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Abstract: This article is concerned with the existence of entire solutions for the following complex
second order partial differential-difference equation(

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)l

+ f (z1 + c1, z2 + c2)k = 1,

where c1, c2 are constants in C and k, l are positive integers. In addition, we also investigate the forms
of finite order transcendental entire solutions for several complex second order partial differential-
difference equations of Fermat type, and obtain some theorems about the existence and the forms
of solutions for the above equations. Meantime, we give some examples to explain the existence
of solutions for some theorems in some cases. Our results are some generalizations of the previous
theorems given by Qi [23], Xu and Cao [35], Liu, Cao and Cao [17].
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1. Introduction and main results

For positive integers m, n, the equation xm + yn = 1 is called as the Fermat equation. In 1995,
A. Wiles and R. Taylor [28, 29] pointed out that this equation does not admit nontrivial solutions in
rational numbers for m = n ≥ 3, and this equation does exist nontrivial rational solution for m = n = 2.
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The functional equation f (z)m + g(z)n = 1 can be regarded as the Fermat type equation. It has attracted
the attention of many mathematics workers in the studying of Fermat type equation. We know that the
Fermat type equation has no transcendental meromorphic solutions when n = m ≥ 4 (see [5]); and this
equation has no transcendental entire solutions when n = m ≥ 3 (see [21]). In [10], Iyer pointed out
that the entire solutions are of the form f = cos a(z), g = sin a(z), where m = n = 2 and a(z) is an entire
function, no other forms exist. In [36], Yang discussed the Fermat type functional equation

a(z) f (z)n + b(z)g(z)m = 1, (1.1)

where a(z), b(z) are small functions with respect to f and obtained

Theorem A. (see [36]). Let m, n be positive integers satisfying 1/m + 1/n < 1. Then there are no
nonconstant entire solutions f and g that satisfy (1.1).

When g is replaced by f ′ or a differential polynomial of f and m = n = 2 for Eq (1.1), Yang
and Li [37] in 2004 studied the Malmquist type nonlinear differential equational by using Nevanlinna
theory of meromorphic functions, and obtained

Theorem B. (see [37]). Let a1, a2 and a3 be nonzero meromorphic functions. Then a necessary
condition for the differential equation

a1 f 2 + a2 f ′2 = a3.

to have a transcendental meromorphic solution satisfying T (r, ak) = S (r, f ), k = 1, 2, 3, is a1
a3
≡constant.

Theorem C. (see [37]). Let n be a positive integer, b0, b1, . . . , bn−1 be constants, bn be a non-zero
constant and let L( f ) =

∑n
k=0 bk f (k). Then the transcendental meromorphic solution of the following

equation
f (z)2 + L( f )2 = 1. (1.2)

must have the form f (z) = 1
2 (Peλz + 1

Pe−λz), where eA = P, P is a non-zero constant and λ satisfies the
following equations:

n∑
k=0

bkλ
k =

1
i
,

n∑
k−0

bk(−λ)k = −
1
i
.

Remark 1.1. Let L( f ) = f (n)(z). From Theorem C, we can see that if n is an odd, then Eq (1.2) has
transcendental entire solutions. If n is an even, then Eq (1.2) has no transcendental entire solutions.

Over the past two decades, with the help of difference Nevanlinna theory for meromorphic
functions (see [4, 6, 7]), the study of the properties of solutions for complex difference equations
and complex differential-difference equations has become more and more active, and a series of
literatures concerning the existence and forms of solutions for some equations have sprung up
(including [15, 16, 18, 19, 23, 30–33]).

When L( f ) is replaced by f (z+c) in Eq (1.2), Liu [15] in 2009 investigated the entire solutions of the
equation f (z)2 + f (z+c)2 = 1 by using the difference Nevanlinna theory for meromorphic functions and
pointed out that the finite order transcendental entire solutions f (z) of the equation f (z)2 + f (z+c)2 = 1
must satisfy f (z) = 1

2 (h1(z) + h2(z)), where h1(z+c)
h1(z) = i, h2(z+c)

h2(z) = −i and h1(z)h2(z) = 1. Later, Liu, Cao

AIMS Mathematics Volume 7, Issue 2, 1907–1924.



1909

and Cao [17] in 2012 studied the existence of solutions for some complex difference equations and
obtained

Theorem D. (see [17, Theorem 1.1]). The transcendental entire solutions with finite order of the
equation f (z)2 + f (z + c)2 = 1 must satisfy f (z) = sin(Az + B), where B is a constant and A =

(4k+1)π
2c , k

is an integer.

Theorem E. (see [17, Theorem 1.3]). The transcendental entire solutions with finite order of

f ′(z)2 + f (z + c)2 = 1,

must satisfy f (z) = sin(z ± Bi), where B is a constant and c = 2kπ or c = (2k + 1)π, k is an integer.

