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1. Introduction

Since 2013, Hernández et al. [1] introduced non-instantaneous impulse differential equations,
and their basic theories and applications have become an important research field. The qualitative
analysis for the non-instantaneous impulse differential system has attracted more and more researchers.
Abundant results have been obtained in relevant studies on non-instantaneous impulse systems for
reference [2–8]. It is well known that the impulsive periodic motion is a very important and special
phenomenon. We can see that periodic phenomenon and non-instantaneous impulsive phenomenon
often occurs together in a system. The concept of (ω, c)-periodic functions was proposed by Alvarez
et al. [12], who studied the properties of x(t) of the Mathieu equation x′′(t) + [a − 2qcos(2t)]x = 0.
When c = 1, the (ω, c)-periodic function becomes the standard ω-periodic function. When c = −1,
the (ω, c)-periodic function becomes antiperiodic. Are there any other |c| , 1 unbounded function and
Bloch functions. (ω, c)-periodic functions are more general and attract a large number of scholars to
study them. Abundant results have been obtained for periodic solutions, almost periodic solutions and
(ω, c)-periodic solutions of noninstantaneous impulses, see [9–18] and teferences therein. In addition,
in many practical problems, because fractional differential model can describe some phenomena more
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effectively than ordinary differential model, it attracts a large number of scholars to study the dynamics
of fractional system. Wang et al. [19] studied the controllability for a fractional noninstantaneous
impulsive semilinear differential inclusion with delay. By Banach fixed point theorem, Kaliraj et
al. [20] study the controllability of a class of fractional impulsive integro-differential equations with
finite delay with initial conditions and non-local conditions. Wang et al. [21] study integral boundary
value problems for integer order and fractional order of nonlinear non-instantaneous impulsive ordinary
differential equations. Ravichandran et al. [22] studied the existence of solutions of impulsive neutral
fractional integro-differential equations by atangana-Baleanu fractional derivatives. Kumar et al. [23]
studied the existence of solutions for nonautonomous fractional differential equations by using the
fixed point theory of noncompactness measure. Machado et al. [24] established the controllability of
a class of abstract impulsive mixed-type functional integro-differential equations with finite delay in a
Banach space.

With the development of control theory, the stability of differential equations have always been
the focus of researchers. Guan et al. [25] proved the existence and uniqueness of periodic solutions
for inhomogeneous systems by using matrix theory, and proved Hyers-Ulam stability results for
classical problems of atmospheric ekman layer stroke in stationary eddy viscous atmosphere under
mild conditions. Liu et al. [26] studied the Hyers-Ulam stability of linear Caputo-Fabrizio fractional
differential equations with Mittag-Leffler kernel by using the Laplace transform method. Wang [27]
established the sufficient conditions to guarantee the asymptotic stability of linear and semilinear
problems for noninstantaneous impulsive evolution operator. Yang et al. [28] established the
stability conditions for the periodic solutions of the noninstantaneous impulsive evolution equations
by using the Grownwall-coppel inequality. Wang et al. [29] discussed Lyapunov regularity and
stability of linear non-instantaneous impulsive differential systems, and gave some criteria for the
existence of nonuniform exponential stability. Wang et al. [30] studied Ulam-Hyers-Rassias stability
for nonlinear non-instantaneous impulsive equations under the restriction of exponential growth or
stability conditions for non-instantaneous impulsive Cauchy matrix, respectively.

Although a large number of literatures have been reported on the stability of non-instantaneous
impulsive systems, there is no study on the stability of (ω, c)-periodic solutions of non-instantaneous
impulsive systems. Based on the wide application of non-instantaneous pulses and the generality
of (ω, c)-periodic functions, we are interested in the stability of (ω, c)-periodic solutions for non-
instantaneous impulsive systems.

In this paper, we study the stability of the homogeneous linear non-instantaneous impulsive
equations 

x′(t) = Ax(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,
x(t+

i ) = Bx(t−i ), i = 1, 2, · · · ,
x(t) = Bx(t−i ), t ∈ (ti, si], i = 1, 2, · · · ,
x(s+

i ) = x(s−i ), i = 1, 2, · · · ,

(1.1)

and the nonlinear non-instantaneous impulsive equations
x′(t) = Ax(t) + g(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,
x(t+

i ) = Bx(t−i ), i = 1, 2, · · · ,
x(t) = Bx(t−i ), t ∈ (ti, si], i = 1, 2, · · · ,
x(s+

i ) = x(s−i ), i = 1, 2, · · · ,

(1.2)
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where A, B ∈ Rn×n, 0 = s0 < t1 < s1 < t2 < · · · < ti < si < ti+1 · · · , i ∈ N := {1, 2, · · · } and {ti}i∈N and

