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1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and the induced norm ‖.‖. Let C be a nonempty
subset of H, and let 4 denotes the diagonal of the cartesian product C × C, i.e., 4 = {(x, x) : x ∈ C}.
For a directed graph G such that the set V(G) of its vertices coincides with C and the set E(G) of its
edges contains all loops, i.e., E(G) ⊇ 4. We assume G has no parallel edge. So we can identify the
graph G with the pair (V(G), E(G)). A mapping T : C → C is said to be G-contraction if T satisfies
the conditions:
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(G1) T is edge-preserving, i.e.,

(x, y) ∈ E(G) ⇒ (T x,Ty) ∈ E(G).

(G2) T decreases weights of edges of G, i.e., there exists δ ∈ (0, 1) such that

(x, y) ∈ E(G) ⇒ ‖T x − Ty‖ ≤ δ‖x − y‖.

A mapping T : C → C is said to be G-nonexpansive if T satisfies the condition (G1) and
(G3) T non-increases weights of edges of G, i.e.,

(x, y) ∈ E(G) ⇒ ‖T x − Ty‖ ≤ ‖x − y‖.

The set of a fixed point of T is denoted by F(T ), that is, F(T ) = {z ∈ H : Tz = z}.
In 2008, by using the concepts in fixed point theory and graph theory, Jachymski [17] proved some

generalizations of Banach’s contraction principle in complete metric spaces endowed with a graph.
Then in 2012, Aleomraninejed et al. [2] introduced some iterative G-contraction schemes with G-
nonexpansive mappings in Banach spaces endowed with a graph. Recently, Alfuraidan and Khamsi [3]
studied the existence of fixed points and proved a convergence result of monotone nonexpansive
mapping on a Banach space endowed with a directed graph. Later on, many authors have discussed the
Browder convergence theorem that deliberated the weak and strong convergence of some methods for
G-nonexpansive mapping in a Hilbert space with a directed graph (see for example [2–4, 13, 32, 33]).

Motivated by the work of [1, 23], Suparatulatorn et al. [28] scrutinized the following modified S -
iteration scheme: 

x0 ∈ C,
yn = (1 − σn)xn + σnT1xn,

xn+1 = (1 − δn)T1xn + (1 − δn)T2yn, n ≥ 0,

where {δn} and {σn} are sequences in (0, 1) and T1,T2 : C → C are G-nonexpansive mappings.
Additionally, they proved weak and strong convergence in order to approximate common fixed points
of two G-nonexpansive mappings in a uniformly convex Banach space X endowed with a graph under
this iteration.

Otherwise, speeding up the convergence of the algorithm has been interesting by many
mathematicians, one of that is inertial extrapolation, which was initially proposed by Polyak [22]
as an acceleration process. This algorithm was used to solve various convex minimization problems
based on the heavy ball method of the two-order time dynamical system. Inertial type methods involve
two iterative steps that the second step is obtained from the previous two iterates. These methods
are committed to being considered as an efficient technique to deal with various iterative algorithms,
particularly with the projection-based algorithms, see in [5, 8, 9, 21, 30, 31, 34].

Very recently, Suantai et al. [27] used the idea of Anh and Hieu [6, 7] to present the convergence
of the algorithm using the shrinking projection method with the parallel monotone hybrid method for
approximating common fixed points of a finite family of G-nonexpansive mappings. The application
of the algorithm has been provided to signal recovery in a situation without knowing the type of noise.
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This algorithm is defined in a real Hilbert space as follows:

x1 ∈ C, C0 = C,

vi
n = αi

nxn + (1 − αi
n)Tixn, i = 1, 2, ...,N,

in = argmax{‖vi
n − xn‖ : i = 1, 2, ...,N}, v̄n := vin

n ,

Cn+1 = {v ∈ Cn : ‖v − v̄n‖ ≤ ‖v − xn‖},

xn+1 = PCn+1 x1, n ≥ 1,

(1.1)

where {αi
n} is a sequence in [0, 1] such that lim inf

n→∞
αi

n(1 − αi
n) > 0 for all i = 1, 2, ...,N. v̄n is chosen by

the optimization all vi
n with xn. After that, the closed convex set Cn+1 was constructed by v̄n. Finally,