In 2019, Liu and Gao [20] further studied the entire solutions of second order differential and
difference equation when f ′(z) is replaced by f ′′(z) in Theorem E and obtained

Theorem F. (see [20, Theorem 2.1]). Suppose that f is a transcendental entire solution with finite
order of the complex differential-difference equation

f ′′(z)2 + f (z + c)2 = Q(z),

then Q(z) = c1c2 is a constant, and f (z) satisfies

f (z) =
c1eaz+b + c2e−az−b

2a2 ,

where a, b ∈ C, and a4 = 1, c =
log(−ia2)+2kπi

a , k ∈ Z.

Let us recall some conclusions on the Fermat type equations in several complex variables.
Hereinafter, let z + w = (z1 + w1, z2 + w2) for any z = (z1, z2),w = (w1,w2). For the equation f 2 + g2 = 1
in C2, Li [13] showed that meromorphic solutions f , g must be constant if and only if ∂ f

∂z2
and ∂g

∂z1
have

the same zeros. When f = ∂u
∂z1

and g = ∂u
∂z2

in f 2 + g2 = 1, then any entire solutions of the equation
( ∂u
∂z1

)2 + ( ∂u
∂z2

)2 = 1 in C2 are necessarily linear ( [11]), which was originally investigated by [14, 26].

Recently, Xu and Cao [34] investigated the existence of the entire and meromorphic solutions for
some Fermat-type partial differential-difference equations and obtained the following theorems.

Theorem G. (see [34, Theorem 1.1]). Let c = (c1, c2) be a constant in C2. Then the Fermat-type partial
differential-difference equation (

∂ f (z1, z2)
∂z1

)m

+ f (z1 + c1, z2 + c2)n = 1.

doesn’t have any transcendental entire solution with finite order, where m and n are two distinct positive
integers.

Remark 1.2. In fact, the equation(
∂ f (z1, z2)
∂z1

)2

+ f (z1 + 1, z2 + 1) = 1. (1.3)
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admits a finite order transcendental entire solution. For example, let

f (z) =
5
4
−

1
4

z2
1 +

1
2

(z1 − 1)z2 + (z1 − 1)e2πiz2 −

(
1
2

(z2 − 1) + e2πiz2

)2

,

then f (z) is a finite order transcendental entire solution of Eq (1.3).

Theorem H. (see [34, Theorem 1.2]). Let c = (c1, c2) be a constant in C2. Then any transcendental
entire solutions with finite order of the partial differential-difference equation(

∂ f (z1, z2)
∂z1

)2

+ f (z1 + c1, z2 + c2)2 = 1.

has the form of f (z1, z2) = sin(Az1 + B), where A is a constant on C satisfying AeiAc1 = 1, and B is a
constant on C; in the special case whenever c1 = 0, we have f (z1, z2) = sin(z1 + B).

In view of Theorem G and Remark 1.2, one question can be raised as follows.

Question 1.1. How to deform the equation can guarantee that the conclusion of Theorem G holds
under the condition m , n?

The forms of equations in Theorem F and Theorem G prompts us to consider the following
problems.

Question 1.2. What can be said about the solution of equation if ∂ f (z1,z2)
∂z1

is replaced by

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

.

in Theorem G?

Question 1.3. What can be said about the existence and the forms of the entire solution of the equation
when ∂ f (z1,z2)

∂z1
is replaced by

∂2 f (z1, z2)
∂z2

1

or
∂2 f (z1, z2)
∂z1∂z2

in Theorem H?

Motivated by Questions 1.1–1.3, we investigate the existence and the forms of solutions for some
second order partial differential-difference equations, by utilizing the Nevanlinna theory and difference
Nevanlinna theory of several complex variables (see [3,12]). We give some existence theorems and the
forms of entire solutions for some partial differential-difference equations, and also list some examples.
Our results are some generalizations of the previous theorems given by Xu and Cao, Liu, Cao and
Cao [17, 34].

The first theorem is as follows.

Theorem 1.1. If c = (c1, c2) ∈ C2, and l, k be two distinct positive integers, then the Fermat-type
partial differential-difference equation(

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)l

+ f (z1 + c1, z2 + c2)k = 1. (1.4)

does not have any transcendental entire solution with finite order.
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Remark 1.3. In fact, on the basis of the proof of Theorem 1.1, it is easily to get that the conclusions of
Theorem 1.1 still hold if ∂2 f (z1,z2)

∂z2
1

or ∂2 f (z1,z2)
∂z2

2
is replaced by ∂2 f (z1,z2)

∂z1∂z2
.

Next, we proceed to study the existence and forms of entire solutions of Eq (1.4) for l = k = 2.