{si}i∈N
⋃
{0} are ω-periodic sequences, which will be specified later. Let I =

∞⋃
i=1

(si−1, ti] and J =
∞⋃

i=1
(ti, si],

g ∈ C(I,Rn), g(·, x) ∈ C(I, I × Rn).
From [30, Theorem 2.1], any solution x(·; 0, x0) ∈ PC(D,Rn),D = [0,+∞) of (1.1) with x(0) = x0 ,

0 has the following form
x(t; 0, x0) = W(t, 0)x0, t ≥ 0,

where non-instantaneous impulsive Cauchy matrix W(·, ·) : {(t, s) ∈ D × D} → Rn×n of (1.1) is defined
as

W(t, s) := Bi(t,0)−i(s,0) exp
(
A[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)]
)
, (1.3)

where i(t, s) denotes the number of impulsive points ti ∈ (s, t), z+ := max{0, z}, · ∈ R. If i(s, 0) = i(t, 0)

then we set
i(t,0)−1∑
k=i(s,0)

= 0.

We impose the following assumptions:
[A1] A, B are permutable matrices.
[A2] bi+m = bi, ti+m = ti + ω, si+m = si + ω for some fixed m, i ∈ N and m = i(ω, 0).
[A3] c < σ(W(ω, 0)).
[A4] There exist constants λ ∈ R and M ≥ 1 such that ‖ exp(At)‖ ≤ M exp (λt) for any t ≥ 0.
[A5] For all t ∈ I and x ∈ Rn, g(t + ω, cx) = cg(t, x) where c > 0.
[A6] There exists L > 0 such that ‖g(t, x1) − g(t, x2)‖ ≤ L‖x1 − x2‖ for all t ∈ I and x1, x2 ∈ R

n.
[A7] Let σ(A) = {λ1, λ2, · · · , λN} be the eigenvalues of A and Reλ1 ≤ Reλ2 ≤ · · · ≤ ReλN ≤ −k <

0, k > 0, i.e., there exist K̃, k > 0 such that ‖ exp At‖ ≤ K̃ exp(−kt) for t ≥ 0.
[A8] For any t ≥ 0 and all x ∈ Rn, there exists Lg > 0 such that ‖g(t, x)‖ < Lg‖x‖.
[A9] For any t ≥ 0 and all x ∈ Rn, there exist % ∈ [0, 1) and N > 0 such that ‖g(t, x)‖ ≤ N‖x‖%.
The rest of this paper is organized as follows. In Section 2, we collect some necessary definitions.

In Section 3, we establish norm estimation and exponential stability results for (1.1). In Section 4,
we obtain some sufficient conditions for the (ω, c)-periodic solutions of (1.2) to be exponentially and
asymptotically stable.

2. Preliminaries

Throughout this paper, set PC(D,Rn) = {x : D → Rn : x ∈ C((ti, ti+1],Rn), x(t+
i ), x(t−i ) exists and

x(t−i ) = x(ti) for every i ∈ N} endowed with the norm ‖x‖ = sup
t∈R
‖x(t)‖. Let I be the identity matrix.

Let ‖x‖ =
n∑

i=1
|xi| and ‖B‖ = max

1≤ j≤n

n∑
i=1
|bi j| denote the vector norm and matrix norm of the n-dimensional

Euclidean space Rn, where xi and bi j are the elements of the vector x and the matrix B , respectively.
Set Ψω,c := {x : x ∈ PC(D,Rn) and cx(·) = x(· + ω)}, i.e., Ψω,c denotes the set of all piecewise

continuous and (ω, c)-periodic functions.

Definition 2.1. (1.1) is exponentially stable if there exists constants K > 0 and γ > 0 such that
‖W(t, s)‖ ≤ K exp(−γ(t − s)), 0 ≤ s < t.

Clearly, W(·, ·) is exponentially stable if and only if (1.1) is exponentially stable.
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Definition 2.2. x(·; 0, x0) ∈ Ψω,c is called exponentially stable, if there exist positive constants k1, k2,
such that

‖x(t; 0, x0)‖ ≤ k1e−k2t, t ≥ 0.

Definition 2.3. x(·; 0, x0) ∈ Ψω,c is called asymptotically stable, if there exists δ > 0 such that for any
y0 ∈ R

n with ‖x0 − y0‖ ≤ δ, the following holds:

lim
t→+∞

‖x(t; 0, x0) − x(t; 0, y0)‖ = 0. (2.1)

If δ > 0 can be arbitrary then (ω, c)-periodic functions x(·; 0, x0) is globally asymptotically stable.

3. Exponentially stability of (1.1)

In this section, we give a set of sufficient conditions to guarantee (1.1) is exponential stable.
We give two important exponentially estimation for W(·, ·).

