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Abstract: Let R be a finite commutative chain ring with invariants p, n, r, k,m. It is known that R is
an extension over a Galois ring GR(pn, r) by an Eisenstein polynomial of some degree k. If p - k,
the enumeration of such rings is known. However, when p | k, relatively little is known about the
classification of these rings. The main purpose of this article is to investigate the classification of all
finite commutative chain rings with given invariants p, n, r, k,m up to isomorphism when p | k. Based
on the notion of j-diagram initiated by Ayoub, the number of isomorphism classes of finite (complete)
chain rings with (p − 1) - k is determined. In addition, we study the case (p − 1) | k, and show that the
classification is strongly dependent on Eisenstein polynomials not only on p, n, r, k,m. In this case, we
classify finite (incomplete) chain rings under some conditions concerning the Eisenstein polynomials.
These results yield immediate corollaries for p-adic fields, coding theory and geometry.
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1. Introduction

We consider only commutative rings which have an identity. An associative Artinian ring with an
identity whose lattice of ideals forms a unique chain is called a chain ring. It is not hard to show that
a finite ring R is a chain ring if and only if its (Jacobson) radical J(R) is principal and the quotient
F = R/J(R) is a field of order pr, p is prime, i.e., R is a local ring. There are known positive integers
p, n, r, k,m associted with R called the invariants of R. Ayoub [3] dubbed these rings “homogenous
rings”. Finite chain rings appear in various areas, for details see [4]. In particular, finite chain rings
have been increasingly used in coding theory [5, 11, 14] and in geometry as coordinatizing rings of
Pappian Hjelmslev planes [9]. An interesting class of finite chain rings is that contains Galois rings,
i.e.,

GR(pn, r) = Zpn[x]/( f (x)), (1.1)
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where f (x) is a monic polynomial of degree r and irreducible modulo p. However, there are different
algebraic ways to construct finite chain rings.

Let R denote a finite chain ring with invariants p, n, r, k and m, then R is an Eisenstein extension of
a Galois ring GR(pn, r)

R = GR(pn, r)[x]/(g(x), xm), (1.2)

where g(x) is an Eisenstein polynomial of degree k over GR(pn, r), i.e.,

g(x) = xk − p
k−1∑
i=0

sixi, where s0 is a unit of GR(pn, r). (1.3)

However, the case when g(x) = xk − ps0, R is called a pure chain ring.
Another construction of R is that connected to p-adic fields; R is a factor-ring of the ring of integers

of a suitable finite extension of Qp, the field of p-adic numbers. Let K be an extension of Qp with
ramification index k and residue degree r, and let L be the unramified subextension of degree r over
Qp. Let OK denote the ring of integers of K, and let π be a prime element of OK . Then,

R � OK/(πm) � OL/(pn)[x]/(g(x), xm) � GR(pn, r)[x]/(g(x), xm), (1.4)

where g(x) is the minimal polynomial of π over L whose image g(x) in OL/(pn)[x] � GR(pn, r)[x] is
Eisenstein of degree k. We shall see later that when m is sufficiently large, the classification of Qp-
isomorphism finite extensions of Qp coincides with that of finite commutative chain rings. For the
basic of p-adic fields, we refer to [8, 10].

Let U(R) be the group of units of R, then

U(R) =< a > ⊗H, (1.5)

where a is an element of order pr − 1, and H = 1 + J(R) (Ayoub [3]). The structure of H is introduced
in [3] when (p − 1) - k, and given in [1] if (p − 1) | k. However, it turned out that if p | k, H plays a
paramount role in the enumeration of finite chain rings. Let k = k1 pl, (p, k1) = 1, Hou [7] classified
pure chain rings when l = 1 and (p − 1) - k. Moreover, if l = 0, the classification is independent of H,
and the enumeration, in this case, was determined by Clark and Liang [4]. Our main aim in this article
is to classify, in case of p | k, finite chain rings with fixed invariants p, n, r, k,m up to ismorphism by
using ideas from [1, 3].

The present manuscript is organized as follows. Section 2 involves notations and known statements
that will appear in the sequel. In Section 3, we consider the classification problem of finite chain rings
with the same invariants p, n, r, k,m. First, we classify them when (p− 1) - k. Next, the case (p− 1) | k
is investigated under certain conditions. Section 4 is devoted to apply our results in p-adic number
fields.