Theorem 1.2. Let c = (c1, c2) ∈ C2 and c2 , 0. If the second order Fermat-type partial differential-
difference equation (

∂2 f (z1, z2)
∂z2

1

)2

+ f (z1 + c1, z2 + c2)2 = 1. (1.5)

admits a transcendental entire solution with finite order f (z1, z2), then f (z1, z2) has the following form

f (z1, z2) = η
ei(a1z1+a2z2+B) + e−i(a1z1+a2z2+B)

2
,

where η, c1, c2, a1, a2, B are constants in C, and satisfy one of the following cases

(i) L(c) = 2kπ + 1
2π, a

2
1 = 1, and η = −1, where L(c) := a1c1 + a2c2, here and below k is a integer;

(ii) L(c) = 2kπ − 1
2π, a

2
1 = −1, and η = 1.

Two examples are given to explain the existence of solutions for Eq (1.5).

Example 1.1. Let a = (a1, a2) = (1,−1), c = (c1, c2) = (π, 1
2π), and B ∈ C. Thus, the function

f (z1, z2) = −
ei(z1−z2+B) + e−i(z1−z2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)

∂z2
1

)2

+ f (z1 + π, z2 +
1
2
π)2 = 1.

Example 1.2. Let a = (a1, a2) = (i, 1), c = (c1, c2) = (πi, 1
2π), and B ∈ C. Thus, the function

f (z1, z2) =
ei(iz1+z2+B) + e−i(iz1+z2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)

∂z2
1

)2

+ f (z1 + 2πi, z2 −
1
2
π)2 = 1.

Corollary 1.1. Let c = (c1, c2) ∈ C2 and c1 , 0. If the second order Fermat-type partial differential-
difference equation (

∂2 f (z1, z2)
∂z2

2

)2

+ f (z1 + c1, z2 + c2)2 = 1. (1.6)

admits a transcendental entire solution with finite order f (z1, z2), then f (z1, z2) has the following form

f (z1, z2) = η
ei(a1z1+a2z2+B) + e−i(a1z1+a2z2+B)

2
,
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where η, c1, c2, a1, a2, B are constants in C, and satisfy one of the following cases

(i) L(c) = 2kπ + 1
2π, a

2
2 = 1, and η = −1, where L(c) := a1c1 + a2c2;

(ii) L(c) = 2kπ − 1
2π, a

2
2 = −1, and η = 1.

Theorem 1.3. Let c = (c1, c2) ∈ C2 and c1c2 , 0. If the second order Fermat-type partial differential-
difference equation (

∂2 f (z1, z2)
∂z1∂z2

)2

+ f (z1 + c1, z2 + c2)2 = 1. (1.7)

admits a transcendental entire solution with finite order f (z1, z2), then f (z1, z2) has the following form

f (z1, z2) = η
ei(a1z1+a2z2+B) + e−i(a1z1+a2z2+B)

2
,

where η, c1, c2, a1, a2, B are constants in C, and satisfy one of the following cases

(i) L(c) = 2kπ + 1
2π, a1a2 = 1, and η = −1;

(ii) L(c) = 2kπ − 1
2π, a1a2 = −1, and η = 1.

Theorem 1.4. Let c = (c1, c2) ∈ C2 and c1 , 0, c2 , 0. If the second order Fermat-type partial
differential-difference equation(

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)2

+ f (z1 + c1, z2 + c2)2 = 1. (1.8)

admits a transcendental entire solution with finite order f (z1, z2), then f (z1, z2) has the following form

f (z1, z2) = η
ei(a1z1+a2z2+B) + e−i(a1z1+a2z2+B)

2
,

where η, c1, c2, a1, a2, B are constants in C, and satisfy one of the following cases

(i) L(c) = 2kπ + 1
2π, a

2
1 + a2

2 = 1, and η = −1;

(ii) L(c) = 2kπ − 1
2π, a

2
1 + a2

2 = −1, and η = 1.

Theorem 1.5. Let c = (c1, c2) ∈ C2 and c1 , 0, c2 , 0. If the second order Fermat-type partial
differential-difference equation(

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)
∂z1∂z2

)2

+ f (z1 + c1, z2 + c2)2 = 1. (1.9)

admits a transcendental entire solution with finite order f (z1, z2), then f (z1, z2) has the following form

f (z1, z2) = η
ei(a1z1+a2z2+B) + e−i(a1z1+a2z2+B)

2
,

where η, c1, c2, a1, a2, B are constants in C, and satisfy one of the following cases

(i) L(c) = 2kπ + 1
2π, a1(a1 + a2) = 1, and η = −1;

(ii) L(c) = 2kπ − 1
2π, a1(a1 + a2) = −1, and η = 1.
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Remark 1.4. From Theorems 1.1–1.5, the Eq (1.4) has no nonconstant entire solution for the case
l = k > 2, and has no nonconstant meromorphic solutions for the case l = k > 3. Hence based on
Theorems 1.1–1.5, an open question is: What will happen for the meromorphic solutions of the Fermat
type partial difference-differential equation(

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)3

+ f (z1 + c1, z2 + c2)3 = 1.

in C2?

