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1. Introduction

In recent years, the area related to fractional differential and integral equations has received much
attention from numerous mathematicians and specialists. The derivatives of fractional order represent
physical models of multiple phenomena in different fields such as biology, physics, mechanics,
dynamical systems, and so on (see [1–6] and the references therein).

The possibility of fractional calculus was presented in 1695, when the notation dτ
dtτ h(r) was

introduced to indicate the derivative of function h(r) in order τ. Specifically, Leibniz composed a
letter to LHospital in which he posed an enquiry on the derivative of order τ = 1, 2 which led to the
establishment of fractional calculus. Later on, the fractional derivative was presented by Lacroix [7].
Perhaps the most utilized fractional derivatives are Riemann Liouville (RL) and Caputo derivatives,
which assume an immodest role in fractional order differential equation.

One of the best examination regions in fractional order differential equation, which receives vast
considerations by analysts, entails the existence theory of solution. For details concerning the present
hypothesis, see [8–12]. Finding an exact solution of fractional order differential equation is
exceptionally difficult and the type of exact solution is regularly is important to study an approximate
solution with a relatively simple form and examine how close both the approximate and exact
solutions are. Overall, we state that a fractional-order differential equation is said to be
Hyers-Ulam (HU) stable if, for every solution of the fractional-order differential equation, there exists
an approximate solution of the concerned equation that is close to it.

Ulam [13] formulated the stability of a functional equation, which was solved by Hyers [14] using
an additive function defined on the Banach space. This result led Rassias [15] to study and generalize
the stability concept, establishing the Hyers-Ulam-Rassias stability. An integral transform (introduced
by Fourier) involves a trigonometric form of the Mittag-Leffler function to identify an analytic
solution concerning a differential equation of fractional order. The Fourier transforms, Mittag-Leffler
function, and fractional trigonometric function constitute an effective tool for analytic expression of
the solution of differential equation of non-integer order. Indeed, the Fourier transform has become
popular because of recent developments in differential applications. It is also seen as the easiest and
most effective way among many other transforms. Luchko [16] defined the fractional Fourier
transform (FRFT) of real order τ, 0 < τ ≤ 1 and discussed its important properties. The application of
fractional Fourier transform for undertaking certain types of differential equations of fractional order
has also been conducted. Indeed, there are many studies on fractional Fourier transform and its
applications in the literature [17–19].

In 2017, Wang et al. [20] discussed the stability of fractional differential equation based on the
right-sided RiemannLiouville fractional derivatives for continuous function space. The fixed point
theorem and weighted space method were exploited. In [21], a study on the HU stability condition
was conducted, focusing on an impulsive R-L fractional neutral functional stochastic differential
equation with time delays. In [22], the stability criteria of a class of fractional differential equations
were investigated, in which the Krasnoselskii fixed point method was employed. Recently, Upadhyay
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et al. [23] discussed the RL fractional differential equations using the Hankel transform method. At
present, some remarkable results to the stability of fractional differential equations have been reported
(see [24–26] and the references therein). In [27, 28], the author studied the Hyers-Ulam stability of
linear differential equation by using Fourier transform. To the best of our knowledge, there are no
results on Hyers-Ulam stability of fractional differential equation by fractional Fourier transform.
Some important works related to the recent development in fractional calculus and its applications
should be discussed in [29–31].

Motivated by the ongoing research in this field, we examine the Hyers-Ulam stability and
generalized Hyers-Ulam stability of fractional order differential equation in this study becomes(

Dτ
ϑh

)
(r) = G(r), ∀ r ∈ R,

and the delay differential equation of fractional order(
Dτ

ϑh
)

(r − ξ) = G(r), ∀ r ∈ R,

where Dτ
ϑ represents RL fractional derivative, ξ > 0, ϑ ∈ R and 0 < τ ≤ 1 with the help of fractional

Fourier transform.
In our investigation, we establish the fractional Fourier transform and present it in an integral form.

Furthermore, using the convolution concept and properties of fractional Fourier transform, the solution
of the stability conditions concerning fractional order differential equation is established. Specifically,
we analyze Hyers-Ulam-Rassias stability of the nonlinear fractional order differential equation of the
form (

Dτ
ϑh

)
(r) = G(r, h(r)), ∀ r ∈ R,

and use the fixed point theorems for examining the existence and uniqueness of the solution.
The conduct of the analytical solutions of the fractional differential equation represented by the

fractional-order derivative operators is the fundamental profession in numerous stability issues.
Motivated by the usage of the Mittag-Leffler functions in many spaces of science and designing we
present this paper.