2. Preliminaries

This section collects some facts and states notations required in our subsequent discussions.
Let R be a finite chain ring with invariants p, n, r, k and m, and nonzero radical J(R) with nilpotency

index m. The residue field F = R/J(R) is of order pr. We refer to [1, 3, 4, 12, 13] for the verification of
the statements given here.
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The ring R has a coefficient subring S = GR(pn, r) � Zpn[a] for some a of multiplicative order
pr − 1. If x ∈ Ji(R) \ Ji+1(R) = Ji, we define wt(x) = i. Let wt(π) = 1, then, J(R) = (π) and

R = ⊕k−1
i=0 S πi, (2.1)

(as S−module). There exists t, 1 ≤ t ≤ k with m = (n − 1)k + t such thatS � S πi, if 0 ≤ i < t,

S/pn−1S � S πi, if t ≤ i ≤ k.
(2.2)

Let π ∈ J1 be fixed, and let U(R) denote the group of units of R, then

U(R) = Cpr−1 ⊗ H, (2.3)

where Cpr−1 =< a > is a cyclic group of order pr − 1, and H = 1 + J(R) is the p-Sylow subgroup of
U(R). Moreover, π is a root of an Eisenstein polynomial g(x) (1.3), then, from (2.3),

πk = pβh, β ∈< a > and h ∈ H. (2.4)

Let u = b k
p−1c, where bxc means the greatest positive integer less than or equal x, and let Hs =

1 + J s(R), s ∈ Pm = {1, 2, . . . ,m}. Consider the following filtering and (admissible) function:

H = H1 > H2 > H3 > · · · > Hm =< 1 >, (2.5)

j(s) =

min(ps,m), s ≤ u,

min(s + k,m), s > u.
(2.6)

The series (2.5) with j and the p-th power homomorphisms ηs from Hs/Hs+1 into H j(s)/H j(s)+1 form
the so called j-diagram, however, we refer to (2.5) when we mention j-diagram. We call the j-diagram
in (2.5) incomplete at s′ if ηs′ is not an isomorphism, and complete if all ηs are isomorphisms.

Definition 2.1. We call R incomplete (complete) chain ring if the series (2.5) is incomplete at u
(complete).

Now, let {αi}1≤i≤r be a representatives system in R for a basis of F over Zp. Furthermore, let f be the
homomorphism f : F → F, defined by: f (α) = αp + βα. Let k = k1 pl ((k1, p) = 1), λ = l + 1 and R( j)
be the range of j, then H is generated by:

wis = 1 + αiπ
s, (i, s) ∈ B = {(i, s) : 1 ≤ i ≤ r and s < R( j)},γ = 1 + α0π
up,

where αpλ

1 − βα
pλ−1

1 = 0 and α0 < Im f .

 (incomplete case)
(2.7)

For each s ∈ Pm, let Us and U∗s be subgroups of H generated by {wis}1≤i≤r and {wis}2≤i≤r, respectively.
Hence, Us and U∗s are homogeneous groups of rank r and r − 1, respectively, and of order pν(s), where
ν(s) is the least positive integer satisfying jν(s)(s) = m. In particular,

U(GR(pn, r)) =

Uk, if p > 2 or p = 2 and n ≤ 2,
Cr−1

2n−1 ⊗C2n−2 ⊗C2, otherwise.
(2.8)
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Denote c =| Pm \ R( j) |, then by using j-diagram,

c =

m − bm
p c, if m < k + u,

k, otherwise.
(2.9)

Lemma 2.1 ( [6] ). Let q and z be positive integers such that q ≥ z − 1. Then, for 0 ≤ b ≤ pq,

C(pq, b) ≡

0, if vp(b) ≤ q − z,

C(pz−1, i), if b = ipq−z+1,
(mod pz)

where vp is the p-adic valuation.

All notations mentioned above have the same meanings throughout; in addition, we denote ls =

min{l, ν(s)}.

3. Classification of finite chain rings

If n = 1, then R � S [x]/(xk), where S = GF(pr) = F, i.e., R is completely determined by its
invariants. Hence, in the sequel, we assume n > 1. Now, let

E(p, k) = {

k−1∑
i=0

sixi : si ∈ S , s0 ∈ U(S )}. (3.1)

For every θ ∈ J1, there exists a unique defined f (x) ∈ E(p, k) such that θ is a root of g(x) = xk−p f (x).
Let E(R) be the set of all such polynomials g(x) (Eisenstein polynomials) corresponding to the set J1.

If σ ∈ Aut S , we denote σ(E(R)) by:

σ(E(R)) = {σ(g(x)) : σ is applied to the coefficients of g(x)}. (3.2)

The group of automorphisms of S , Aut S , is cyclic of order r generated by ρ (Frobenius map)
defined as:

ρ(
n−1∑
i=0

ζi pi) =

n−1∑
i=0

ζi
p pi, (3.3)

where ζi ∈ Γ(r), the Teichmüller set of S . Furthermore, Aut (S/piS ) � Aut S (by the natural
isomorphism).

If g(x) ∈ E(R), we denote Rg by:

Rg = S [x]/(g(x), xm). (3.4)

Remark 3.1. If g(x) ∈ E(R), then R � Rg.

Proposition 3.1. Let R and T be two finite chain rings with the same invariants and same coefficient
subring S . Then, R � T if and only if σ(E(R)) ∩ E(T ) , φ for some σ ∈ Aut S .

Proof. Assume that R � T and ψ is the isomorphism. Let ψ |S = σ and π be a root of g(x) ∈ E(R). Then,
it is easy to justify that ψ(π) is a root of σ(g(x)) in T. Thus, σ(g(x)) ∈ E(T ), and so σ(E(R))∩E(T ) , φ.
Conversely, if σ(g(x)) has a root θ in T for some σ ∈ Aut S and g(x) ∈ E(R). Then, the corresponding
ψ(
∑

siπ
i) =
∑
σ(si)θi is obviously an isomorphism. �
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Corollary 3.1. σ(E(R)) ⊆ E(R) for every σ ∈ Aut S .