Similar to Examples 1.1 and 1.2, it is easy to give some solutions for Eqs (1.7), (1.8) and (1.9).

Example 1.3. Let a = (a1, a2) = (i,−i), c = (c1, c2) = (−πi,−1
2πi), and B ∈ C. Thus, the function

f (z1, z2) = −
e−(z1−z2+B) + e(z1−z2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)
∂z1∂z2

)2

+ f (z1 − πi, z2 −
1
2
πi)2 = 1.

Example 1.4. Let a = (a1, a2) = (1,−1), c = (c1, c2) = ( 1
2π, π), and B ∈ C. Thus, the function

f (z1, z2) =
ei(z1−z2+B) + e−i(z1−z2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)
∂z1∂z2

)2

+ f (z1 +
1
2
π, z2 + π)2 = 1.

Example 1.5. Let a = (a1, a2) = (
√

2, i), c = (c1, c2) = ( π
√

2
, πi

2 ), and B ∈ C. Thus, the function

f (z1, z2) = −
ei(
√

2z1+iz2+B) + e−i(
√

2z1+iz2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)2

+ f (z1 +
π
√

2
, z2 +

πi
2

)2 = 1.

Example 1.6. Let a = (a1, a2) = (
√

2i, 1), c = (c1, c2) = (
√

2
2 πi, π2 ), and B ∈ C. Thus, the function

f (z1, z2) =
ei(
√

2iz1+z2+B) + e−i(
√

2iz1+z2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)2

+ f (z1 +

√
2

2
πi, z2 +

π

2
)2 = 1.
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Example 1.7. Let a = (a1, a2) = (i,−2i), c = (c1, c2) = (−πi,−πi
4 ), and B ∈ C. Thus, the function

f (z1, z2) = −
e−(z1−2z2)+B + ez1−2z2−B

2
.

satisfies the following equation(
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)
∂z1∂z2

)2

+ f (z1 − πi, z2 −
πi
4

)2 = 1.

Example 1.8. Let a = (a1, a2) = (1,−2), c = (c1, c2) = (π2 ,
π
2 ), and B ∈ C. Thus, the function

f (z1, z2) =
ei(z1−2z2+B) + e−i(z1−2z2+B)

2
.

satisfies the following equation(
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)
∂z1∂z2

)2

+ f (z1 +
π

2
, z2 +

π

2
)2 = 1.

2. Proof of Theorem 1.1

To prove Theorem 1.1, the following lemmas should be required.

Lemma 2.1. ( [2]). Let f be a nonconstant meromorphic function on Cn and let I = (i1, . . . , in) be a
multi-index with length |I| =

∑n
j=1 i j. Assume that T (r0, f ) ≥ e for some r0. Then

m
(
r,
∂I f

f

)
= S (r, f ),

holds for all r ≥ r0 outside a set E ⊂ (0,+∞) of finite logarithmic measure
∫

E
dt
t < ∞, where ∂I f =

∂|I| f

∂zi1
1 ···∂zin

n
.

Lemma 2.2. ( [3, 12]). Let f be a nonconstant meromorphic function on Cn such that f (0) , 0,∞,
and let ε > 0. If σ2( f ) := σ < 1, then

m
(
r,

f (z)
f (z + c)

)
= o

(
T f (r)
r1−σ−ε

)
,

holds for all r ≥ r0 outside a set E ⊂ (0,+∞) of finite logarithmic measure
∫

E
dt
t < ∞, where

σ2( f ) = lim sup
r→∞

log+ log+ T f (r)
log r

.

Remark 2.1. In view of Lemma 2.2, one can get that if f is a nonconstant meromorphic function with
finite order on Cn such that f (0) , 0,∞, for c ∈ Cn, then

m
(
r,

f (z)
f (z + c)

)
+ m

(
r,

f (z + c)
f (z)

)
= S (r, f ),

where S (r, f ) denotes any quantity satisfying S (r, f ) = o(T (r, f )) as r sufficiently large outside possibly
a set E of r with finite Lebesgue measure.

AIMS Mathematics Volume 7, Issue 2, 1907–1924.
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The proof of Theorem 1.1: The proof of Theorem 1.1 is very similar to the argument as in Ref. [35].
Assume that f is a finite order transcendental entire solution of Eq (1.4), then f (z1 + c1, z2 + c2) is
transcendental. Thus, in view of (1.4), ∂2 f (z1,z2)

∂z2
1

+
∂2 f (z1,z2)

∂z2
2

is also transcendental. Here, two cases will
be considered below.