Lemma 3.1. Suppose [A1] and [A4] hold. For any 0 ≤ s < t,

‖W(t, s)‖ ≤ M exp
{
λ[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
}
. (3.1)

Proof. The proof is similar to [30, Lemma 2.7], however, for the completeness, we give the details of
the proof. Clearly, [A1] implies (1.3) is well defined. By [A4],

‖W(t, s)‖ =

∥∥∥∥∥Bi(t,0)−i(s,0) exp
(
A[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)]
)∥∥∥∥∥

≤ ‖B‖i(t,s)M exp
(
λ[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)]
)

≤ M exp
{
λ[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
}
.

The proof is finish. �

Lemma 3.2. Assumption [A1], [A2] and [A4] hold. Then for any t > s ≥ 0,

‖W(t, s)‖ ≤ M exp[i(t, s)(λu + ln ‖B‖) + |λ|u]. (3.2)

Proof. From [A2], one has ω > u1 = min
m−1≥k≥0

(tk+1 − sk) > 0, ω > u2 = max
m−1≥k≥0

(tk+1 − sk) > 0. Set

u =

{
u1, λ < 0,
u2, λ ≥ 0.

Using (3.1), we have two possible cases:
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If λ < 0 then we have

‖W(t, s)‖ ≤ M exp
{
λ[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
}

≤ M exp(λ(i(t, s) − 1)u1 + i(t, s) ln ‖B‖)
≤ M exp[i(t, s)(λu1 + ln ‖B‖) − λu1]. (3.3)

If λ ≥ 0 then we have

‖W(t, s)‖ ≤ M exp
{
λ[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
}

≤ M exp(λ(i(t, s) + 1)u2 + i(t, s) ln ‖B‖)
≤ M exp[i(t, s)(λu2 + ln ‖B‖) + λu2]. (3.4)

Linking (3.3) and (3.4), (3.2) holds. �

Theorem 3.3. Suppose [A1] and [A2] hold. If there exist constants K0, λ0, λ1 and 0 < λ1 < λ0 such
that ‖ exp(At)‖ ≤ K0 exp(−λ0t), t > 0 and

m∏
k=1

exp{λ0(sk − tk) + ln ‖B‖} < 1,

then {W(t, s), t > s ≥ 0} is exponentially stable.

Proof. By Lemma 3.1, we have

‖W(t, s)‖

≤ K0 exp
{
− λ0[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
}

= K0 exp (−(λ0 − λ1)(t − s)) exp(−λ1(t − s)) exp
{
− λ0[(t − si(t,0))+ − (s − si(s,0))+

+

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖ + λ0(t − s)
}

≤ K0 exp (−(λ0 − λ1)(t − s)) exp(−λ1(t − s)) exp
{
λ0

i(t,0)∑
k=i(s,0)

(sk − tk) + i(t, s) ln ‖B‖
}

≤ K0 exp (−(λ0 − λ1)(t − s))
∏

0≤s≤tk<sk≤t

exp{λ0(sk − tk) + ln ‖B‖} exp(−λ1(t − s)).

For any nω < s < t < (n + 1)ω,∏
0≤s≤tk<sk≤t

exp{λ0(sk − tk) + ln ‖B‖} exp(−λ1(t − s))

≤
∏

0≤tk<sk≤nω

exp{λ0(sk − tk) + ln ‖B‖} exp(−λ1nω)
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×

( ∏
nω≤tk<sk≤t

exp{λ0(sk − tk) + ln ‖B‖}
)

exp(−λ1(t − nω)) exp(λ1s)

≤

[ m∏
k=1

exp{λ0(sk − tk) + ln ‖B‖}
]n

b exp(λ1s) exp(−λ1nω)

≤ b exp(λ1ω),

where
b = max

0≤s<t≤ω

{ ∏
s≤ti<si≤t

exp(λ0(sk − tk) + ln ‖B‖)
}
.

From above, we have

‖W(t, s)‖ ≤ K0b exp(λ1s) exp (−(λ0 − λ1)(t − s)) := K exp(−γ(t − s)),

where K = K0b exp(λ1ω) > 0, and γ = λ0 − λ1 > 0. The proof is complete. �

Theorem 3.4. If [A1], [A2], [A4] hold, and λu + ln ‖B‖ < 0, then {W(t, s), t > s ≥ 0} is exponentially
stable.

Proof. Note [A2] via [9, Theorem 4.3], we have

lim
t−s→∞

i(t, s)
t − s

=
m
ω

:= σ < ∞.