Proposition 3.2. For any finite chain rings R and T, either E(R) ∩ E(T ) = φ or E(R) = E(T ).

Proof. If E(R) ∩ E(T ) , φ, then Proposition 3.1 concludes that R � T and, hence, E(R) = E(T ). �

Corollary 3.2. R � T (not isomorphic) if and only if E(R) = E(T ) (E(R) ∩ E(T ) = φ).

3.1. Complete chain rings

Let R be a complete chain ring, then (cf. [1]) the system {wis} in (2.7) forms a basis for H, and by
(Theorem 3, [3]),

H = ⊗s<R( j)Us. (3.5)

Let R and T be two complete chain rings with the same invariants p, n, r, k,m. Assume that πk =

pβ1h1 and θk = pβ2h2 for R and T, respectively. If R � T, then via Proposition 3.1, there is σ ∈ Aut S
such that σ(g(x)) = xk − pσ( f (x)) has a root in R, where g(x) ∈ E(T ). This means, there is ζ = πβδ,

where δ ∈ HR and β ∈< a > such that

pσ(β2)σ(h2) = ζk = (πβδ)k = pβ1h1β
kδk. (3.6)

Observe that, σ can be considered isomorphism maps θ to ζ (proof of Proposition 3.1). Therefore,

βk1 = β−1
1 σ(β2), (3.7)

δpl
= h−1

1 σ(h2) mod πm−k. (3.8)

Thus, we consider the invariants, p, n−1, r, k,m. From Eq (3.8), h1 = σ(h2) mod Hpl
, i.e., in H/Hpl

,

we have
h1 = σ(h2). (3.9)

Since we have the same structure for HR and HT , then

us = σ(ws), (3.10)

where h1 =
∏

s<R( j) us and h2 =
∏

s<R( j) ws. By (2.9), there are exactly c equations of the form (3.10).
Moreover, since us,ws ∈ Us, then us =

∏r
i=1 wai

is and ws =
∏r

i=1 (1 + αiθ
s)mi , where ai and mi are

considered mod pl, i.e., ai,mi ∈ Zpl . For the converse, assume (3.7) and (3.10) hold for all s ∈ Pm \R( j)
and some σ ∈ Aut S . Then, there exist β ∈< a > and δ ∈ HR such that

ψ(θk) = pψ(β2h2) = pβ1h1β
kδk = (πβδ)k = πk

1, (3.11)

where ψ is the corresponding:
k−1∑
i=0

siθ
i 7→

k−1∑
i=0

σ(si)π1
i. (3.12)

Clearly, π1 is a root of σ(g(x)) in R and, hence, ψ is an isomorphism. Thus, the following theorem
is proved.

Theorem 3.1. Let R and T be two complete chain rings with the same invariants p, n, r, k,m. Then,
R � T if and only if (3.7) and (3.10) hold for all s ∈ Pm \ R( j).
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Corollary 3.3. If R is associated with p, 2, r, k, k + 1 such that (pr − 1, k1) = 1. Then, R is uniquely
determined up to isomorphism by its invariants.

Proof. Since (pr − 1, k1) = 1 and n = 2, t = 1, then clearly xk − p ∈ E(R); thus, β = 1 and h = 1.
This means, the classification does not depend on (3.7) and (3.10). Therefore, Theorem 3.1 implies
that there is only one ring (up to isomorphism) with such invariants. �

Example 3.1. If R and T are two finite chain rings with the same invariants such that l ≥ 1 and n > 2 or
n = 2 and t > 1. Assume xk− p(x+1) ∈ E(R) and xk− p ∈ E(T ). Since (π+1) = h1 , σ(h2) = σ(1) = 1
for any σ ∈ Aut S . Hence, from Theorem 3.1, R and T are not isomorphic. By similar argument one
can show R � T when xk − p(1 + x2) ∈ E(T ), where k > 2.

Theorem 3.2. Let N be the number of complete chain rings with invariants p, n, r, k,m such that n ≥ 3
or n = 2, t > 1. Then,

N =
1
r

r−1∑
i=0

(pi − 1, z)p(i,r)ι, (3.13)

where z = (pr − 1, k1) and ι =
∑

s<R( j)ls.