The main aim of this paper is to prove the Hyer-Ulam-Mittag-Leffler stability of the following
fractional differential equations using the fractional Fourier transform(cDτ

0+y
)

(c) − λ
(

cDδ
0+y

)
(c) = h(c), (1.1)

and (cDτ
0+y

)
(c) − λ

(
cDδ

0+y
)

y(c) − h(c) = F(c), (1.2)

where s > 0, λ ∈ R, p − 1 < τ ≤ p, q − 1 < δ ≤ q, 0 < δ < τ, p, q ∈ N ≤ p, h(c) and h(c) real functions
defined on R+, and cDτ

0+
is the Caputo fractional derivative of order τ defined by

(cDτ
0+

)
=

1
Γ(p − τ)

∫ c

0
(c − r)p−τ−1y(p)(r)dr. (1.3)

We organize this article as follows. The related fundamental properties, lemmas and definitions are
presented in section 2. In section 3, Hyers-Ulam-Mittag-Leffler stability of fractional-order linear
differential equation and non-linear differential equation is explained. Numerical examples and
conclusions are given in section 4.
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2. Preliminaries

The Fourier transform is used, for solving partial differential equations. We will need it only in
some applications of fractional calculus so we only give the most important formulas. For further
facts, we recommend the same books as for the Laplace transform [2].

Let f (x) be a real function of one real variable, such that its Lebesgue integral over the real numbers
converges and such that f (x) with its derivative are piecewise continuous. Then the Fourier image of
the function f (x), we denote it by f̂ (k) = F{ f (x), x, k}.

f̂ (k) =

∫ ∞

−∞

f (x)e−ikxdx.

For Fourier images we will use same letters like for the original function with hat and the variable k.
Consider L1(R) as the space related to the complex-valued Lebesgue integrable function on the real

line R with norm
‖h‖ =

∫
R
|h(r)|dr.

The definition of a Fourier transform with respect to a function h ∈ L1(R) is

Ĥ(ω) = (Fh(r))(ω) =

∫ −∞

∞

h(r)eiωrdr, ∀ ω ∈ R.

The form of the associated inverse Fourier transform is

h(r) = (F−1Ĥ(ω))(r) =
1

2π

∫ −∞

∞

Ĥ(ω)e−iωrdω, ∀ r ∈ R.

Note that Fourier transform is useful for conversion of a function between the time and frequency
domains. It adopts the principle of rotation operation on the time-frequency distribution.

Definition 1. Given parameter τ, we can express the fractional Fourier transform of function h(r) in a
one-dimensional case as follows [32]:

Ĥ(ω) = (Fαh(r))(ω) =

∫ −∞

∞

h(r)Kτ(r, ω)dr,

where kernel Kτ(r, ω) is

Kτ(r, ω) =

Bτe
i(r2+ω2)cotτ

2 −irωcosecτ, τ , nπ,
1

2πe−irω, τ = π
2 ,

and n is an integer, while

Bτ = (2πisinτ)
−1
2 eiτ2

=

√
1 − icotτ

2π
.

As such, the form of the associated inverse fractional Fourier transform is

h(r) =
1

2π

∫ −∞

∞

Kτ(r, τ)Ĥ(ω)dω,
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where

Kτ(r, τ) =
(2πisinτ)

1
2

sinτ
e
−iτ
2 e

−i(r2+ω2)cotτ
2 + irωcosecτ = B

′

τe
−iτ
2 e

−i(r2+ω2)cotτ
2 + irωcosecτ

B
′

τ =
(2πisinτ)

1
2

sinτ
e
−iτ
2 =

√
2π(1 + icotτ).

Definition 2. The fractional trigonometric function is denoted by

Eτ (ixτ) = cosrτ + isinrτ,

with

cosrτ =
∑
k=0

∞(−1)k r2τk
Γ(1 + 2τk)

and sinrτ =
∑
k=0

∞(−1)k
x(2k + 1)τ

Γ(1 + τ(2k + 1))
.

Luchko et al. [33] introduced a new fractional Fourier transform Fτ of order τ, (0 < τ ≤ 1) and its
definition is

Ĥτ(ω) = (Fτh)(ω) =

∫ −∞

∞

h(r)eτ(ω, r)dr,

where

eτ(ω, r) =

Eτ(−i|ω|1/τr), ω ≤ 0,
Eτ(i|ω|1/τr), ω ≥ 0.

sign(ω) =

−1, ω < 0,
1, ω ≥ 0.

As such, the definition of the associated inverse fractional Fourier transform is

h(r) =
1

2πτ

∫ −∞

∞

Eτ(−isign(ω)|ω|1/τx)|ω|
1
τ−1Ĥτ(ω)dω,

for any r ∈ R and τ > 0. If τ = 1, then Ĥτ(ω) and the classical Fourier transform are the same.
Suppose that the space of a function with fast decrease is denoted as S . In other words, the following

relation with respect to the space of infinity differentiable functions v(r) on R is satisfied: Given r ∈ R
and n, k ∈ N ∪ {0}. If v(r) ∈ S ⊆ R, then

‖vk(r)‖ ≤
M
|r|n

(n, k ∈ N ∪ {0}, n > k; |r| → ∞).

Based on V(R), the following relation with respect to a set of functions v ∈ S is satisfied:

dnv
drn

∣∣∣∣∣
r=0

= 0, n = 0, 1, 2, 3, ....