Case 1. k > l. Thus, it follows from Lemma 2.2 that

m
(
r,

f (z1, z2)
f (z1 + c1, z2 + c2)

)
= S (r, f ). (2.1)

holds for all r > 0 outside of a possible exceptional set E ⊂ [1,+∞) with finite logarithmic measure∫
E

dt
t < ∞. Thus, by (2.1) and combining with the properties of m(r, f ), we can deduce that

T (r, f (z1, z2)) = m(r, f (z1, z2)) = m
(
r,

f (z1, z2)
f (z1 + c1, z2 + c2)

f (z1 + c1, z2 + c2)
)

≤ m
(
r,

f (z1, z2)
f (z1 + c1, z2 + c2)

)
+ m(r, f (z1 + c1, z2 + c2)) + log 2

= m(r, f (z1 + c1, z2 + c2)) + log 2 + S (r, f )
= T (r, f (z1 + c1, z2 + c2)) + log 2 + S (r, f ), (2.2)

for all r < E. In view of (2.2), by applying Lemma 2.1 and the Mokhon’ko theorem in several complex
variables [8, Theorem 3.4], we have

kT (r, f (z1, z2)) ≤ kT (r, f (z1 + c1, z2 + c2)) + S (r, f )
= T (r, f (z1 + c1, z2 + c2)k) + S (r, f )

= T

r, (∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)l

− 1

 + S (r, f )

= lT
(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)
+ S (r, f )

= lm
(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)
+ S (r, f )

≤ l

m
r,

∂2 f (z1,z2)
∂z2

1
+

∂2 f (z1,z2)
∂z2

2

f1(z1, z2)

 + m(r, f (z1, z2))

 + log 2 + S (r, f )

= lT (r, f (z1, z2)) + log 2 + S (r, f ), (2.3)

for all r < E. This means

(k − l)T (r, f (z1, z2)) ≤ log 2 + S (r, f ), r < E. (2.4)

Since f is transcendental, so this is a contradiction.

Case 2. l > k ≥ 2. Then 1
l + 1

k ≤
2
k < 1. Thus, it follows that l > k

k−1 . In view of the Nevanlinna
second fundamental theorem, Lemma 2.2, and Eq (1.4), we have

(l − 1)T
(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)
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≤N
(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)
+

l∑
q=1

N

r, 1
∂2 f (z1,z2)

∂z2
1

+
∂2 f (z1,z2)

∂z2
2
− wq


+ S

(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)

≤N

r, 1(
∂2 f (z1,z2)

∂z2
1

+
∂2 f (z1,z2)

∂z2
2

)l
− 1

 + S
(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)

≤N
(
r,

1
f (z1 + c1, z2 + c2)

)
+ S (r, f )

≤T (r, f (z1 + c1, z2 + c2)) + S (r, f ), (2.5)

where wq is a root of wl − 1 = 0.
On the other hand, in view of Eq (1.4), and by applying the Mokhon’ko theorem in several complex

variables [8, Theorem 3.4], it yields that

lT (r, f (z1 + c1, z2 + c2)) = T (r, f (z1 + c1, z2 + c2)l) + S (r, f )

= T

r, (∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)k

− 1

 + S (r, f )

= kT
(
r,
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

)
+ S (r, f ). (2.6)

In view of (2.5)–(2.6) and l > k
k−1 , it follows

(l −
k

k − 1
)T (r, f (z1 + c1, z2 + c2)) ≤ S (r, f ).

This is impossible since f is transcendental.
Case 3. l > k = 1. Then it follows(

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

)l

+ f (z1 + c1, z2 + c2) = 1. (2.7)

Differentiating this equation for z1, z2, respectively, we have

l
(
∂2 f
∂z2

1

+
∂2 f
∂z2

2

)l−1

Q( f ) = −

(
∂ f (z + c)
∂z1

+
∂ f (z + c)
∂z2

)
,

where Q( f ) is a differential polynomial in ∂ f
∂z1

and ∂ f
∂z2

of the form

Q( f ) =

(
∂

∂z1
+

∂

∂z2

) (
∂2 f
∂z2

1

+
∂2 f
∂z2

2

)
.
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Divide both sides of the above equation by f l, it follows that

l


∂2 f
∂z2

1
+

∂2 f
∂z2

2

f


l−1

Q( f )
f

= −

∂ f (z+c)
∂z1

+
∂ f (z+c)
∂z2

f
1

f l−1 . (2.8)

By Lemmas 3.1 and 2.2, we have

m

r,
∂2 f
∂z2

1
+

∂2 f
∂z2

2

f

 = S (r, f ), m
(
r,

Q( f )
f

)
= S (r, f ), (2.9)

and

m

r, ∂ f (z+c)
∂z1

+
∂ f (z+c)
∂z2

f

 = S (r, f ). (2.10)

Thus, in view of (2.8)–(2.10), it follows

m
(
r,

1
f l−1

)
= S (r, f ),

which is a contradiction with the assumption of f being transcendental and l > 1.
Therefore, this completes the proof of Theorem 1.1.

3. Proofs of Theorems 1.2–1.5

The following lemmas play the key roles in proving Theorems 1.2–1.5.