Proof. For s < R( j), Us is a homogeneous group of order pν(s) and of rank r, and thus Us/U
pl

s is also
a homogeneous group of order pls and of the same rank. It follows that every us of Us/U

pl

s can be
written as us =

∏r
i=1 wai

is , where the exponents taken modulo pls . Now, to simplify notations, we can
identify Us/U

pl

s , as a set, as Γ∗(r)ls . Since there are c direct summands of H, i.e., c equations of the
form (3.10), we identify H/Hpl

as Γ∗(r)ls1 × Γ∗(r)ls2 × · · · × Γ∗(r)lsc . Moreover, replace < a > / < ak1 >

by the additive group Zz of integers modulo z, where z = (pr − 1, k1). Let Aut S =< ρ > acts on the set
Zz × Γ∗(r)ls1 × Γ∗(r)ls2 × · · · × Γ∗(r)lsc by:

ρi(a, xs1 , . . . , xsc) = (pia, xpi

s1
, . . . , xpi

sc
). (3.14)

According to Theorem 3.1, it suffices to verify that N given in (3.13) is the number of equivalence
classes. The number of elements fixed by ρi is (pi − 1, z)

∏
s<R( j)[(pi − 1, pr − 1) + 1]ls , but [(pi − 1, pr −

1) + 1] = p(i,r), hence,

(pi − 1, z)
∏

s<R( j)

[(pi − 1, pr − 1) + 1]ls = (pi − 1, z)p(i,r)
∑

s<R( j)ls . (3.15)

Therefore, Burnside Lemma computes the total number of equivalence classes. �

Corollary 3.4. If l < n − 1, then ls = l, thus,

N =
1
r

r−1∑
i=0

(pi − 1, z)p(i,r)cl. (3.16)

Corollary 3.5. If n = 2 and t > 1 or n = 3 and t = 1. Then, ls = ν(s) in Theorem 3.2.

Example 3.2. Assume that = is the class of finite chain rings R with the same invariants and with
associated Eisenstein polynomials g(x) = xk − pβ(x + 1) ∈ E(R). If R and T in =, then by Theorem 3.1,
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R � T if and only if the Equation (3.7) holds. Thus, from Theorem 3.2, there are N0 of non-isomorphic
classes of such rings in =,

N0 =
1
r

r−1∑
i=0

(pi − 1, z) =
∑
a|z

φ(a)
τ(a)

, (3.17)

where φ is Euler function and τ(a) is the order of p in Za. Note that the right-hand side of (3.17)
represents the number of finite chain rings when p - k, and it was given by Clark [4].

Next, we consider a subclass which consists of all pure chain rings with the same invariants. First,
we determine Hpl

∩ 1 + pS . By Lemma 2.1, one can directly prove

(1 + πsε)pe
= 1 +

e∑
i=0

πk(e−i)+spi
εi, (3.18)

where ε and εi are units of R. Let

j(s, i, e) = k(e − i) + spi,

j(s, e) = min{ j(s, i, e) : 0 ≤ i ≤ e}.

Then [1],

j(s, e) = je(s) =

spe, if e ≤ bs,

spbs + (e − bs)k, if e > bs,
(3.19)

where bs = dlogp
u
s e and dxe is the smallest positive integer greater that or equal to x. Moreover,

ν(s) =

bs + n − 1, if t ≥ u,

bs + n − 2, if t < u.
(3.20)

Lemma 3.1. Let R be a pure finite chain ring with l ≥ 1, and n > 2 or n = 2 and t > k1 pl−1 + · · · + k1.

If 0 ≤ i ≤ l − 1 and ε ∈ U(R), then there exists s, k - s such that

(1 + πk1 pi
ε)pl−i

∈ Uk × Us × Hs+1. (3.21)

Proof. First, if ε ∈ Γ∗(r), then by using (3.18),

(1 + πpik1α)pl−i
= (1 + αpl−i

πk + πk+pl−i−1k1ε)

= (1 + αpl−i
πk)(1 + πk+pl−1k1ε1),

where ε, ε1 are units of R. Take s = k + k1 pl−1, and the proof is complete. Now, if ε < Γ∗(r) and i is
fixed, then by successive application of (3.18) and (3.19),

(1 + πk1 pi
ε)pl−i

= 1 + ξ0π
k + ξ1π

s1 + ξ2π
s2 + · · · + ξsi+1π

si+1 + ξ′ai+1
πai+1 + πqε0, (3.22)

where 

sb = k + k1 pl−1 + · · · + k1 pl−b,

si+1 = sb + jl−i(s′),
ai+1 = sb + k1 pl−(i+1),

q > max{si+1, ai+1},

ξ0, ξsi+1 , ξ
′
ai+1
∈ Γ∗(r) and ξb, ξ

′
b ∈ Γ(r),
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1 ≤ b ≤ i and ε0 is a unit of R. Note that si+1 , ai+1 because otherwise yields jl−i(s′) = k1 pl−(i+1), thus,
k1 = j(s′) which is contradiction since k1 < k and (k1, p) = 1. Assume

s = min{sb, si+1, ai+1 : ξb , 0}, (3.23)

then the proof is complete. �

Proposition 3.3. Assume that R is a pure finite chain ring with p, n, r, k,m. Then,

Hpl
∩ 1 + pS =

(1 + pS )pl
, if n > 2 or n = 2 and t > k1 pl−1,

1 + pS , if n = 2 and t ≤ k1 pl−1.
(3.24)

Proof. First, if n = 2 and t ≤ k1 pl−1, then it is easy to see that every element of 1 + pS is given by
1 + πkδpl

, for some δ ∈ Γ∗(r). This yields (1 + πk1δ)pl
= 1 + πkδpl

, hence,

Hpl
∩ 1 + pS = 1 + pS . (3.25)

Next, let n > 2 or n = 2 and t > k1 pl−1. If h ∈ H, there is s ∈ Pm such that h ∈ Hs \ Hs+1 and
h = 1 + πsε, where ε ∈ U(R). We consider different cases for s.