The Lizorkin space is φ(R) ⊂ L1(R) and it is defined as the Fourier pre-image of the space V(R) in
the space S of the form

φ(R) = {h ∈ S ; F(h) ∈ V(R)}.
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The reason for using the Lizorkin space is its convenience in using the Fourier transform as well as
the inverse Fourier transforms with fractional integration and differentiation operators. The properties
and associated details of the Lizorkin space have been discussed in many studies (see [34–36]). In our
study, we use F to represent the domain of either real R or complex C. According to the definition of
Lizorkin space, the orthogonality condition is satisfied by any function h ∈ (R). That is∫ ∞

∞

rnh(r)dr = 0, n = 0, 1, 2, 3, ....

Note that the property of the Fourier transform and its inverse holds for the space φ(R). In other
words, both transforms are inverse of one another, that is,

F−1Fh = h, h ∈ φ(R).

Definition 3. The function (h1∗h2)(r) =
∫

R
h1(rτ)h2(τ)dτ is denoted as the convolution of both functions

of h1 and h2 defined on φ(R).
Some properties of fractional Fourier transform that are closely related to the solution in this study

are given as follows. Let h, h1 and h2 be functions belonging to φ(R). Then

(1) If (Fτh1)(ω) = (Fτh2)(ω), then h1(r) = h2(r),
(2) F(Fτh(x − ξ))(ω) = eτ(ω, ξ)H̃(ω),
(3) Fτ(h1 ∗ h2)(ω) = Fτ((h1)(ω))Fτ((h2)(ω),
(4) F−1

τ (h1h2)(r) = F−1
τ (h1)(r)) ∗ F−1

τ (h2)(r).

Definition 4. [37] The definition of RiemannLiouville fractional integral of order τ > 0 is

(
Iτ+h

)
(r) =

1
Γ(τ)

∫ r

−∞

(rt)τ−1h(t)dt (Right RiemannLiouville f ractional integral),

and (
Iτ−h

)
(r) =

1
Γ(τ)

∫ ∞

r
(tr)τ−1h(t)dt (Le f t RiemannLiouville f ractional integral),

where Re(τ) > 0, we have Γ(τ) =
∫ ∞

0
e−uuτ−1du.

Definition 5. [37] The definition of RiemannLiouville fractional derivative of order τ > 0 is

(Dτ
+h)(r) =

d
dr

(I1−τ
+ h)(r) (Right RiemannLiouville f ractional derivative),

(Dτh)(r) = −
d
dr

(I1−τh)(r) (Le f t RiemannLiouville f ractional derivative).

Our current study considers the definition with respect to a fractional derivative operator Dτ
ϑ of

h ∈ φ(R), then
(Dτ

ϑh)(r) = (1ϑ)(Dτ
+h)(r) − ϑ(Dτ

−h)(r), 0 < τ ≤ 1, ϑ ∈ R,

where Dτ
− and Dτ

+ denote the left-hand and right-hand RiemannLiouville fractional derivatives of order
τ, in which 0 < τ < 1.
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We will denote the Caputo differ integral by the capital letter with upper-left index CD. The
fractional integral is given by the same expression as before, so for α > 0, we have

CD−αa = D−αa ,

The difference occurs for fractional derivatives. A non-integer-order derivative is again defined by
the help of the fractional integral, but now we first differentiate f(t) in common sense and then go back
by fractional integrating up to the required order. This idea leads to the following definition of the
Caputo differ integral.

Definition 6. Let a,T, α be real constants (a < T ), nc = max(0,−[−α]) and f (t) a function which is
integrable on 〈a,T 〉 in case nc = 0 and nc-times differentiable on 〈a,T 〉 except on a set of measure zero
in case nc > 0. Then the Caputo differintegral is defined for t ∈ 〈a,T 〉 by formula:

CD−αa f (t) = Inc−α
a

(
dnc f (t)

dtnc

)
.

Remark 1. For α > 0, α < N0, then

CD−αa f (t) =
1

Γ(nc − α)

∫ t

a
(t − τ)nc−α−1 f nc(τ)dτ.

The reason why nc in the definition of the Caputo derivative is different from n introduced in the
Riemann-Liouville case is correspondence with integer-order derivatives. We cannot use n even in the
Caputo definition because we would get wrong results for the kth derivative of a function with zero
(k + 1)th derivative. This would be an effect of the paradox that we would need for the kth derivative a
(k + 1)-times differentiable function.

Clearly, the Caputo derivative can also be written by the help of fractional integrals of the Riemann-
Liouville type

CD−αa f (t) = D−(nc−α)
a

(
dnc f (t)

dtnc

)
.

The Caputo derivative of order α = nc is equal to the classical nth
c derivative.

Definition 7. Suppose that ρ > 0, r > p, ρ, r, p ∈ R. Then

CDτ
rh(r) =

 1
Γ(p−τ)

∫ r

0
h(p)(r)

(r−τ)ρ+1−p , p − 1 < τ < p, p ∈ N ,
dp

drp h(r), τ = p ∈ N ,

is called the Caputo fractional differential operator of order τ.

Definition 8. The left and right Caputo fractional derivatives c
lD

τ
rh(r) and c

rD
τ
bh(r) of order τ ∈ R+ are

defined by

c
LD

τ
ah(r) =L D

τ
ah(r) −

p−1∑
k=0

hk(a)
k!