Lemma 3.1. ( [9, Lemma 3.1]). Let f j(. 0), j = 1, 2, 3, be meromorphic functions on Cm such that f1

is not constant, and f1 + f2 + f3 = 1, and such that

3∑
j=1

{
N2(r,

1
f j

) + 2N(r, f j)
}
< λT (r, f1) + O(log+ T (r, f1)),

for all r outside possibly a set with finite logarithmic measure, where λ < 1 is a positive number. Then
either f2 = 1 or f3 = 1.

Remark 3.1. Here, N2(r, 1
f ) is the counting function of the zeros of f in |z| ≤ r, where the simple zero

is counted once, and the multiple zero is counted twice.

Lemma 3.2. ( [25, 27]). For an entire function F on Cn, F(0) , 0 and put ρ(nF) = ρ < ∞. Then there
exist a canonical function fF and a function gF ∈ C

n such that F(z) = fF(z)egF (z). For the special case
n = 1, fF is the canonical product of Weierstrass.

Remark 3.2. Here, denote ρ(nF) to be the order of the counting function of zeros of F.

Lemma 3.3. ( [22]). If g and h are entire functions on the complex plane C and g(h) is an entire
function of finite order, then there are only two possible cases: either

(a) the internal function h is a polynomial and the external function g is of finite order; or else
(b) the internal function h is not a polynomial but a function of finite order, and the external function

g is of zero order.
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3.1. The Proof of Theorem 1.2

Proof. Suppose that f is a finite order transcendental entire solutions of Eq (1.5), then it follows that
∂2 f (z1,z2)

∂z2
1

is transcendental. Otherwise, f (z1 + c1, z2 + c2) is not transcendental, this is a contradiction
with the condition. Firstly, Eq (1.5) can be represented as the following form[

∂2 f (z1, z2)
∂z2

1

+ i f (z1 + c1, z2 + c2)
] [
∂2 f (z1, z2)

∂z2
1

− i f (z1 + c1, z2 + c2)
]

= 1. (3.1)

Since ∂2 f (z1,z2)
∂z2

1
and f (z1 + c1, z2 + c2) are transcendental, then by Lemma 3.2 and Lemma 3.3, from (3.1),

there exists a nonconstant polynomial p(z) in C2 such that
∂2 f (z1, z2)

∂z2
1

+ i f (z1 + c1, z2 + c2) = eip(z1,z2),

∂2 f (z1, z2)
∂z2

1

− i f (z1 + c1, z2 + c2) = e−ip(z1,z2).

(3.2)

Thus, in view of (3.2), it yields
∂2 f (z1, z2)

∂z2
1

=
eip(z1,z2) + e−ip(z1,z2)

2
,

f (z1 + c1, z2 + c2) =
eip(z1,z2) − e−ip(z1,z2)

2i
.

(3.3)

In view of (3.3), we have

eip(z1+c1,z2+c2) + e−ip(z1+c1,z2+c2)

=

∂2 p(z1, z2)
∂z2

1

+ i
(
∂p(z1, z2)
∂z1

)2 eip(z1,z2)

+

∂2 p(z1, z2)
∂z2

1

− i
(
∂p(z1, z2)
∂z1

)2 e−ip(z1,z2). (3.4)

Now, we claim that ∂2 p(z1,z2)
∂z2

1
− i

(
∂p(z1,z2)
∂z1

)2
. 0. If ∂p(z1,z2)

∂z1
≡ 0, then Eq (3.4) becomes eip(z1+c1,z2+c2) +

e−ip(z1+c1,z2+c2) ≡ 0, this is impossible since p(z) is a nonconstant polynomial. If ∂2 p(z1,z2)
∂z2

1
− i

(
∂p(z1,z2)
∂z1

)2
≡ 0

and ∂p(z1,z2)
∂z1

. 0, then ∂u
∂z1

= iu2, where u =
∂p(z1,z2)
∂z1

. Solving this equation, we have −1
u = iz1 + ϕ1(z2),

that is, ∂p(z1,z2)
∂z1

= u = − 1
iz1+ϕ1(z2) , where ϕ1(z2) is a polynomial in z2. Thus, it follows that p(z1, z2) =

i log[iz1+ϕ1(z2)]+ϕ2(z2), where ϕ2(z2) is a polynomial in z2. This is a contradiction with the assumption
of p(z1, z2) being a nonconstant polynomial. Hence, ∂2 p(z1,z2)

∂z2
1
− i

(
∂p(z1,z2)
∂z1

)2
. 0. Similarly, we have

∂2 p(z1,z2)
∂z2

1
+ i

(
∂p(z1,z2)
∂z1

)2
. 0. Thus, (3.4) becomes

(
∂2 p
∂z2

1

+ i(
∂p
∂z1

)2)ei(p(z+c)+p(z)) + (
∂2 p
∂z2

1

− i(
∂p
∂z1

)2)ei(p(z+c)−p(z)) − e2ip(z+c) ≡ 1. (3.5)
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1919