(a) If s ≥ k and hpl
∈ 1 + pS . Then,

hpl
= (1 + πsε)pl

= 1 + π jl(s)ε1, (3.26)

where ε1 is a unit in R. Since any element of 1 + pS is of the form 1 +
∑
πakαa, where αa ∈ Γ∗(r), thus,

π jl(s)ε1 = 0 or jl(s) = lk + s = qk and ε1 ∈ U(S ) for some positive integer q ≥ l + 1, i.e., k | s. In either
case, we obtain

hpl
∈ 1 + pl+1S = (1 + pS )pl

. (3.27)

(b) When s < k. If s , k1 pi, then similarly k - jl(s); thus, π jl(s)ε1 = 0. On the other hand, if s = k1 pi,

0 ≤ i ≤ l − 1. Consider the filtering:

Hk > Hk+1 > · · · > Hm =< 1 > . (3.28)

This series is complete, hence, satisfies all related results in [1,3]. The set {wik = 1+αiπ
k : 1 ≤ i ≤ r}

generates Uk, then, Uk = 1 + pS . Notably, Lemma 3.1 implies

hpl
= (1 + πsε)pl

= ((1 + πsε)pl−i
)pi

= (1 + ζπk)pi
· ϑpi

, (3.29)

where ζ ∈ Γ∗(r), ϑ ∈ Hs and k - s. Since hpl
∈ 1 + pS , then

hpl
· ((1 + ζπk)−1)pi

∈ 1 + pS , (3.30)

and, thus, ϑpi
∈ 1+ pS which is impossible since the generators of Hk are linearly independent. Finally,

consider the particular case n = 2 and k1 pl−1 < t ≤ k1 pl−1 + · · ·+ k1. Since n = 2, hpl
= (1 +πk1 pi

ε)pl
= 1

for 1 ≤ i ≤ l − 1. If i = 0, then

hpl
= (1 + πk1ε)pl

= 1 + δπk + δ1π
k+ jl(s) + δ2π

k+k1 pl−1
+ ε0π

s, (3.31)

for δ, δ1, δ2 ∈ Γ∗(r), ε0 ∈ U(R), s ∈ Pm and s > k+k1 pl−1. Since k+k1 pl−1 , k+ jl(s), hence hpl
< 1+ pS .

In this case, we have
Hpl
∩ 1 + pS =< 1 >⊆ (1 + pS )pl

. (3.32)

�
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Note that if n = 2, then xk − pβ ∈ E(R) for every pure chain ring R, thus, N is given by (3.17). The
following theorem gives N when n ≥ 3.

Theorem 3.3. The number N of pure finite chain rings with same invariants p, n, r, k,m such that n ≥ 3
is precisely

N =
1
r

r−1∑
i=0

(pi − 1, z)p(i,r)ι, (3.33)

where

ι =

l, if l < n − 2,
n − 2, if l ≥ n − 2.

Proof. The proof follows directly from Proposition 3.3 and Theorem 3.2. �

Remark 3.2. Note that N in Theorem 3.3 is dependent on n.

The following corollary illustrates that the result in [7] is just a special case of Theorem 3.3.

Corollary 3.6. If l = 1, then N = 1
r

∑i−1
i=0 (pi − 1, z)p(i,r).

3.2. Incomplete chain rings

In this section, we investigate the incomplete case. If R is a finite chain ring with invariants p, n, r, k
and m, and πk = pβh. The incomplete situation happens when (cf. [1]),

p − 1 | k, −β ∈ F∗p−1 and m > k + u, (3.34)

(k = (p − 1)u). However, if R is incomplete, the system (2.7) and ξ = w1s0 = 1 + α1π
s0 are subjected to

ξpλ =
∏

(1,s0),(i,s)∈B

wais
is · γ

a0 , (3.35)

where ais, a0 are positive integers divisible by p. Denote µ = µ1 = min{ais, a0 : (i, s) ∈ B \ {(1, s0)}}.

Proposition 3.4 (Theorem 2, [1]). Let R be incomplete chain ring, then there are d ≥ 0,
Ω = {s0, s1, . . . , sd} ⊆ Pm and {µi}0≤i≤d such that

H = ⊗s∈ΛUs ⊗
d
i=0 (U∗si

⊗Cpµi ) ⊗C, (3.36)

where Λ = {Pm \ R( j)} \Ω and C =< γ > if k + u < Ω or C =< 1 >, otherwise.