(r − a)k (le f t Caputo f ractional derivatives),
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and

c
RD

τ
bh(r) =R D

τ
bh(r) −

p−1∑
k=0

hk(b)
k!

(b − r)k (right Caputo f ractional derivatives),

respectively, where p = τ + 1 for τ ∈ N0, p = τ for τ. In particular, when 0 < τ < 1, then c
LD

τ
ah(r) =L

Dτ
a(h(r) − h(a)) and c

RD
τ
bh(r) =R D

τ
b(h(r) − h(b)).

Remark 2. The fractional Fourier transform and Caputo derivative are one-to-one functions.

Some properties of fractional Fourier transform that are closely related to the solution in this study
are given, as follows

(1) Dϑ
∗ f (r) = J`−ϑDϑ f (r),

(2) limρ→nD
ϑ
∗ f (r) = f `(r),

(3) Dϑ
∗ [τ f (r) + g(r)] = τDϑ

∗ f (r) +Dϑ
∗g(r),

(4) Dϑ
∗D

q f (r) = D
ϑ+%
∗ f (r) , DqDϑ

∗ f (r),
(5) {Dϑ

∗ f (r); s} = sϑF(s) −
∑`−1

k=0 sϑ−k−1 f (k)(0),
(6) {Dϑ

∗ f (r);$ =
(
−i$

1
ρ

)
,

(7) If f (r) = c =constant, thenDϑ
∗c = 0, c = constant and

Dϑ
∗ ( f (r)g(r)) =

∞∑
k=0

(
ϑ

k

) (
Dϑ−k f (r)

)
g(k)(r) −

`−1∑
k=0

rk−ϑ

Γ(k + 1 − ϑ)

(
( f (r)g(r))(k)(0)

)
.

Theorem 1. Let r > 0, τ ∈ R, p − 1 < τ < p, p ∈ N . Then the following relation between the
Riemann-Lioville and the Caupto operators holds

Dτ
∗h(r) = Dτh(r) −

p−1∑
k=0

rk−τ

Γ(k + 1 − τ)
h(k)(r).

Remark 3. For n = 1, i.e., 0 < τ < 1 one moreDτ
∗r

p = Dτrp.

Definition 9. The MittagLeffler function can be defined in terms of a power series as

Eτ(c) =

∞∑
k=0

ck

Γ(τk + 1)
, τ > 0 (one parameter), (2.1)

Eτ,%(c) =

∞∑
k=0

ck

Γ(% + τk)
, τ > 0, % > 0 (two parameter). (2.2)

Definition 10. The fractional differential equation ϕ( f , y,Dτ1y,Dτ2y, ...,Dτny) = 0 has Hyer-Ulam
stability if for any continuously differentiable function y satisfies the following inequality

|ϕ( f , y,Dτ1y,Dτ2y, ...,Dτny)| < ε, ε > 0, (2.3)

then there exist a solution y0 of (2.3) such that

|y(c) − y0(c)| < K(ε) and lim
ε→0

k(ε) = 0,

where k is a stability constant.

Remark 4. Let % ∈ C,R(%) > 0, r > 0. Then Fρ(r%) =
Γ(%+1)(
−iσ

1
ρ
)%+1 .
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3. Main results

In this section, we discuss the Hyer-Ulam-Mittag-Leffler stability of fractional-order linear and
non-linear differential equations. Furthermore, these corollaries givens some stable results based on
the following theorem and lemma.

Theorem 2. Let γ, δ, ∈ C,R(γ) > 0,R(δ) > 0, λ ∈ R. Then

Fα

(
rγm+δ−1E(m)

γ (λrγ)
)

=

(
−iσ

1
α

)γ−δ
m![(

−iσ
1
α

)γ
− λ

]m+1 .

Lemma 1. If R
(
−iσ

1
α

)
> 0, λ ∈ C and

∣∣∣∣λ (
−iσ

1
α

)∣∣∣∣ < 1, then

(1) If γ = δ = τ, r = c,m = 0, then

Fα

(
c
τ−1Eτ,τ(λxτ)

)
=

1[(
−iσ

1
α

)τ
− λ

] . (3.1)

(2) If γ = τ, r = c,m = 0, then

Fα

(
c
δ−1Eτ,δ(λxτ)

)
=

(
−iσ

1
α

)τ−δ[(
−iσ

1
α

)τ
− λ

] . (3.2)

(3) If γ = τ − δ, r = c,m = 0, then

Fα

(
c
τ−1Eτ−δ,τ(λxτ−δ)

)
=

1[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ] . (3.3)

3.1. Hyers-Ulam-Mittag-Leffler stability of linear fractional differential equation

In this part, we are going to analyse the Hyers-Ulam-Mittag-Leffler stability of the linear fractional
differential equation of the form (cDα

0+y
)

(c) − λ
(

cDδ
0+y

)
y(c) = h(c),

by using fractional Fourier transform method.