Since p(z) is a nonconstant polynomial, we have that e2ip(z+c) is not a constant, and

N
(
r, (
∂2 p
∂z2

1

+ i(
∂p
∂z1

)2)ei(p(z+c)+p(z))
)

= N
(
r, (
∂2 p
∂z2

1

− i(
∂p
∂z1

)2)ei(p(z+c)−p(z))
)

= N(r,−e2ip(z+c)) = 0,

and

N

r, 1

(∂
2 p
∂z2

1
+ i( ∂p

∂z1
)2)ei(p(z+c)+p(z))

 = O(log r) = S (r, e2ip(z+c)),

N

r, 1

(∂
2 p
∂z2

1
− i( ∂p

∂z1
)2)ei(p(z+c)−p(z))

 = O(log r) = S (r, e2ip(z+c)).

Thus, by Lemma 3.1, it yields ∂2 p
∂z2

1

− i
(
∂p
∂z1

)2 ei(p(z+c)−p(z)) ≡ 1. (3.6)

In view of (3.5) and (3.6), it follows∂2 p
∂z2

1

+ i
(
∂p
∂z1

)2 ei(p(z)−p(z+c)) ≡ 1. (3.7)

Here, we claim that p(z) = L(z) + B, where L(z) is a linear function as the form L(z) = a1z1 + a2z2, B
is a constant in C. In fact, since p(z) is a nonconstant polynomial, and in view of (3.6) and (3.7), we
conclude that p(z) = L(z) + H(s) + B, where H(s) is a polynomial in s, s := c2z1− c1z2. Thus, it follows
from (3.6) that H′′c2 − i(H′c2 + a1)2 must be a constant in C. By combining with c2 , 0, then we have
degs H ≤ 1. Thus, L(z) + H(s) + B is still a linear form of z1, z2. Hence, we have p(z) = L(z) + B and
L(z) = a1z1 + a2z2. Thus, it follows

∂2 p
∂z2

1

≡ 0, − ia2
1eiL(c) = 1, ia2

1e−iL(c) = 1. (3.8)

Thus, it follows from (3.8) that

a2
1 = 1, L(c) = 2kπ +

1
2
π, or a2

1 = −1, L(c) = 2kπ −
1
2
π. (3.9)

By observing the second equation in (3.3), we can define the form of f (z1, z2) as

f (z1, z2) =
ei(L(z)−L(c)+B) − e−i(L(z)−L(c)+B)

2i
. (3.10)

By combining with (3.9) and (3.10), it yields

f (z1, z2) = η
ei(L(z)+B) + e−i(L(z)+B)

2
,

where η, a1, a2, B are constants in C satisfying one of the following conditions

(i) η = −1, a2
1 = 1, and L(c) = 2kπ + 1

2π;

(ii) η = 1, a2
1 = −1, and L(c) = 2kπ − 1

2π.

Therefore, this completes the proof of Theorem 1.2. �
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3.2. The Proof of Theorem 1.4

Proof. Suppose that f is a finite order transcendental entire solutions of Eq (1.8), then it follows
that ∂2 f (z1,z2)

∂z2
1

+
∂2 f (z1,z2)

∂z2
2

is transcendental. Otherwise, f (z1 + c1, z2 + c2) is not transcendental, this is
a contradiction with the condition. Firstly, Eq (1.8) can be rewritten as the following form[

∂2 f (z)
∂z2

1

+
∂2 f (z)
∂z2

2

+ i f (z + c)
] [
∂2 f (z)
∂z2

1

+
∂2 f (z)
∂z2

2

− i f (z + c)
]

= 1. (3.11)

Since ∂2 f (z1,z2)
∂z2

1
+

∂2 f (z1,z2)
∂z2

2
and f (z1 + c1, z2 + c2) are transcendental, then by Lemma 3.2 and 3.3, it follows

from (3.11) that 
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

+ i f (z1 + c1, z2 + c2) = eip(z1,z2),

∂2 f (z1, z2)
∂z2

1

+
∂2 f (z1, z2)

∂z2
2

− i f (z1 + c1, z2 + c2) = e−ip(z1,z2),

(3.12)

where p(z) is a nonconstant polynomial in C2. Thus, in view of (3.12), it yields
∂2 f (z1, z2)

∂z2
1

+
∂2 f (z1, z2)

∂z2
2

=
eip(z1,z2) + e−ip(z1,z2)

2
,

f (z1 + c1, z2 + c2) =
eip(z1,z2) − e−ip(z1,z2)

2i
.

(3.13)

In view of (3.13), we have

eip(z1+c1,z2+c2) + e−ip(z1+c1,z2+c2)

= (A1 + iA2) eip(z1,z2) + (A1 − iA2) e−ip(z1,z2). (3.14)

where A1 =
∂2 p(z1,z2)

∂z2
1

+
∂2 p(z1,z2)

∂z2
2

and A2 =
(
∂p(z1,z2)
∂z1

)2
+

(
∂p(z1,z2)
∂z2

)2
.