Then for an arbitrary small ε > 0, ∣∣∣∣∣ i(t, s)
t − s

− σ

∣∣∣∣∣ < ε, t − s > 0,

that is,
(σ − ε)(t − s) ≤ i(t, s) ≤ (σ + ε)(t − s). (3.5)

Since λu + ln ‖B‖ < 0, for any 0 < ε < σ, by (3.2) and (3.5), we have

‖W(t, s)‖ ≤ M exp[i(t, s)(λu + ln ‖B‖) + |λ|u]
≤ M exp(|λ|u) exp[i(t, s)(λu + ln ‖B‖)]
≤ M exp(|λ|u) exp[(σ − ε)(λu + ln ‖B‖)(t − s)]
:= K1 exp(−γ(t − s)),

where K1 = M exp(|λ|u) > 0 and γ = −(σ − ε)(λu + ln ‖B‖) > 0. The proof is complete. �

Theorem 3.5. Assume [A1], [A2], [A4] hold. If there exists a constant α > 0, such that

λ +
1
u

ln ‖B‖ ≤ −α < 0, (3.6)

where

u =

{
u1, α + λ < 0,
u2, α + λ ≥ 0,

then
‖W(t, s)‖ ≤ M exp{u|α + λ| + u1α − αu1i(s, t)},

which is exponentially stable.
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Proof. Set

∆ := (t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk).

Note u1 ≤ u2, where u1, u2 are the same as in Lemma 3.2. We have

(i(t, s) − 1)u1 ≤ ∆ ≤ (i(t, s) + 1)u2, (3.7)

which implies that
∆

u2
− 1 ≤ i(t, s) ≤

∆

u1
+ 1. (3.8)

If α + λ < 0, then −u(α + λ) = −u1(α + λ) > 0, from the right hand side of (3.8), we have

−u1(α + λ)i(t, s) ≤ −(α + λ)∆ − u1(α + λ).

If α + λ ≥ 0, then −u(α + λ) = −u2(α + λ) ≤ 0, from the left hand side of (3.8), we obtain

−u2(α + λ)i(t, s) ≤ −(α + λ)∆ + u2(α + λ).

So,
− u(α + λ)i(t, s) ≤ −(α + λ)∆ + u|α + λ|. (3.9)

By (3.6), we have
− u(α + λ)i(t, s) ≥ i(t, s) ln ‖B‖, (3.10)

then

λ∆ + i(t, s) ln ‖B‖ ≤ λ∆ − u(α + λ)i(t, s) (where use (3.10))
≤ λ∆ − (α + λ)∆ + u|α + λ| (where use (3.9)) (3.11)
≤ −α∆ + u|α + λ|

≤ −α(i(t, s) − 1)u1 + u|α + λ| (where use (3.7)).

By the Lemma 3.1 and (3.11), we have

‖W(t, s)‖ ≤ M exp
{
λ[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
}

≤ M exp{−α(i(t, s) − 1)u1 + u|α + λ|}

= M exp{u|α + λ| + u1α − αu1i(s, t)}.

Let 0 < ε < σ and t − s > 0, by (3.5), we have

‖W(t, s)‖ ≤ M exp{u|α + λ| + u1α − αu1i(s, t)}
≤ M exp{u|α + λ| + u1α − αu1(σ − ε)(t − s)}
= M exp{u|α + λ| + u1α} exp{−αu1(σ − ε)(t − s)}
= K exp{−γ(t − s)},

where K = M exp{u|α + λ| + u1α} and γ = αu1(σ − ε) > 0. This proof is finish. �
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Theorem 3.6. If [A1], [A2], [A4], [A7] hold and −ku1 + ln ‖B‖ < 0, then {W(t, s), t > s ≥ 0} is
exponentially stable.

Proof. Note that (1.3) via [A7], similar to the proof of Theorem 3.4, we obtain

‖W(t, s)‖ ≤ K̃ exp
[
− k[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)] + i(t, s) ln ‖B‖
]

≤ K̃ exp[−k(i(t, s) − 1)u1 + i(t, s) ln ‖B‖]
= K̃ exp(ku1) exp[i(t, s)(−ku1 + ln ‖B‖)].

Since −ku1 + ln ‖B‖ < 0, for any 0 < ε < σ,

‖W(t, s)‖ ≤ M exp(ku1) exp[(σ − ε)(−ku1 + ln ‖B‖)(t − s)].

The proof is finished. �

By [32, p.109] and [31, p.44], for any ε > 0, there exists a K̃ε ≥ 1 such that

‖W(t, s)‖ ≤ K̃ε exp
(
(α(A) + ε)[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)]
)
(ρ(B) + ε)i(t,0)−i(s,0). (3.12)

Using (3.12), similar to the proof of Theorem 3.4, we obtain

Theorem 3.7. If [A1], [A2] hold, and α(A)+ 1
uρ(B) < 0, then {W(t, s), t > s ≥ 0} is exponentially stable.

From above we can formulate the following exponentially stability result.

Theorem 3.8. If the conditions of the Theorem 3.3, or Theorem 3.4, or Theorem 3.5, or Theorem 3.6,
or Theorem 3.9 holds, then (1.1) is exponential stable.