Theorem 3. Let λ ∈ R, p − 1 < τ ≤ p, p ∈ N and let h(c) be a real valued function defined on R. If a
function y : (0,∞)→ R satisfies∣∣∣∣(cDα

0+y
)

(c) − λ
(

cDδ
0+y

)
y(c) − h(c)

∣∣∣∣ ≤ ε, ε > 0, ∀ x > 0, (3.4)

then there exists a solution ya : (0,∞)→ R of
(

cDα
0+

y
)

(c) − λ
(

cDδ
0+

y
)

y(c) = h(c) such that

|y − ya| ≤ εc
τEτ,τ+1

(
|λ|cτ−δ

)
. (3.5)

AIMS Mathematics Volume 7, Issue 2, 1791–1810.



1800

Proof. Putting y(k)(0) = bk, for k = 0, 1, 2, ..., p − 1 and

y(c) =
(cDα

0+y
)

(c) − λ
(

cDδ
0+y

)
y(c) − h(c).

Now,

y(c) =

Dτy(c) −
p−1∑
k=0

ck−τ

Γ(k + 1 − τ)
yk(0)

 − λ
Dτy(c) −

p−1∑
k=0

ck−δ

Γ(k + 1 − τ)
yk(0)

 − h(c).

Taking fractional Fourier transform on both sides, we have

Fα [Y(c)] = Fα
[
Dτy(c)

]
−

p−1∑
k=0

bk

Γ(k + 1 − τ)
Fα

[
c

k−τ
]
− λ

Fα [
Dτy(c)

] p−1∑
k=0

bk

Γ(k + 1 − δ)
Fα

[
c

k−δ
] − Fα [h(c)] (3.6)

=

[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ]
Fα

[
y(c)

]
− Fα [h(c)] −

p−1∑
k=0

bk

(
−iσ

1
α

)τ−k−1
+ λ

p−1∑
k=0

bk

(
−iσ

1
α

)δ−k−1
,

Which implies that

[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ]
Fα

[
y(c)

]
= Fα [Y(c)] − Fα [h(c)] +

p−1∑
k=0

bk

(
−iσ

1
α

)τ−k−1
− λ

p−1∑
k=0

bk

(
−iσ

1
α

)δ−k−1

Fα
[
y(c)

]
=
Fα [Y(c)] − Fα [h(c)][(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ] +

∑p−1
k=0 bk

(
−iσ

1
α

)τ−k−1[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ] + λ

∑p−1
k=0 bk

(
−iσ

1
α

)τ−k−1[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ] . (3.7)

Setting

y0(c) =

p−1∑
k=0

bkyk(c) +

q−1∑
k=n

bkyk(c) +

∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]
h(r)dr, (3.8)

where yk(c) = ckEτ−δ,k+1(λcτ−δ) − λcτ−δ+kEτ−δ,τ−δ+k+1(λcτ−δ), k = 0, 1, 2, ..., q − 1,

yk(c) = ckEτ−δ,k+1(λcτ−δ), k = q, ..., p − 1,
and

y0(c) =

q−1∑
k=n

bkyk(c) +

∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]
h(r)dr.

Taking fractional Fourier transform on both sides, we have

Fα

[
ya(c)

]
=

p−1∑
k=0

bkFα

[
c

kEτ−δ,k+1

(
λcτ−δ

)
− λcτ−δ+kEτ−δ,τ−δ+K+1

(
λcτ+δ

)]
+

p−1∑
k=0

bkFα

[
c

kEτ−δ,k+1

(
λcτ−δ

)]
+ Fα

[∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]]
Fα [h(r)] dr.
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Consequently,

Fα

[
ya(c)

]
=

[∑p−1
k=0 bk

(
−iσ

1
α

)τ−k−1
− λ

∑p−1
k=0 bk

(
−iσ

1
α

)δ−k−1
+ Fα(h(c))

]
(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ . (3.9)

By (3.7) and a simple computation, we get

(cDα
0+ya

)
(c) − λ

(
cDδ

0+ya

)
ya(c) =

Dτya(c) −
p−1∑
k=0

ck−τ

Γ(k + 1 − τ)
y(k)(0)

 − λ
Dδya(c) −

p−1∑
k=0

ck−δ

Γ(k + 1 − δ)
y(k)(0)


Fα

[(cDα
0+ya

)
(c) − λ

(
cDδ

0+ya

)
(c)

]
=

(
−iσ

1
α

)τ
Fα

[
ya(c)

] p−1∑
k=0

bk

(
−iσ

1
α

)τ−k−1

− λ
((
−iσ

1
α

)τ
Fα

[
ya(c)

])
+ λ

p−1∑
k=0

bk

(
−iσ

1
α

)δ−k−1

= Fα [h(c)] . (3.10)

Since Fα is 1-1, it follows that (cDα
0+ya

)
(c) − λy(c) = h(c).