If A1 + iA2 ≡ 0, then it follows that

e2ip(z1+c1,z2+c2) = (A1 − iA2) ei(p(z1+c1,z2+c2)−p(z1,z2)) − 1. (3.15)

By making use of the Nevanlinna second fundamental theorem and (3.15), it follows that

T
(
r, e2ip(z1+c1,z2+c2)

)
≤N

(
r,

1
e2ip(z1+c1,z2+c2)

)
+ N

(
r,

1
e2ip(z1+c1,z2+c2) + 1

)
+ S

(
r, e2ip(z1+c1,z2+c2)

)
≤N

(
r,

1
(A1 − iA2) ei(p(z1+c1,z2+c2)−p(z1,z2))

)
+ S

(
r, e2ip(z1+c1,z2+c2)

)
≤N

(
r,

1
A1 − iA2

)
+ S

(
r, e2ip(z1+c1,z2+c2)

)
. (3.16)

If A1 − iA2 ≡ 0, in view of (3.15), it yields that e2ip(z1+c1,z2+c2) = −1, a contradiction. If A1 − iA2 . 0,
then from (3.16), it leads to

T
(
r, e2ip(z1+c1,z2+c2)

)
≤ T (r, A1 − iA2) + S

(
r, e2ip(z1+c1,z2+c2)

)
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≤ O(T (r, p)) + S
(
r, e2ip(z1+c1,z2+c2)

)
,

outside possibly a set of finite Lebesgue measure. This is a contradiction with the fact

lim
r→+∞

T (r, e2ip)
T (r, p)

= +∞,

for p(z) is a nonconstant polynomial. Thus, it follows that A1+iA2 . 0. Similarly, we have A1−iA2 . 0.
Thus, (3.14) becomes

(A1 + iA2)ei(p(z+c)+p(z)) + (A1 − iA2)ei(p(z+c)−p(z)) − e2ip(z+c) ≡ 1. (3.17)

Since p(z) is a nonconstant polynomial, we have that e2ip(z+c) is not a constant, and

N
(
r, (A1 + iA2)ei(p(z+c)+p(z))

)
= N

(
r, (A1 − iA2)ei(p(z+c)−p(z))

)
= N(r,−e2ip(z+c)) = 0,

and

N
(
r,

1
(A1 + iA2)ei(p(z+c)+p(z))

)
= O(log r) = S (r, e2ip(z+c)),

N
(
r,

1
(A1 − iA2)ei(p(z+c)−p(z))

)
= O(log r) = S (r, e2ip(z+c)).

Thus, by Lemma 3.1, it yields
(A1 − iA2) ei(p(z+c)−p(z)) ≡ 1. (3.18)

In view of (3.17) and (3.18), it follows

(A1 + iA2) ei(p(z)−p(z+c)) ≡ 1. (3.19)

Since p(z) is a nonconstant polynomial, in view of (3.18) and (3.19), similar to the argument as in the
proof of Theorem 1.2, we conclude that p(z) = L(z) + B, where L(z) is a linear function as the form
L(z) = a1z1 + a2z2, B is a constant in C. Thus, it follows

∂2 p
∂z2

1

≡ 0,
∂2 p
∂z2

2

≡ 0 − i(a2
1 + a2

2)eiL(c) = 1, i(a2
1 + a2

2)e−iL(c) = 1. (3.20)

Thus, it follows from (3.20) that

(a2
1 + a2

2) = 1, L(c) = 2kπ +
1
2
π, or (a2

1 + a2
2) = −1, L(c) = 2kπ −

1
2
π. (3.21)

By observing the second equation in (3.13), we can define the form of f (z1, z2) as

f (z1, z2) =
ei(L(z)−L(c)+B) − e−i(L(z)−L(c)+B)

2i
. (3.22)

By combining with (3.21) and (3.22), it yields

f (z1, z2) = η
ei(L(z)+B) + e−i(L(z)+B)

2
,

where η, a1, a2, B are constants in C satisfying one of the following conditions

(i) η − 1, (a2
1 + a2

2) = 1, and L(c) = 2kπ + 1
2π;

(ii) η = 1, (a2
1 + a2

2) = −1, and L(c) = 2kπ − 1
2π.

Therefore, this completes the proof of Theorem 1.4. �
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3.3. Proofs of Theorems 1.3 and 1.5

By using the same argument as in the proof of Theorem 1.4, we can easily prove the conclusions of
Theorems 1.3 and 1.5.

4. Conclusions

We can see that Theorem 1.1 is an extension of Theorem G. Meantime, it is also a positive answer
to Question 1.1. Moreover, Theorems 1.2–1.5 are the answer to Questions 1.2–1.3. More important, a
series of examples show that our results are accurate.
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