the next approximation xn+1 is defined as the projection of x1 on to Cn+1. More recently, Cholamjiak
et al. [11] proposed an inertial forward-backward splitting algorithm for finding the solution of common
variational inclusion problems based on the inertial technique and parallel monotone hybrid methods.
They proved strong convergence results under some suitable conditions in Hilbert spaces. Here in this
paper, the algorithm was very useful in image restoration. For given initial points x0, x1 ∈ C1 = H, let
the sequences {xn}, {yn} be generated by

yn = xn + θn(xn − xn−1),
zi

n = (1 − αi
n)yn + αi

nJB
rn

(I − rnAi)yn, i = 1, 2, ...,N,
i = argmax{‖zi

n − xn‖ : i = 1, 2, ...,N}, z̄n = zi
n,

Cn+1 = {v ∈ Cn : ‖z̄n − v‖2 ≤ ‖xn − v‖2 + θ2
n‖xn − xn−1‖

2 − 2θn〈xn − v, xn−1 − xn〉},

xn+1 = PCn+1 x1, n ≥ 1,

(1.2)

where Ai : H → H and B : H → 2H are monotone operator with JB
rn

= (I +rnB)−1, {rn} ⊂ (0, 2α), {θn} ⊂

[0, θ] for some θ ∈ [0, 1] and {αi
n} is a sequence in [0, 1] for all i = 1, 2, ...,N. It has been notable that

if {rn} ⊂ (0, 2α) where α is a constant of inverse strongly monotone operator A, then the mapping
JB

rn
(I − rnA) is nonexpansive. Later on, there have been some results involving the parallel method for

solving the fixed point problem (see [10, 12, 14–16, 29]). One of the algorithms for solving common
fixed point problems of the concerned nonexpansive operators is distributed inexact averaged operator
algorithm (DIO) which is introduced by Li and Feng [20]. The DIO algorithm is proposed as follow:

xi,n+1 = x̂i,n + αi,n
(
Fi(x̂i,n) + εi,n − x̂i,n

)
,

for all i = 1, 2, ...,N, where x̂i,n is defined by x̂i,n :=
∑N

j=1 ai j,nx j,n, εi,n ∈ H is an error for Fi(x̂i,n) and
Fi : H → H is a nonexpansive for all i = 1, 2, ...,N. Under the conditions

∑N
j=1 ai j,n = 1 for all

i = 1, 2, ...,N with ai j,n ≥ a > 0 and αi,n ∈ [α, 1 − α] for some constant α ∈ (0, 1
2 ), weak convergence

theorem was proved in Hilbert spaces.
In this paper, a parallel algorithm for finding a common fixed point of a finite family of G-

nonexpansive mappings using inertial technique is proposed. Also, the weak convergence theorem
is proved by assuming some control conditions in a Hilbert space endowed with graphs. Furthermore,
examples and numerical results for supporting the main results of this study are provided, and the
convergence rate of the iterative methods from this study is compared. Moreover, the proposed
algorithm is applied to solve signal recovery problems. Finally, the last section presents the numerical
results.
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2. Preliminaries

In this section, some known definitions and lemmas which will be used in the later sections
are stated.

Lemma 2.1. [5] Let {ψn}, {δn} and {αn} be the sequences in [0,+∞) such that ψn+1 ≤ ψn + αn(ψn −

ψn−1) + δn for all n ≥ 1,
∑∞

n=1 δn < +∞ and there exists a real number α with 0 ≤ αn ≤ α < 1 for all
n ≥ 1. Then the followings hold:
(i) Σn≥1[ψn − ψn−1]+ < +∞, where [t]+ = max{t, 0};
(ii) There exists ψ∗ ∈ [0,+∞) such that limn→+∞ ψn = ψ∗.

Lemma 2.2. [26] Let X be a Banach space satisfying Opial’s condition and let {xn} be a sequence
in X. Let u, v ∈ X be such that

limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist.

If {xnk} and {xmk} are subsequences of {xn} which converge weakly to u and v, respectively, then
u = v.