So y0(c) is a solution of (3.4). By (3.7) and (3.9), we get

Fα (y(c) − ya(c)) = Fα (y(c)) − Fα (ya(c)) =
Fα (Y(c))(

−iσ
1
α

)τ
− λ

(
−iσ

1
α

)δ . (3.11)

Using the convolution property, we obtain

Fα

(
c
τ−1Eτ−δ,α(λcτ−δ) ∗ Y(c)

)
= Fα

(
c
τ−1Eτ−δ,τ(λcτ−δ)

)
Fα (Y(c)) =

Fα (Y(c))(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ . (3.12)

By (3.11) and (3.12), we have

y(c) − ya(c) =
(
c
τ−1Eτ−δ,τ(λcα−δ)

)
∗ Y(c). (3.13)

Therefore, from (3.3) it follows that

|y(c) − ya(c)| =
∣∣∣∣(cτ−1Eτ−δ,τ(λcα−δ)

)
∗ Y(c)

∣∣∣∣
=

∣∣∣∣∣∣
∫ c

0
(c − r)τ−1Eτ−δ,τ(λ(c − r)τ−δ)Y(r)dr

∣∣∣∣∣∣
= εcτEτ−δ,τ+1(|λ|cτ−δ). (3.14)

Then by definition of Hyers-Ulam stability, (3.3) has the Hyers-Ulam stability. �
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Corollary 1. Let λ ∈ R, p − 1 < τ ≤ p, p ∈ N and let h(c) be a real valued function defined on R, also
χ(c) ∈ R. If y0 : (0,∞)→ R satisfies∣∣∣∣(cDτ

0+y
)

(c) − λ
(

cDδ
0+

)
y(c) − h(c)

∣∣∣∣ ≤ χ(c)ε, ε > 0, ∀ x > 0, (3.15)

then there exists a solution y0 : (0,∞)→ R of(cDτ
0+y

)
(c) − λ

(
cDδ

0+

)
y(c) = h(c),

such that
|y − y0| ≤ εχ(c)cτEτ−δ,τ+1 (|λ|cτ) . (3.16)

3.2. Hyers-Ulam stability of the non-linear fractional differential equation

In this section, we are going to analyse the Hyers-Ulam-Mittag-Leffler stability of the non-Linear
fractional differential equation of the form(cDα

0+y
)

(c) − λ
(

cDδ
0+

)
y(c) − h(c) = F(c),

by using the fractional Fourier transform method.

Theorem 4. Let λ ∈ R, p − 1 < τ ≤ p, p ∈ N and let h(c) be a real valued function defined on R. If a
function y : (0,∞)→ R satisfies∣∣∣∣(cDα

0+y
)

(c) − λ
(

cDδ
0+

)
y(c) − h(c)

∣∣∣∣ ≤ F(c), ε > 0, ∀ x > 0, (3.17)

then there exists a solution ya : (0,∞)→ R of(cDα
0+y

)
(c) − λ

(
cDδ

0+

)
y(c) − h(c) = F(c),

such that
|y − ya| ≤ C(c), here C(c) = cτEτ−δ,τ+1

(
|λ|cτ−δ

)
. (3.18)

Proof. Putting y(k)(0) = bk, for k = 0, 1, 2, ..., p − 1 and

y(c) =
(cDα

0+y
)

(c) − λ
(

cDδ
0+

)
y(c) − h(c) − F(c),

y(c) =

Dτy(c) −
p−1∑
k=0

ck−τ

Γ(k + 1 − τ)
yk(0)

 − λ
Dδy(c) −

p−1∑
k=0

ck−δ

Γ(k + 1 − δ)
yk(0)

 − h(c) − F(c).

Taking fractional Fourier transform on both sides, we have

Fα
[
y(c)

]
= Fα

[
Dτy(c)

]
−

p−1∑
k=0

bk

Γ(k + 1 − τ)
Fα

[
c

k−τ
]
− λ

Fα [
Dτy(c)

]
−

p−1∑
k=0

bk

Γ(k + 1 − τ)
Fα

[
c

k−τ
] − Fα [h(c)] − Fα [F(c)]

(3.19)

=
(
−iσ

1
α

)τ
Fα

[
y(c)

]
−

p−1∑
k=0

bk

Γ(k + 1 − τ)

(
−iσ

1
α

)τ−k−1

Γ(k + 1 − τ)
− λ

(−iσ
1
α

)τ
Fα

[
y(c)

]
−

p−1∑
k=0

bk

Γ(k + 1 − τ)

(
−iσ

1
α

)τ−k−1

Γ(k + 1 − τ)

 − Fα [h(c)] .

(3.20)

AIMS Mathematics Volume 7, Issue 2, 1791–1810.



1803

That is,

[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ]
Fα

[
y(c)

]
=

p−1∑
k=0

bk

(
−iσ

1
α

)τ−k−1
− λ

p−1∑
k=0

bk

(
−iσ

1
α

)δ−k−1
+ Fα [Y(c)] + Fα [h(c)] + Fα [F(c)] ,

Fα
[
y(c)

]
=

∑p−1
k=0 bk

(
−iσ

1
α

)τ−k−1[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ] − λ
∑p−1

k=0 bk

(
−iσ

1
α

)δ−k−1[(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ] +
Fα [Y(c)] + Fα [h(c)] + Fα [F(c)][(

−iσ
1
α

)τ
− λ

(
−iσ

1
α

)δ] .

