem G. Meantime, it is also a positive answer to Question 1.1. Moreover, Theorems 1.2-1.5 are the answer to Questions 1.2-1.3. More important, a series of examples show that our results are accurate.

Acknowledgments

The authors were supported by the National Natural Science Foundation of China (Grant No. 12161074), the Natural Science Foundation of Jiangxi Province in China (Grant No. 20181BAB201001) and the Foundation of Education Department of Jiangxi (GJJ190876, GJJ202303, GJJ201813, GJJ191042) of China.

Conflict of interest

The authors declare that none of the authors have any competing interests in the manuscript.

References

1. C. R. Adams, On the linear ordinary q-difference equation, Ann. Math., 30 (1928-1929), 195-205. doi: 10.2307/1968274.
2. A. Biancofiore, W. Stoll, Another proof of the lemma of the logarithmic derivative in several complex variables, Princeton: Princeton University Press, 1981. doi: 10.1515/9781400881543004.
3. T. B. Cao, R. J. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl., 444 (2016), 11141132. doi: 10.1016/j.jmaa.2016.06.050.
4. Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105-129. doi: 10.1007/s11139-007-9101-1.
5. F. Gross, On the equation $f^{n}+g^{n}=1$, Bull. Am. Math. Soc., 72 (1966), 86-88.
6. R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477-487. doi: 10.1016/j.jmaa.2005.04.010.
7. R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn.-M., 31 (2006), 463-478.
8. P. C. Hu, Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var., 27 (1995), 269-285. doi: 10.1080/17476939508814822.
9. P. C. Hu, P. Li, C. C. Yang, Unicity of meromorphic mappings, advances in complex analysis and its applications, Dordrecht: Kluwer Academic Publishers, 2003.
10. G. Iyer, On certain functional equations, J. Indian. Math. Soc., 3 (1939), 312-315.
11. D. Khavinson, A note on entire solutions of the eiconal equation, Am. Math. Mon., 102 (1995), 159-161. doi: 10.2307/2975351.
12. R. J. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory, 12 (2012), 343-361. doi: 10.1007/BF03321831.
13. B. Q. Li, On meromorphic solutions of $f^{2}+g^{2}=1$, Math. Z., 258 (2008), 763-771. doi: 10.1007/s00209-007-0196-2.
14. B. Q. Li, On entire solutions of Fermat type partial differential equations, Int. J. Math., 15 (2004), 473-485. doi: 10.1142/S0129167X04002399.
15. K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384-393. doi: 10.1016/j.jmaa.2009.05.061.
16. K. Liu,T. B. Cao, Entire solutions of Fermat type difference differential equations, Electron. J. Diff. Equ., 2013 (2013), 1-10.
17. K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), 147-155. doi: 10.1007/s00013-012-0408-9.
18. K. Liu, C. J. Song, Meromorphic solutions of complex differential-difference equations, Results Math., 72 (2017), 1759-1771. doi: 10.1007/s00025-017-0736-y.
19. K. Liu, L. Z. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory, 13 (2013), 433-447. doi: 10.1007/s40315-013-0030-2.
20. M. L. Liu, L. Y. Gao, Transcendental solutions of systems of complex differential-difference equations (in Chinese), Sci. Sin. Math., 49 (2019), 1-22.
21. P. Montel, Lecons sur les familles normales de fonctions analytiques et leurs applications, Paris: Gauthier-Villars, 1927, 135-136.
22. G. Pólya, On an integral function of an integral function, J. Lond. Math. Soc., 1 (1926), 12-15. doi: 10.1112/jlms/s1-1.1.12.
23. X. G. Qi, Y. Liu, L. Z. Yang, A note on solutions of some differential-difference equations, J. Contemp. Math. Anal., 52 (2017), 128-133. doi: 10.3103/S1068362317030037.
24. J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151-170.
25. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Providence: American Mathematical Society, 1974.
26. E. G. Saleeby, Entire and meromorphic solutions of Fermat type partial differential equations, Analysis, 19 (1999), 369-376. doi: 10.1524/anly.1999.19.4.369.
27. W. Stoll, Holomorphic functions of finite order in several complex variables, Providence: American Mathematical Society, 1974.
28. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebra, Ann. Math., 141 (1995), 553-572. doi: 10.2307/2118560.
29. A. Wiles, Modular elliptic curves and Fermats last theorem, Ann. Math., 141 (1995), 443-551. doi: 10.2307/2118559.
30. H. Y. Xu, Y. Y. Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, RACSAM Rev. Acad. A., 116 (2022). doi: 10.1007/s13398-021-01154-9.
31. H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 1-22. doi: 10.1016/j.jmaa.2019.123641.
32. H. Y. Xu, J. Tu, Growth of solutions to systems of q-difference differential equations, Electron. J. Diff. Equ., 2016 (2016), 1-14.
33. H. Y. Xu, H. Wang, Notes on the existence of entire solutions for several partial differentialdifference equations, B. Iran. Math. Soc., 47 (2021), 1477-1489. doi: 10.1007/s41980-020-00453y.
34. L. Xu, T. B. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 15 (2018), 1-14. doi: 10.1007/s00009-018-1274-x.
35. L. Xu, T. B. Cao, Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 17 (2020), 1-4. doi: 10.1007/s00009-019-1438-3.
36. C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc., 26 (1970), 332-334. doi: 10.2307/2036399.
37. C. C. Yang, P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math. (Basel), 82 (2004), 442-448. doi: 10.1007/s00013-003-4796-8.

AIMS Press
© 2022 Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