If R and T are two incomplete chain rings with same invariants p, n, r, k,m. Then, HR and HT may
not have the same structure [1]. This situation makes the enumeration much harder than the complete
case.
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3.2.1. Special incomplete chain rings

If we write HR (3.36) as HR = GR ⊗
∏

s≥u1
Us ⊗G2, where GR =

∏
1≤s≤u1−1 Us and u1 = u

pl . Thus, HR

and HT have the same summand GR; GT � GR.

We state the following theorem without proof because it involves the same ideas to that ones of
Theorem 3.2. Note that ls, in this case, equal l for 1 ≤ s ≤ u1 − 1.

Theorem 3.4. Let Σ be the class of all finite incomplete chain rings R which have the same invariants
p, n, r, k and m, and associated with πk = pβh,where h ∈ GR. If N is the cardinality (up to isomorphism)
of Σ, then

N =
1
r

r−1∑
i=0

(pi − 1, z)p(i,r)l(u1−1). (3.37)

Remark 3.3. The conditions in (3.34) guarantee the existence of a root of xp−1 + p in R (see [1]).
Assume that R0 = S [π0], where π0 is a root of xp−1 + p, then R0 is a finite (complete) chain suring of R
with p, n, r, p − 1,m1, where m1 = (n − 1)(p − 1) + t1 and 1 ≤ t1 ≤ p − 1. Consider the class = of all
finite incomplete chain rings with p, n, r, k,m which are associated with πk = pβh, where h ∈ H(R0). If
β

p−1
1 = β and hp−1

1 = h for β1 ∈< a > and h1 ∈ H(R0), then one can check that

π0 = β1h1π
u, (3.38)

is a root of xp−1 + p.

Next, we aim to obtain the number of non-isomorphic rings in =. First, we introduce some useful
information about R0.

Lemma 3.2. φ ∈ Aut R0 if and only if

φ(
p−2∑
i=0

siπ0
i) =

p−2∑
i=0

σ(si)(αζπ0)i, (3.39)

where α ∈< a > is a (p − 1)-th root of unity and ζ ∈ Hm1−(p−1)(R0) for some σ ∈ Aut S .

Proof. Let φ ∈ Aut R0, then φ(π0) = αζπ0 where α ∈< a > and ζ ∈ H(R0). Note that

− p = φ(πp−1
0 ) = φ(π0)p−1 = −pαp−1ζ p−1. (3.40)

Thus, αp−1 = 1 and ζ p−1 = 1 mod Hm1−(p−1)(R0). Since (p − 1, p) = 1, then ζ ∈ Hm1−(p−1)(R0). On
the other hand, if α and ζ satisfy the condition, then one can see that φ(πp−1

0 ) = φ(π0)p−1. Thus, φ is an
automorphism of R0. �

Corollary 3.7. Every σ ∈ Aut S can be extended to an automorphism φ ∈ Aut R0.

Proposition 3.5. If R and T are two rings in = with the same R0. Then, R � T if and only if there is
φ ∈ Aut R0 such that φ(g(x)) (applies to the coefficients) has a root in R, where g(x) is an Eisenstein
polynomial of T over R0.

The proof involves argument similar to that of Proposition 3.1 with help from Corollary 3.7.

Lemma 3.3. Assume the admissible function j satisfies: if j(s) ≥ p, then s ∈ R( j) for all s. Then,
Hpi

s = H ji(s), in particular, Hpi
= H ji(1).
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Proof. The proof is conducted by induction on i. First, let i = 1, and note that Hp
s ⊆ H j(s). If y ∈ H j(s),

then y = u j(s)y1, where u j(s) ∈ U j(s) and y1 ∈ H j(s)+1. Moreover, u j(s) = up
s for some us ∈ Us, and

y1 = u j(s)+1y2, where u j(s)+1 ∈ U j(s)+1 and y1 ∈ H j(s)+2. Since

j( j(s) + 2) ≥ j( j(s) + 1) ≥ j(1) = p, (3.41)

then j(s) + 2 and j(s) + 1 ∈ R( j). Which follows that u j(s)+1 = up
s1 . Continuing in this way, we obtain

y = yp
0 , and hence H j(s) ⊆ Hp

s . Thus, H j(s) = Hp
s . For i > 1, note that Hpi

s = (Hpi−1

s )p, and by the induction
step, the result follows. �

Lemma 3.4. Let R be in =. Then,

Hpl
∩ H(R0) =

(H(R0))pl
, if n > 2 or n = 2 and t > k1 pl−1,

H(R0), if n = 2 and t ≤ k1 pl−1.
(3.42)

The proof follows by slightly modifying the proofs of Lemma 3.1 and Proposition 3.3, that is,
consider u instead of k, and the Eq (3.35) as illustrated in (Example 2, [1]).

Theorem 3.5. Assume that l < n − 2, the number N of incomplete chain rings exist in the class = is

N = N0[
1
r

r−1∑
i=0

(p − 1)(pi − 1, d1)p(i.r)l(p−2)], (3.43)

where d1 = (k, pr−1
p−1 ) and N0 is the number of finite chain rings R0 given in (3.17).