(3.21)

Setting

y0(c) =

q−1∑
k=0

bkyk(c)
p−1∑
k=m

bkyk(c) +

∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]
h(r)dr

+

∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]
F(r)dr, (3.22)

where yk(c) = ckEτ−δ,K+1(λcτ−δ) − λcτ−δ+kEτ−δ,τ−δ+k+1(λcτ−δ), k = 0, 1, 2, ..., q − 1,

yk(c) = ckEτ−δ,K+1(λcτ−δ), k = q, ..., p − 1,
and

ya(c) =

p−1∑
k=1

bkyk(c) +

∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]
h(r)dr +

∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]
F(r)dr.

Taking fractional Fourier transform on both sides, we have

Fα

[
ya(c)

]
=

q−1∑
k=1

bkFα

[
c

kEτ−δ,k+1

(
λcτ−δ

)
− λcτ−δ+kEτ−δ,τ−δ+k+1

(
λcτ+δ

)]
+

p−1∑
k=m

bkFα

[
c

kEτ−δ,k+1

(
λcτ−δ

)]
+ Fα

[∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]]
Fα [h(r)] dr + Fα

[∫ c

0
(c − r)τ−1Eτ−δ,τ

[
λ(c − r)τ−δ

]]
Fα [F(r)] dr.

That is,

Fα

[
ya(c)

]
=

[∑p−1
k=0 bk

(
−iσ

1
α

)τ−k−1
− λ

∑p−1
k=0 bk

(
−iσ

1
α

)δ−k−1
+ Fα(h(c)) + +Fα(F(c))

]
(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ . (3.23)

By (3.7) and a simple computation, we get

(
cDα

0+ya

)
(c) − λ

(
cDδ

0+ya

)
(c) − h(c) =

Dτy0(c) −
p−1∑
k=0

ck−τ

Γ(k + 1 − τ)
y(k)

a (0)

 − λ
Dδya(c) −

p−1∑
k=0

ck−δ

Γ(k + 1 − δ)
y(k)

a (0)

 − h(c),

Fα

[(cDα
0+ya

)
(c) − λ

(
cDδ

0+ya

)
(c)

]
=

(
−iσ

1
α

)τ
Fα

[
ya(c)

] p−1∑
k=0

bk

(
−iσ

1
α

)τ−k−1
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− λ
((
−iσ

1
α

)τ
Fα

[
ya(c)

])
+ λ

p−1∑
k=0

bk

(
−iσ

1
α

)δ−k−1
− Fα [h(c)]

= Fα [h(c)] . (3.24)

Since Fα is 1-1, it follows that (cDα
0+ya

)
(c) − λy(c) = h(c).

So ya(c) is a solution of (3.4). By (3.7) and (3.9), we get

Fα (y(c) − y0(c)) = Fα (y(c)) − Fα (ya(c)) =
Fα (Y(c))(

−iσ
1
α

)τ
− λ

(
−iσ

1
α

)δ . (3.25)

Using the convolution property, we can get

Fα

(
c
τ−1Eτ−δ,α(λcτ−δ) ∗ Y(c)

)
= Fα

(
c
τ−1Eτ−δ,τ(λcτ−δ)

)
Fα (Y(c)) =

Fα (Y(c))(
−iσ

1
α

)τ
− λ

(
−iσ

1
α

)δ . (3.26)

By (3.11) and (3.12), we have

y(c) − ya(c) =
(
c
τ−1Eα,α+1(λcα−δ)

)
∗ Y(c). (3.27)

Therefore, from (3.3) it follows that

|y(c) − ya(c)| =
∣∣∣∣(cτ−1Eτ−δ,τ(λcα−δ)

)
∗ Y(c)

∣∣∣∣
=

∣∣∣∣∣∣
∫ c

0
(c − r)τ−1Eτ−δ,τ(λ(c − r)τ−δ)Y(r)dr

∣∣∣∣∣∣
= F(c)cτEτ−δ,τ+1(|λ|cτ−δ). (3.28)

Then by definition of Hyers-Ulam-Mittag-Leffler stability, the fractional differential Eq (1.2) has
the Hyers-Ulam stability. �

Corollary 2. Let λ ∈ R, p − 1 < τ ≤ p, p ∈ N and let h(c) be a real valued function defined on R, also
χ(c) ∈ R. If ya : (0,∞)→ R satisfies the inequality∣∣∣∣(cDτ

0+y
)

(c) − λ
(

cDδ
0+y

)
y(c) − h(c) − h(c)

∣∣∣∣ ≤ χ(c)ε, ε > 0, ∀ x > 0, (3.29)

then there exists a solution y0 : (0,∞)→ R of(cDτ
0+y

)
(c) − λ

(
cDδ

0+y
)

y(c) − h(c) = h(c),

such that |y − y0| ≤ C(c), here

C(c) = χ(c)h(c)cτEτ−δ,τ+1

(
|λ|cτ−δ

)
. (3.30)
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4. Applications

We consider the fractional differential equation

rDα
1/2u(r, s) =t Dβu(r, s), r ∈ R, s ∈ R+,

where the α, β are real parameters always restricted as follows 0 < α ≤ 1, 0 < β ≤ 2, rDα
1/2 = 1

2 (rDα
+ −r

Dα
−) is the space-fractional derivative of order α and sD

β
∗ is the Caputo time-fractional derivative of

order β(m − 1 < β ≤ m,m ∈ N) defined as follows:

rDβ
∗h(s) =


Γ(m−β)∫ s

0

f (m)(τ)
(s−τ)β+1−m dτ, m − 1 < β < m,

dm

dsm h(s), β = m.