Definition 2.3. Let G = (V(G), E(G)) be a directed graph and (u, v) be a directed edge from vertex u
to vertex v. A graph G is called transitive if for any u, v, z ∈ V(G) such that (u, v) and (v, z) are in E(G),
then (u, z) ∈ E(G).

Definition 2.4. [28] Let u0 ∈ V(G) and A subset of V(G). We say that

(i) A is dominated by u0 if (u0, u) ∈ E(G) for all u ∈ A.
(ii) A dominates u0 if for each u ∈ A, (u, u0) ∈ E(G).

Definition 2.5. Let G = (V(G), E(G)) be a directed graph. The set of edges E(G) is said to be convex
if (ui, vi) ∈ E(G) for all i = 1, 2, ...,N and αi ∈ (0, 1) such that

∑N
i=1 αi = 1, then (

∑N
i=1 αiui,

∑N
i=1 αivi) ∈

E(G).

Lemma 2.6. [24] Let C be a nonempty, closed and convex subset of a Hilbert space H and G =

(V(G), E(G)) a directed graph such that V(G) = C. Let T : C → C be a G−nonexpansive mapping
and {un} be a sequence in C such that un ⇀ u for some u ∈ C. If there exists a subsequence {unk} of
{un} such that (unk , u) ∈ E(G) for all k ∈ N and {un − Tun} → v for some v ∈ H. Then (I − T )u = v.

3. Main results

In this section, we prove the following weak convergence theorem to find a common fixed point of
a finite family of G-nonexpansive mappings in Hilbert spaces endowed with a graph.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H and let G =

(V(G), E(G)) be a transitive directed graph such that V(G) = C and E(G) is convex. Let Ti : C −→ C

be a family of G-nonexpansive mappings for all i = 1, 2, ...,N such that F =
N⋂

i=1
F(Ti) , ∅. Let {xn},

{wn} generated by x0, x1 ∈ C and
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
wn = xn + θn(xn − xn−1),
yi

n = (1 − βi
n)wn + βi

nTiwn,

zi
n = (1 − αi

n)Tiwn + αi
nTiyi

n,

xn+1 = arg max{‖zi
n − wn‖ : i = 1, 2, ...,N},

(3.1)

where {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and {αi
n} and {βi

n} are sequences in [0, 1]. Assume that the
following conditions are satisfied:

(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞;
(ii) {wn} is dominated by t and {wn} dominates t for all t ∈ F, and if there exists a subsequence {wnk} of
{wn} such that {wnk}⇀ u ∈ C, then ({wnk}, u) ∈ E(G);
(iii) lim inf

n→∞
αi

n > 0;

(iv) 0 < lim inf
n→∞

βi
n ≤ lim sup

n→∞
βi

n < 1.

Then the sequence {xn} converges weakly to an element in F.

Proof. Let t ∈ F. Since {wn} dominates t and Ti is edge-preserving, we get (Tiwn, t) ∈ E(G) for all
i = 1, 2, ...,N. Implying thereby (yi

n, t) =
(
(1 − βi

n)wn + βi
nTiwn, t

)
∈ E(G) by E(G) is convex. For all

i = 1, 2, ...,N, we get∥∥∥zi
n − t

∥∥∥ =
∥∥∥(1 − αi

n)(Tiwn − t) + αi
n(Tiyi

n − t)
∥∥∥

≤ (1 − αi
n) ‖Tiwn − t‖ + αi

n

∥∥∥Tiyi
n − t

∥∥∥
≤ (1 − αi

n) ‖wn − t‖ + αi
n

∥∥∥yi
n − t

∥∥∥
= (1 − αi

n) ‖wn − t‖ + αi
n

∥∥∥(1 − βi
n)(wn − t) + βi

n(Tiwn − t)
∥∥∥

≤ (1 − αi
n) ‖wn − t‖ + αi

n

{
(1 − βi

n) ‖wn − t‖ + βi
n ‖Tiwn − t‖

}
≤ ‖wn − t‖

≤ ‖xn − t‖ + θn‖xn − xn−1‖.