Proof. If R and T are in =, and if R � T, then by Proposition 3.5, there exists φ ∈ Aut R0 such that
φ(g(x)) has a root in R, where g(x) = xu − π0β1h1, h1 ∈ H(R0). Let π1 = δζπ be a root of φ(g(x)) in R,
note that

π0βhδuζu = πu
1 = φ(π0)σ(β1)φ(h1) = π0αϑσ(β1)φ(h1).

Thus,

βδu = ασ(β1)
hζu = ϑφ(h1) mod Hm1−1(R0).

Since l ≤ n− 3, then jl(1) ≤ m1 − (p− 1), and since ϑ ∈ Hm1−(p−1)(R0) (Lemma 3.2), then ϑ = 1 mod
H(R0)pl

= 1 mod H jl(1)(R0) (Lemma 3.3). This implies h = φ(h1) mod H jl(1)(R0). Let G = Aut S acts
on Γ∗(r)l(p−2), then there are p(i,r)l(p−2) elements fixed by ρi (see proof of Theorem 3.2). On the other
hand, the equation βδu = ασ(β1) implies that βp−1δk = σ(βp−1

1 ) (Lemma 3.2). Moreover, if σ = ρi, then
we have (pi − 1, d1) elements in Zd1 fixed by ρi, and since there are p − 1 different roots α of unity,
then, there are (p − 1)(pi − 1, d1) elements fixed by ρi. Therefore, by an argument similar to the proof
of Theorem 3.2, the number of finite chain rings in = which have the same invariants and same R0 is

N1 =
1
r

r−1∑
i=0

(p − 1)(pi − 1, d1)p(i.r)l(p−2).

Furthermore, there are N0 = 1
r

∑r−1
i=0 (pi − 1, z) (Example 3.2) of non-isomorphic types of R0. Thus, the

proof of the theorem follows. �
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Corollary 3.8. The number N of pure chain rings with p, n, r, k,m is precisely given in (3.33)

Proof. In the case l < n − 2, the proof is just a direct application to the previous Theorem 3.5 when
α = 1, ζ = 1 and N0 = 1. If l ≥ n− 2, the proof follows from Proposition 3.4 and the proof of Theorem
3.2. �

3.2.2. General incomplete chain rings

The general case of incomplete chain rings when n ≥ 4 or n = 3, t > 1 is still complicated to
determine N. For the moment, the best we can do is to approximate N by finding upper and lower
bounds. First, we derive a relation between Aut R and N.

Lemma 3.5. Let g1(x) and g2(x) be in E(R) corresponding to π1 and π2 respectively. If φ ∈ Aut R, then
φ(π1) = π2 if and only if there exists σ ∈ Aut S such that σ(g1(x)) = g2(x).

Proof. Let φ ∈ Aut R maps π1 to π2, and let σ be its restriction on S . Observe that

φ(g1(π1)) = (φ(π1))k − pσ( f (φ(π1))) = (π2)k − pσ( f (π2)) = 0 = g2(π2). (3.44)

Hence, g2(x) = σ(g1(x)). The other direction is analogous to that of Proposition 3.1. �

Corollary 3.9. Assume the hypotheses of Lemma 3.5, then g1(x) = g2(x) if and only if φ ∈ AutS R
(fixing S ).

Corollary 3.10. If φ ∈ AutS R such that φ(π) = π for some π ∈ J1, then φ is the identity automorphism.

Define a relation ∼ on E(R) by: g1 ∼ g2 if and only if g2 = σ(g1); that is, G = Aut S acts on E(R).
This relation is well defined since σ(E(R)) ⊆ E(R) (Corollary 3.1). Let orb(g) denotes the orbit of g
and Gg is the stabilizer of g in G. Hence, | orb(g) |= r/ | Gg |.

Proposition 3.6. Let R runs over all non-ismorphic classes of finite chain rings with the same
invariants p, n, r, k,m. Then, ∑

R

1
| GgR || Aut R |

=
1

rp(k−1)r . (3.45)

Proof. Let AutS R acts on J1 in the natural way, i.e., φπ = φ(π). Let ∼ be the induced equivalence
relation. Thus, J1 splits into classes of elements, and Corollary 3.10 implies that each class has |
AutS R | elements. Also Lemma 3.5 emphasizes that the number of the equivalent classes is | E(R) |.
Hence,

| J1 |=| AutS R || E(R) | . (3.46)

Moreover, | J1 |=| Γ
∗(r) || Γ(r) |m−2= (pr − 1)p(m−2)r, then

| E(R) |=
(pr − 1)p(m−2)r

| AutS R |
. (3.47)

On the other hand, E(p, k) splits into non-intersecting by Proposition 3.2. Thus,

| E(p, k) |=
∑

R

| E(R) |, (3.48)
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where R represents the classes of finite chain rings with same invariants p, n, r, k,m. Simple calculations
imply that there exist (pr − 1)p(m−k−1)r of all possible polynomials in E(p, k). Furthermore, in the light
of Lemma 3.5, for each polynomial exists in orb(g), there are | AutS R | different automorphisms of R,
i.e.,

| Aut R |=| orb(g) || AutS R | . (3.49)

This leads to

| E(R) |=
(pr − 1)p(m−2)r | orb(g) |

| Aut R |
, (3.50)

thus, ∑
R

(pr − 1)p(m−2)r | orb(g) |
| Aut R |

= (pr − 1)p(m−k−1)r. (3.51)

Now, | orb(g) |= r/ | Gg | which follows that∑
R

1
| GgR || Aut R |

=
1

rp(k−1)r . (3.52)

�

Corollary 3.11. If g(x) ∈ E(R), then the number of roots of g(x) in R is | AutS R |.