This operator has been referred to as the Caputo fractional derivative since it was introduced by
Caputo in the late 1960s for modeling the energy dissipation in some anelastic materials with it is well
known that for a sufficiently well-behaved function h the property

L{sDβ
∗h(t); t} = tβh̃(t) −

m−1∑
k=0

tβ−1−kh(k)(0+),m − 1 < β ≤ m,

holds true, L being the Laplace transform

h̃(t) = L{h(s); t} =

∫ ∞

o
e−tsh(t)dt, R(t) > ah,

of a function h. A sufficient condition of the existence of the Laplace transform is that the original
function is of exponential order as t → ∞. This means that some constant ah exists such that the
product e−ah s|h(s)| is bounded for all t greater than some T . Then h̃(t) exists and is analytic in the half
plane R(t) > ah.

5. Examples

In this part, some examples are given to illustrate linear fractional differential equation and non
linear fractional differential equation for use our main theoretical part.

Example 1. Let the linear fractional differential equation(
cD

1
2
0+

y
)

(c) −
1
3

(
cD

1
3
0+

y
)

(c) =
2
3
c

3
2 −

3
5
c

5
3

Γ(5
3 )
, (5.1)

where τ = 1
2 , λ = 1

3 , δ = 1
3 , h(c) = 2

3c
3
2 − 3

5
c

5
3

Γ( 5
3 )

.

For ε = 1
2 , it is very easy to check that the function y1(c) = c2 satisfies∣∣∣∣∣∣∣

(
cD

1
2
0+

y
)

(c) −
1
3

(
cD

1
3
0+

y
)

(c) −
2
3
c

3
2 +

3
5
c

5
3

Γ( 5
3 )

∣∣∣∣∣∣∣ < 1
2
,
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and initial values of y1(c) are y1(0) = y
′

1 = 0. From (3.8) and the initial values of y1(c), we get an exact
solution of Eq (5.1)

y0(c) =

∫ c

0
(c − r)

−1
2 E 1

6
1
2

(
1
3

(c − r)
1
6

) 2
3

r
3
2 −

3
5
c

5
3

Γ( 5
3 )

 dr.

By theorem 3.3, the control function of y1(c) is 1
2c

1
2E 1

6 ,
3
2

(
1
3c

1
2

)
, thus

|y1(c) − y0(c)| <
1
2
c

1
2E 1

6 ,
3
2

(
1
3
c

1
2

)
,

Using MATLAB, the solution of (5.1) is computed and depicted in Figure 1. In addition, the error
of the approximate solution y1(c) can be estimated.

Figure 1. Solution of Eq (5.1).

Example 2. Let the non-linear fractional differential equation(
cD2

0+y
)

(c) −
1
3

(
cD

5
2
0+

y
)

(c) =
5
2
−

2
3
√
π
√
c
, (5.2)

where τ = 1
2 , δ = 5

2 , λ = 1
3 , h(c) = 5

2 −
2

3
√
π
√
c
.

For ε = 1
2 , it is very easy to check that the function y1(c) = c2 satisfies∣∣∣∣∣∣(cD2

0+y
)

(c) −
1
3

(
cD

5
2
0+

y
)

(c) −
5
2

+
2

3
√
π
√
c

∣∣∣∣∣∣ < 1
2
,

and initial values of y1(c) and y1(0) are 0. From (3.25) and the initial values of y1(c), we get an exact
solution of Eq (5.2)

y0(c) =

∫ c

0
(c − r)

−1
2 E 11

2
1
2

(
1
3

(c − r)
−1
2

) (
5
2
−

2
3
√
π
√
c

)
dr.
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By theorem 3.3, the control function of y1(c) is 1
2c

2E 11
2 ,3

(
1
3c

1
2

)
, thus

|y1(c) − y0(c)| <
1
2
c

2E 11
2 ,3

(
1
3
c

1
2

)
.

Using MATLAB, the solution of (5.2) is computed and depicted in Figure 2. An error of the
approximate solution y1(c) can be estimated.

Figure 2. Solution of Eq (5.2).

6. Conclusions

This paper may be divided into three main parts, the framework of Hyers-Ulam Mittag Leffler
problem of fractional derivatives and nonlinear fractional integrals, namely two Caputo fractional
derivatives using a fractional Fourier transform. the fractional calculus, the theory of linear fractional
differential equations and examples of the fractional calculus. In the beginning, we recalled some
techniques, classes of functions and basic integral transforms which are necessary for further
investigation of the fractional calculus rules. Then we introduced some standard approaches to the
definition of fractional differential equations, namely the Riemann-Liouville and the two Caputo
fractional approaches and the sequential fractional derivative, and studied their basic properties. In
particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler
problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative
step response functions of those generalized systems. We gave some examples of the fractional
differential equation for important functions like the power function and functions of the
Mittag-Leffler type. Finally, we considered the fractional differential equation of a discontinuous
function where some of their effects were demonstrated.
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