This implies that ‖xn+1 − t‖ ≤ ‖xn − t‖ + θn‖xn − xn−1‖. From Lemma 2.1 and the assumption (i), we
obtain limn→∞ ‖xn − t‖ exists, in particular, {xn} is bounded and also {yi

n} and {zi
n}. By the properties in

a real Hilbert space H, we have

‖zi
n − t‖2 ≤ (1 − αi

n)‖Tiwn − t‖2 + αi
n‖Tiyi

n − t‖2

≤ (1 − αi
n)‖wn − t‖2 + αi

n‖y
i
n − t‖2

≤ (1 − αi
n)‖wn − t‖2

+αi
n
(
(1 − βi

n)‖wn − t‖2 + βi
n‖Tiwn − t‖2 − (1 − βi

n)βi
n‖Tiwn − wn‖

2)
≤ ‖wn − t‖2 − αi

n(1 − βi
n)βi

n‖Tiwn − wn‖
2

≤ ‖xn − t‖2 + 2θn〈xn − xn−1,wn − t〉 − αi
n(1 − βi

n)βi
n‖Tiwn − wn‖

2. (3.2)

This implies that there exist in ∈ {1, 2, ...,N} such that

αin
n (1 − βin

n )βin
n ‖Tinwn − wn‖

2 ≤ ‖xn − t‖2 − ‖xn+1 − t‖2 + 2θn〈xn − xn−1,wn − t〉. (3.3)
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By the assumptions (i), (iii) and (iv), from (3.3) and limn→∞ ‖xn − t‖ exist, we have

lim
n→∞
‖Tinwn − wn‖ = 0. (3.4)

By the definition of our algorithm and the assumption (iv), we have

‖yin
n − wn‖ = βin

n ‖Tinwn − wn‖ → 0 (3.5)

as n→ ∞. Since (wn, t), (t, yin) ∈ E(G), so (wn, yin) ∈ E(G). It follows from (3.5) that

‖xn+1 − Tinwn‖ = αin
n ‖Tiny

in
n − Tinwn‖ ≤ α

in
n ‖y

in
n − wn‖ → 0 (3.6)

as n→ ∞. From (3.4) and (3.6), we have

lim
n→∞
‖xn+1 − wn‖ = 0. (3.7)

This implies that
‖zi

n − wn‖ ≤ ‖xn+1 − wn‖ → 0 (3.8)

as n→ ∞ for all i = 1, 2, ...,N. From (3.2), we have

αi
n(1 − βi

n)βi
n‖Tiwn − wn‖

2 ≤ ‖wn − t‖2 − ‖zi
n − t‖2. (3.9)

By our assumptions (iii) and (iv), it follows from (3.8) and (3.9) that

lim
n→∞
‖Tiwn − wn‖ = 0, (3.10)

for all i = 1, 2, ...,N.
Since {wn} is bounded and H is reflexive, ωw(wn) = {x ∈ H : wnk ⇀ p, {wnk} ⊂ {wn}} is nonempty.

Let p ∈ ωw(wn) be an arbitrary element. Then there exists a subsequence {wnk} ⊂ {wn} converging
weakly to p. Let q ∈ ωw(wn) and {wnm} ⊂ {wn} be such that wnm ⇀ q. From Lemma 2.6 and (3.10), we
have p, q ∈ F. Applying Lemma 2.2, we obtain p = q. �

We know that if T is nonexpansive, that T is G-nonexpansive. From direct consequences of
Theorem 3.1, we have the following corollary:

Corollary 3.2. Let C be a nonempty closed and convex subset of a real Hilbert space H, and let

Ti : C −→ C be a family of nonexpansive mappings for all i = 1, 2, ...,N such that F =
N⋂

i=1
F(Ti) , ∅.