To end this section, an example is illustrated to demonstrate the above theoretically results.

Example 3.9. Consider the following linear non-instantaneous impulsive system
x′(t) = Ax(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,
x(t+

i ) = Bx(t−i ), i = 1, 2, · · · ,
x(t) = Bx(t−i ), t ∈ (ti, si], i = 1, 2, · · · ,
x(s+

i ) = x(s−i ), i = 1, 2, · · · ,

(3.13)

where ti = 2i−1
2 , si = i and

x(t) =

(
x1(t)
x2(t)

)
, A =

(
−1

6 − 1
72

0 − 1
8

)
, B =

( 1
16

1
32

0 − 1
32

)
.

Clearly, AB = BA, α(A) = −1
6 , ρ(B) = ‖B‖ = 1

16 , ti+1 = 2i+1
2 = 2i−1

2 + 1 = ti + 1, si+1 = i + 1 = si + 1,
for all i ∈ N, so, m = 1, u = u1 = 1

2 , then [A1] and [A2] hold. By elementary calculations, we obtain
σ(A) = {− 1

6 ,−
1
8 }, set λ = −1

8 , so [A4] is verified. Set k = λ0 = 1
8 .
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Note
m∏

k=1

exp{λ0(sk − tk) + ln ‖B‖} = exp{
1
8

+ ln
1

16
} < exp(−2.64) < 1.

By Theorem 3.3 and (3.13) are exponential stable.
Next, λu + ln ‖B‖ = − 1

16 + ln 1
16 < −2.71 < 0, by Theorems 3.4, 3.5, 3.6 and (3.13) are exponential

stable.
Finally, α(A) + 1

uρ(B) = −1
6 + 2 1

16 = − 1
24 < 0, by Theorem 3.7 and (3.13) are exponential stable.

4. Exponential and asymptotical stability of (ω, c)-periodic solution of (1.2)

Theorem 4.1. Assume that [A1], [A2], [A3], [A5], [A8] hold. If {W(t, s), t > s ≥ 0} is exponentially
stable, then the (ω, c)-periodic solution of (1.2) exists, which is exponentially stable.

Proof. By [15, Lemma 3.1], (ω, c)-periodic solution of (1.2) exists, which has the following form

x(t; 0, x0) =

∫ ω

0
Y(t)H(t, s)g(s, x(s; 0, x0))ds, x(ω) = cx(0), (4.1)

where

Y(t) =

{
I, t ∈ (si, ti+1], i = 0, 1, 2, · · · ,
0, t ∈ (ti, si], i = 1, 2, · · · ,

(4.2)

and

H(t, s) =

{
c(cI −W(ω, 0))−1W(t, s), 0 < s < t,
W(t, 0)(cI −W(ω, 0))−1W(ω, s), t ≤ s < ω.

(4.3)

By (4.1) via the exponential stability of W(t, s), we have

‖x(t; 0, x0)‖ ≤
∫ ω

0
‖Y(t)H(t, s)‖‖g(s, x(s; 0, x0))‖ds

≤

∫ t

0
|c|‖(cI −W(ω, 0))−1‖‖W(t, s)‖‖g(s, x(s; 0, x0))‖ds

+

∫ ω

t
‖W(t, 0)‖‖(cI −W(ω, 0))−1‖‖W(ω, s)‖‖g(s, x(s; 0, x0))‖ds

≤ |c|‖(cI −W(ω, 0))−1‖KLg

∫ t

0
exp(−γ(t − s))‖x(s; 0, x0)‖ds

+‖(cI −W(ω, 0))−1‖K2Lg

∫ ω

t
exp(−γ(t + ω − s))‖x(s; 0, x0)‖ds.

Let ũ(t) = exp(γt)‖x(t; 0, x0)‖, we obtain

ũ(t) ≤ |c|‖(cI −W(ω, 0))−1‖KLg

∫ t

0
ũ(s)ds

+‖(cI −W(ω, 0))−1‖K2Lg

∫ ω

t
exp(−γω)ũ(s)ds
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≤ |c|‖(cI −W(ω, 0))−1‖KLg

∫ t

0
ũ(s)ds

+‖(cI −W(ω, 0))−1‖K2Lg exp(−γω)
∫ ω

t
ũ(s)ds

≤ ‖(cI −W(ω, 0))−1‖KLg max{|c|,K exp(−γω)}
∫ ω

0
ũ(s)ds := Mγω > 0.

This implies that ũ(t) = exp(γt)‖x(t; x0)‖ ≤ Mγω, i.e. ‖x(t; 0, x0)‖ ≤ Mγω exp(−γt). The proof
is finished. �

Theorem 4.2. Assume that [A1], [A2], [A3], [A5], [A6] hold. If {W(t, s), t > s ≥ 0} is exponentially
stable, then any nontrivial (ω, c)-periodic solution of (1.2) is asymptotically stable.