Let {xn}, {wn} generated by x0, x1 ∈ C and
wn = xn + θn(xn − xn−1),
yi

n = (1 − βi
n)wn + βi

nTiwn,

zi
n = (1 − αi

n)Tiwn + αi
nTiyi

n,

xn+1 = arg max{‖zi
n − wn‖ : i = 1, 2, ...,N},

(3.11)

where {θn} ⊂ [0, θ] for each θ ∈ (0, 1] and {αi
n} and {βi

n} are sequences in [0, 1]. Assume that the
following conditions are satisfied:
(i)

∑∞
n=1 θn‖xn − xn−1‖ < ∞;

(ii) lim inf
n→∞

αi
n > 0;

(iii) 0 < lim inf
n→∞

βi
n ≤ lim sup

n→∞
βi

n < 1.

Then the sequence {xn} converges weakly to an element in F.
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4. Application to signal recovery

A signal recovery problem can be modeled as the following underdetermined linear equation
system:

v = Au + ε, (4.1)

where u ∈ RN̄ is an original signal, v ∈ RM is the observed signal which is squashed by the filter matrix
A : RN̄ → RM and noisy ε. It is well known that the problem (4.1) can be solved by the LASSO
problem:

min
u∈RN̄

1
2
‖v − Au‖22 + λ‖u‖1, (4.2)

where λ > 0. As a result, various techniques and iterative schemes have been developed over the years
to solve the Lasso problem, see [18, 19, 25]. In this case, we set Tu = proxλg(u − λ∇ f (u)), where
f (u) = 1

2‖v − Au‖22 and g(u) = λ‖u‖1. It is known that T is a nonexpansive mapping when λ ∈ (0, 2/L)
and L is the Lipschitz constant of ∇ f .

The goal of this paper is to remove noise without knowing the type of filter and noise. Thus, we are
interested in the following common problems which are introduced by Suantai et al. [27]:

min
u∈RN̄

1
2
‖A1u − v‖22 + λ1‖u‖1,

min
u∈RN̄

1
2
‖A2u − v‖22 + λ2‖u‖1,

...

min
u∈RN̄

1
2
‖ANu − v‖22 + λN‖u‖1, (4.3)

where u is an original signal, Ai is a bounded linear operator and vi is an observed signal with noisy
for all i = 1, 2, ...,N. We can apply our proposed algorithm (3.1) to solve the problem (4.3) by setting
Tiu = proxλigi

(u − λi∇ fi(u)).
For all experiments in this section, the size of signal is selected to be N̄ = 1024 and M = 512,

where the original signal x is generated by the uniform distribution in [−2, 2] with m nonzero elements.
Suppose that

θn =

 min
{

θ̄n
‖xn−xn−1‖2

, 0.3
}

if xn , xn−1,

0.3 otherwise

for all n ∈ N. In the first part, we solve the problem (4.2) by considering the different components within
algorithm (3.1): λ, θ̄n, β1

n and α1
n. Let A be the Gaussian matrix generated by commend randn(M, N̄),

the observation b be generated by white Gaussian noise with signal-to-noise ratio SNR=40 and
m = 25. Given that the initial points x0, x1 are generated by commend randn(N̄, 1). We use the mean-
squared error to measure the restoration accuracy defined as follows: MS En = 1

1024‖xn − x‖22 < 10−5.
To find suitable parameters for the next numerical experiments, we present numerical results through
Tables 1–4 with different parameters θ̄n, λ, β1

n and α1
n, respectively.

Case 1. We compare the performance of the algorithm with different parameters θ̄n by setting λ =
1
‖A‖22

, β1
n = 0.5 and α1

n = n
5(n+1) for all n ∈ N. Then the results are presented in Table 1.
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Table 1. Numerical results of θ̄n.

θ̄n 0 1
(n+1)1.1

1
(n+1)2

100
(n+1)2

1
(n+100)2

No. of Iter. 3237 2293 2289 3286 2278
Elapsed Time (s) 2.5272 1.5865 1.5386 2.1956 1.5113

Case 2. We compare the performance of the algorithm with different parameters λ by setting θ̄n =
1

(n+100)2 and select α1
n and β1

n are the same as in Case 1. Then the results are presented in Table 2.

Table 2. Numerical results of λ.

λ 1
2‖A‖22

3
2‖A‖22

8
5‖A‖22

17
10‖A‖22

18
10‖A‖22

No. of Iter. 4709 1571 1473 1387 1309
Elapsed Time (s) 3.2404 1.0867 1.0199 0.9493 0.8978

Case 3. We compare the performance of the algorithm with different parameters β1
n by setting λ =

18
10‖A‖22

, θ̄n = 1
(n+100)2 and select α1

n is the same as in Case 1. Then the results are presented in Table 3.

Table 3. Numerical results of β1
n.

β1
n 0.7 0.8 0.9 0.95 0.99

No. of Iter. 1282 1259 1238 1228 1220
Elapsed Time (s) 1.4545 0.9254 0.8734 0.8860 0.8718

Case 4. We compare the performance of the algorithm with different parameters α1
n by setting λ =

18
10‖A‖22

, θ̄n = 1
(n+100)2 and β1

n = 0.99. Then the results are presented in Table 4.

Table 4. Numerical results of α1
n.

α1
n

n
10(n+1)

n
4(n+1)

n
2(n+1)

n
n+1

n
n+100

No. of Iter. 1358 1197 1000 753 863
Elapsed Time (s) 0.9990 1.0939 1.2328 0.5437 0.6133

We noticed that in all the above 4 cases, selecting α1
n = n

n+1 for all n ∈ N and setting λ, θ̄n and β1
n as

in Case 4, yield the best results.
In the next experiment, we would like to compare the performance of the parallel monotone hybrid

algorithm (1.1), inertial parallel monotone hybrid algorithm (1.2) and algorithm (3.1) for solving
the problem (4.3) with three filters, that is N = 3. The original signal is generated by the uniform
distribution in the interval [−2, 2] with m nonzero element. Let Ai be the Gaussian matrix generated by
commend randn(M, N̄), the observation bi be generated by white Gaussian noise with signal-to-noise
ratio SNR=40, we choose λi = 18

10‖Ai‖
2
2
, βi

n = 0.99 and αi
n = n

n+1 for all i = 1, 2, 3, n ∈ N and θ̄n = 1
(n+100)2

for our algorithm (3.1). Choosing

αi
n =

 10
n+10 , i f 1 ≤ n < K,

10
K+10 , otherwise,
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for all i = 1, 2, 3, n ∈ N where K is the number of iterations that we want to stop for the parallel
monotone hybrid algorithm (1.1) and αi

n = n
n+1 for all i = 1, 2, 3, n ∈ N and θ̄n = 1

(n+100)2 for the inertial
parallel monotone hybrid algorithm (1.2). We use MS En < 10−5. Further, we select x0 and x1 are the
same as in the first part. The results are presented in Table 5.

Table 5. Numerical comparison of three algorithms.

Algorithms
m Nonzero Elements

m = 50 m = 100 m = 150

Parallel monotone hybrid
Elapsed Time (s) 0.3687 0.4073 1.6993

No. of Iter. 290 317 357

Inertial parallel monotone hybrid
Elapsed Time (s) 0.3297 0.3966 0.9045

No. of Iter. 260 286 324

Our
Elapsed Time (s) 0.1545 0.1721 0.2365

No. of Iter. 65 72 89

In the next comparison, we will show the performance of our algorithm comparing with DIO
algorithm [20] when N = 3. The original signal is generated by the uniform distribution in the interval
[−2, 2] with m nonzero element. We suppose Ai, bi, λi, θ̄n, βi

n, αi
n, x0 and x1 are the same as in the

second part for our algorithm. For DIO algorithm, we choose x1,1 = x2,1 = x3,1 = x1, ai1,n = ai2,n = n
4n+1 ,

ai3,n = (1−ai1,n−ai2,n) and αi,n = 0.3 for all i = 1, 2, 3 and all n ∈ N. We use MS En < 10−5. The results
are presented in Table 6.

Table 6. Numerical comparison of our algorithm and DIO algorithm.