Proof. Let x(t; 0, x0) be a nontrivial (ω, c)-periodic solution of (1.2) and x(t; 0, y0) be another nontrivial
solution of (1.2). By [15, Lemma 3.1], for any (ω, c)-periodic solution and nontrivial solution of (1.2)
has the following form

x(t; 0, x0) =

∫ ω

0
Y(t)H(t, s)g(s, x(s; 0, x0))ds, x(ω) = cx(0),

x(t; 0, y0) =

∫ ω

0
Y(t)H(t, s)g(s, x(s; 0, y0))ds, (4.4)

where Y(t) and H(t, s) are defined in (4.2) and (4.3).
By (4.4), we have

‖x(t; 0, x0) − x(t; 0, y0)‖

≤

∫ t

0
|c|‖(cI −W(ω, 0))−1‖‖W(t, s)‖‖g(s, x(s; 0, x0)) − g(s, x(s; 0, y0))‖ds

+

∫ ω

t
‖W(t, 0)‖‖(cI −W(ω, 0))−1‖‖W(ω, s)‖‖g(s, x(s; 0, x0)) − g(s, x(s; 0, y0))‖ds

≤ |c|‖(cI −W(ω, 0))−1‖KL
∫ t

0
exp(−γ(t − s))‖x(s; 0, x0) − x(s; 0, y0)‖ds

+‖(cI −W(ω, 0))−1‖K2L
∫ ω

t
exp(−γ(t + ω − s))‖x(s; 0, x0) − x(s; 0, y0)‖ds.

Let u2(t) = exp(γt)‖x(t; 0, x0) − x(t; 0, y0)‖, we obtain

u2(t) ≤ |c|‖(cI −W(ω, 0))−1‖KL
∫ t

0
u2(s)ds

+‖(cI −W(ω, 0))−1‖K2L
∫ ω

t
exp(−γω)u2(s)ds

≤ KL‖(cI −W(ω, 0))−1‖max{|c|,K exp(−γω)}
∫ ω

0
u2(s)ds := Kωγ.

Then
‖x(t; 0, x0) − x(t; 0, y0)‖ ≤ Kωγ exp(−γt).

The proof is complete. �
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Theorem 4.3. Assume that [A1], [A2], [A4], [A5], [A6] hold. If γ−NK > 0 and ‖W(ω, 0)‖ ≤ c, then the
(ω, c)-periodic solution of (1.2) is exponentially stable.

Proof. Note that ‖W(ω, 0)‖ ≤ c implies (I − 1
c W(ω, 0))−1 exists, which is equivalent to (cI −W(ω, 0))−1

exists. By Theorem 4.2, one can complete the proof. �

Theorem 4.4. Assume that [A1], [A2], [A3], [A5], [A6] and [A9] hold. Then (1.2) has a (ω, c)-periodic
solution.

Proof. Consider the operator T : PC([0, ω],Rn)→ PC([0, ω],Rn) on Br, given by

T x(t; 0, x0) =

∫ ω

0
Y(t)H(t, s)g(s, x(s; 0, x0))ds. (4.5)

where Y(t) and H(t) are defined in (4.2) and (4.3), Br := {x ∈ PC([0, ω] | ‖x‖ ≤ ( r
NKλ

)
1
% and r > 0}. For

any 0 ≤ t ≤ ω and x ∈ Br, using [15, Lemma 3.6], we have ‖H(t, s)‖ ≤ Kλ, then

‖T x(t; 0, x0)‖ ≤
∫ ω

0
‖Y(t)H(t, s)‖‖g(s, x(s; 0, x0))‖ds

≤ N
∫ ω

0
‖Y(t)H(t, s)‖‖x(s; 0, x0)‖%ds

≤ NKλ‖x‖% ≤ r,

Thus T (Br) ⊂ Br. Next, T is continuous and T (Br) is pre-compact. From Schauder’s fixed point
Theorem, (1.2) has at least one (ω, c)-periodic solution. �

Theorem 4.5. Assume that [A1], [A2], [A3], [A4], [A5], [A9] hold. If γ−NK > 0 and {W(t, s), t > s ≥ 0}
is exponentially stable. Then (ω, c)-periodic solution of (1.2) is exponentially stable.

Proof. By [15, Lemma 3.1] and Theorem 4.4, any (ω, c)-periodic solution of (1.2) has the following
form

x(t; 0, x0) =

∫ ω

0
Y(t)W(t, 0)(cI −W(ω, 0))−1W(ω, θ)g(θ, x(θ, x(θ; 0, x0))dθ (4.6)

+

∫ t

0
Y(t)W(t, θ)g(θ, x(θ; 0, x0))dθ.

Set a := ‖(cI −W(ω, 0))−1‖ = 1
c

1
1−c‖W(ω,0)‖ . By (4.6), we have

‖x(t; 0, x0)‖ ≤
∫ ω

0
‖Y(t)‖‖W(t, 0)‖‖(cI −W(ω, 0)−1)‖‖W(ω, θ)‖‖g(θ, x(θ; 0, x0))‖dθ

+

∫ t

0
‖Y(t)‖‖W(t, θ)‖‖g(θ, x(θ; 0, x0))‖dθ

≤ aNK2 exp(−γt)
∫ ω

0
exp(−γ(ω − θ))‖x(θ; 0, x0)‖%dθ

+NK
∫ t

0
exp(−γ(t − θ))‖x(θ; 0, x0)‖%dθ,
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then

exp(γt)‖x(t; 0, x0)‖% ≤ exp(γt)‖x(t; 0, x0)‖

≤ aNK2 exp(−γω)
∫ ω

0
exp(γθ)‖x(θ; 0, x0)‖%dθ + NK

∫ t

0
exp(γθ)‖x(θ; 0, x0)‖%dθ

≤ Ñ + NK
∫ t

0
exp(γθ)‖x(θ; 0, x0)‖%dθ

where Ñ is calculated as follows

aNK2 exp(−γω)
∫ ω

0
exp(γθ)‖x(θ; 0, x0)‖%dθ

≤ aNK2 exp(−γω) exp(γω)
∫ ω

0
‖x(θ; 0, x0)‖%dθ

≤ aNK2 exp(−γω) exp(γω)ω‖x‖%B := Ñ,

where ‖x‖B = sup
0≤s≤θ

‖x(s)‖.

Let u3(t) = exp(γt)‖x(t; 0, x0)‖%, we obtain

u3(t) ≤ Ñ + NK
∫ t

0
u3(θ)dθ.

By [32, Lemma 1, p.12], we have

u3(t) = exp(γt)‖x(t; 0, x0)‖% ≤ Ñ exp(NKt),

this imply

‖x(t; 0, x0)‖ ≤ Ñ
1
% exp

(
−
γ − NK

%
t
)
.

The proof is complete. �

Example 4.6. Consider the following nonlinear non-instantaneous impulsive system
x′(t) = Ax(t) + g(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,
x(t+

i ) = Bx(t−i ), i = 1, 2, · · · ,
x(t) = Bx(t−i ), t ∈ (ti, si], i = 1, 2, · · · ,
x(s+

i ) = x(s−i ), i = 1, 2, · · · ,

(4.7)

where

x(t) =

(
x1(t)
x2(t)

)
, A =

(
−3 1

2
0 − 2

)
, B =

(
1 − 1
0 − 1

)
,

g(t, x(t)) = (ax(t) sin(7−tx(t)), 0)>, a ∈ R, ti =
2i − 1

4
, si =

i
2
.
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Let ω = 1, c = 7, and by a simple calculation, we have AB = BA, ti+2 = 2i+3
4 = 2i−1

4 + 1 = ti + 1,
si+2 =

(i+2)
2 = i

2 + 1 = si + 1, bi+2 = bi for all i ∈ N. Then m = 2, [A1] and [A2] hold. By elementary
calculations, we obtain σ(A) = {−2,−3}, and

eAt =

(
e−3t 1

2 (e−2t − e−3t)
0 e−2t

)
,

and

W(ω, 0) = W(1, 0) = Bi(ω,0)e
A[(ω−si(ω,0))++

i(ω,0)−1∑
k=0

(tk+1−sk)]

= B2eA[t1−s0+t2−s1]

= B2eA 1
2

=

(
1 0
0 1

)
·

(
e−

3
2 1

2 (e−1 − e−
3
2 )

0 e−1

)
=

(
e−

3
2 1

2 (e−1 − e−
3
2 )

0 e−1

)
.

Then, c = 7 < σ(W(1, 0)) = {−e
3
2 , − e−1}, so [A3] holds. In addition, ‖W(ω, 0)‖ = 3

2e−1 − 1
2e

3
2 <

0.4403 < 7.
Note that g(t + ω, cx) = g(t + 1, 7x) = a(7x) sin(5−(t+1)7x) = 7ax sin(7−tx) = 7g(t, x) = cg(t, x), so

[A5] holds. Next, ‖g(t, x)‖ ≤ |a|‖x sin(7−tx)‖ ≤ |a|‖x‖, so [A8] holds and Lg = |a|. Since σ(A) = {−2,−3},
[A4] is verified for λ = −2. On the other hand,

‖W(t, s)‖ = ‖Bi(t,0)−i(s,0)e
A[(t−si(t,0))+−(s−si(s,0))++

i(t,0)−1∑
k=i(s,0)

(tk+1−sk)]
‖

≤ 2t−se
−2[(t−si(t,0))+−(s−si(s,0))++

i(t,0)−1∑
k=i(s,0)

(tk+1−sk)]

≤ 2t−se−2[ t−s
2 −1]

≤ e−(t−s)+2+ln 2(t−s)

≤ e2e(−1+ln 2)(t−s)

≤ e2e−(1−ln 2)(t−s).