Algorithms
m Nonzero Elements

m = 50 m = 100 m = 150

DIO
Elapsed Time (s) 0.4371 0.4862 0.5984

No. of Iter. 487 550 604

Our
Elapsed Time (s) 0.1268 0.1295 0.1986

No. of Iter. 65 74 89

Table 5 shows the comparison of the number of iterations and the time elapsed with m =

50, 100, 150 nonzero elements for the three algorithms: Parallel monotone hybrid algorithm, Inertial
parallel monotone hybrid algorithm, and our algorithm. For comparison of our algorithm and the DIO
are showed in Table 6. In case m = 150, the original signal and the measurement of Tables 5 and 6
can be seen in Figures 1 and 4, respectively. The results of the comparison of the three algorithms can
be seen in Figures 2 and 3, and the results of DIO algorithm can be seen in Figures 5 and 6. Based on
the above results, we can see that our proposed algorithm is less time-consuming and requires fewer
iterations than the other three algorithms. We note that the numerical results of the DIO algorithm have
been shown for the best of the sequences {x1,n}, {x2,n}, {x3,n}.
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Figure 1. The original signal and the measurement in case m = 150 of Table 5.
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Figure 2. The reconstructed signals by three algorithms in case m = 150 of Table 5.
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Figure 3. Mean-squared error versus number of iterations in case m = 150 of Table 5.
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Figure 4. The original signal and the measurement in case m = 150 of Table 6.
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Figure 5. The reconstructed signals by three algorithms in case m = 150 of Table 6.
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Figure 6. Mean-squared error versus number of iterations in case m = 150 of Table 6.
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The final experiment considers algorithm (3.1) for solving (4.3) with multiple inputs Ai. The original
signal is generated by the uniform distribution in the interval [−2, 2] with m nonzero element. We
suppose Ai, bi, λi, θ̄n, βi

n, αi
n, x0 and x1 are the same as in the second part. We use MS En < 5 × 10−5.

The results are following presented in Table 7.

Table 7. Numerical results of our algorithm.

Inputting
m Nonzero Elements

m = 25 m = 50 m = 75 m = 100

A1
Elapsed Time (s) 0.6693 0.6887 1.0002 1.1109

No. of Iter. 776 871 1057 1276

A2
Elapsed Time (s) 0.5325 0.6218 1.2367 1.0217

No. of Iter. 753 831 1032 1246

A3
Elapsed Time (s) 0.5636 0.6798 0.7639 1.0629

No. of Iter. 751 863 1052 1338

A1, A2
Elapsed Time (s) 0.3752 0.4090 0.4521 0.4320

No. of Iter. 222 216 259 248

A1, A3
Elapsed Time (s) 0.3718 0.4255 0.4889 0.5027

No. of Iter. 206 240 275 295

A2, A3
Elapsed Time (s) 0.4876 0.3809 0.4176 0.4791

No. of Iter. 220 212 234 243

A1, A2, A3
Elapsed Time (s) 0.1978 0.1707 0.1716 0.1785

No. of Iter. 62 64 68 68

Table 7 presents the numerical results of the number of iterations and the time elapsed with multiple
inputs Ai and m = 25, 50, 75, 100 nonzero elements for our algorithm. The original signal and the
measurement by using A1–A3 of Table 7 are shown in Figure 7. From Figures 8 and 9, it can be
observed that incorporating all 3 Gaussian matrices (A1–A3) into algorithm (3.1) is more effective with
respect to time and number of iterations than involving only one or two of them.

100 200 300 400 500 600 700 800 900 1000

-2

0

2
Original signal

50 100 150 200 250 300 350 400 450 500

-20

0

20

Measured values with SNR=40 by using A
1

50 100 150 200 250 300 350 400 450 500

-40

-20

0

20

40

Measured values with SNR=40 by using A
2

50 100 150 200 250 300 350 400 450 500

-20

0

20

Measured values with SNR=40 by using A
3

Figure 7. The original signal and the measurement by using A1–A3, respectively with m=100.
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Figure 8. The reconstructed signals by using each input for m=100.
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Figure 9. The mean-squared error versus number of iterations for m=100.

5. Conclusions

We introduce a new inertial parallel algorithm to solve the common fixed point problem for a finite
family of G-nonexpansive mappings in a Hilbert space with a directed graph. Our primary theorems
ensure that this algorithm converges weakly to an element of the problem’s solution set under certain
conditions. The algorithm is then used to solve the signal recovery problem involving several filters.
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