Thus, {W(t, s), t > s ≥ 0} is exponentially stable by setting K = e2, γ = 1 − ln 2. Next, γ − NK =

1 − ln 2 − e2|a| > 0 if −1−ln 2
e2 < a < 1−ln 2

e2 . By Theorem 4.1 or 4.3, the (1, 7)-period solution of (4.7) is
exponentially stable.

Example 4.7. Consider the following nonlinear non-instantaneous impulsive system
x′(t) = Ax(t) + g(t, x(t)), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,
x(t+

i ) = Bx(t−i ), i = 1, 2, · · · ,
x(t) = Bx(t−i ), t ∈ (ti, si], i = 1, 2, · · · ,
x(s+

i ) = x(s−i ), i = 1, 2, · · · ,

(4.8)

Let

x(t) =

(
x1(t)
x2(t)

)
, A =

(
−3 112

3
0 − 1

5

)
, B =

( 1
8 − 1

24
0 1

10

)
,

AIMS Mathematics Volume 7, Issue 2, 1758–1774.



1771

g(t, x) = (a[x sin(2t)]
1
3 , 0)>, a ∈ R, ti =

(2i + 1)π
2

, si =
iπ
2
.

Let ω = π, c = −1, and by a simple calculation, we have AB = BA, ‖B‖ = 17
120 , ti+1 =

(2i+3)π
2 =

(2i+1)π
2 + π = ti + π, si+1 = (i + 1)π = iπ + π = si + π, bi+1 = bi for all i ∈ N. Then m = 1, [A1] and [A2]

hold. By elementary calculations, we obtain σ(A) = {−0.2,−3}, and

eAt =

(
e−3t 40

3 (e−0.2t − e−3t)
0 e−0.2t

)
,

and

W(ω, 0) = W(π, 0) = Bi(ω,0)e
A[(ω−si(ω,0))++

i(ω,0)−1∑
k=0

(tk+1−sk)]

= BeA[t1−s0+π−π]

= BeA π
2

=

( 1
8 − 1

24
0 1

10

)
·

(
e−

3π
2 40

3 (e−0.1π − e−
3π
2 )

0 e−0.1π

)
=

(
1
8e−

3π
2 13

8 e−0.1π − 5
3e−

3π
2

0 1
10e−0.1π

)
.

Then, c = −1 < σ(W(π, 0)) = {18e−
3π
2 , 1

10e−0.1π}, so [A3] holds.
Note that g(t + ω, cx) = g(t + π,−x) = a[−x sin(2(t + π))]

1
3 = −a[x sin(2t)]

1
3 = −g(t, x) = cg(t, x),

so [A5] holds. Next, ‖g(t, x)‖ = ‖a[x sin(2t)]
1
3 ‖ ≤ |a|‖x‖

1
3 ‖, so [A9] holds and N = |a|, % = 1

3 . Since
σ(A) = {−0.2,−3}, [A4] is verified for λ = −0.2. On the other hand,

‖W(t, s)‖ =

∥∥∥∥∥Bi(t,0)−i(s,0) exp
{
A[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)]
}∥∥∥∥∥

≤ exp
{
− 0.2[(t − si(t,0))+ − (s − si(s,0))+ +

i(t,0)−1∑
k=i(s,0)

(tk+1 − sk)]
}

≤ exp{−0.2[
t − s

2
−
π

2
]}

≤ exp(0.1π) exp(−0.1(t − s)).

Thus, {W(t, s), t > s ≥ 0} is exponentially stable by setting K = exp(0.1π), γ = 0.1. Next, γ − NK =

0.1−|a| exp(0.1π) > 0 if −0.07304 < a < 0.07305. By Theorem 4.5, the (π,−1)-period solution of (4.8)
is exponentially stable.

5. Conclusions

This paper deals with the stability of (ω, c)-periodic solutions of non-instantaneous impulses
differential equations. Firstly, some sufficient conditions for exponential stability of linear
homogeneous non-instantaneous impulse problems are obtained by using Cauchy matrix. Secondly, by
using Gronwall inequality, sufficient conditions are established for exponential stability and asymptotic
stability of (ω, c)-periodic solutions of nonlinear problems. Our results can be applied to non-
instantaneous impulsive two-parameter equations, and our method can be extended to time-varying
differential systems.
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