Theorem 3.6. Let N be the number of all non-isomorphic finite incomplete chain rings with invariants
p, n, r, k,m. Then,

pr

r
≤ N ≤ (pr − 1)p(m−k−1)r. (3.53)

Proof. By the proof of Proposition 3.6,

| Aut R | =| orb(g) || AutS R |

=
r

| GgR |

| J1 |

| E(R) |

≤
r

| GgR |
(pr − 1)p(m−2)r.

Hence,
1

| Aut R |
≥
| GgR |

r
1

(pr − 1)p(m−2)r .

This implies
1

| GgR || Aut R |
≥

1
r(pr − 1)p(m−2)r .

Now, also from Proposition 3.6,

N
r(pr − 1)p(m−2)r ≤

1
pr(k−1) .

Thus, N ≤ (pr − 1)p(m−k−1)r. On the other hand,

| Aut R | =
r

| GgR |

| J1 |

| E(R) |
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≥
r

| GgR |

p(m−2)r

p(m−k−1)r

≥ pr p(m−2)r

p(m−k−1)r

= pkr.

Moreover, from Proposition 3.6,

1
rp(k−1)r =

∑
R

1
| GgR || Aut R |

≤ N p−kr.

Therefore, N ≥ pr

r . �

Corollary 3.12. N = 1 if and only if | AutS R |= p(k−1)r.

Remark 3.4. The lower and upper bounds in (3.53) are attained when p = k = n = m = 2 and r = 1.
In this case, they coincide.

The following result is easy to check so we skip the proof.

Proposition 3.7. Assume that R is a finite chain ring with invariants p, n, r, k,m. Then, R is uniquely
determined if and only if one of these conditions holds:
(i) k = m; (ii) m = k + 1 and (k, pr − 1) = 1; (iii) m > k + 1, (k, p) = 1 and (k, pr − 1) = 1.

Corollary 3.13. | AutS R |= p(k−1)r if and only if (k, p) = 1 and (k, pr − 1) = 1 or m − 1 = k and
(k, pr − 1) = 1.

Proof. Forward from Proposition 3.7 and Corollary 3.12. �

4. Finite chain rings and p-adic fields

In this section, we apply the above-mentioned results to the p-adic number fields. Any finite
extension of Qp is called a p-adic number field where Qp is a completion of Q using p-adic norm | . |
generated from p-adic valuation vp, defined as: |a| = p−vp(a). Let K be a p-adic number field with
ramification index k and residue degree r. There is a unique extension v of vp normalized such that
v(π) = 1, where π is the unique prime element (uniformizer) of OK ring of integers of K.

Lemma 4.1. If L is unramified extension of degree r over Qp and K is a totally ramified extension
of degree k over L. Let g(x) be an Eisenstein polynomial over OL of degree k such that its image in
OL/(pn) has a root in OK/(πm), then if m > 2[(l + 1)k − 1], g(x) has a root in OK .

Proof. Assume that g(x) (mod pn) has a root θ in OK/(πm). If ζ ∈ OK is a lifting of θ, then g(ζ) ∈ (πm),
and thus

| g(ξ) |≤
1
pm . (4.1)

Consider the formal derivative of g,
g′(ζ) = kξk−1 − p[a1 + 2a2ζ + · · · + (k − 1)ak−2ζ

k−2]. (4.2)
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Now, let v be the extension of p-adic evaluation νp to K which is complete and nonarchimedean.
Thus, we have v(θ) = v(ξ) = 1 since ζ is lifting of θ. Hence, e = v(g′(ξ)) ≤ (l + 1)k − 1, and

| g′(ζ) |=
1
pe ,

| g′(ζ) |2=
1

p2e .

Then, 1
pm ≤

1
p2(l+1)k−1 ≤

1
p2e .

This implies
| g(ζ) |<| g′(ζ) |2 .

Therefore, by Hensel’s Lemma ( [2]), g(x) has a root in OK . �

Theorem 4.1. Let N be the number of isomorphism classes of finite commutative chain rings associated
with the same p, n, r, k and m, with m > 2[(l + 1)k − 1]. Then, N is the number of Qp−isomorphism
finite extension of Qp with ramification index k and residue degree r.

Proof. Let K1 and K2 be both extensions over Qp with ramification index k and residue degree r.
Then, K1 and K2 have the same maximal unramified extension L over Qp. Assume R = O1/(πm)
and T = O2/(θm), where O1 and O2 are the rings of integers of K1 and K2, respectively. Now, if
R � T, then by Proposition 3.1, there is σ ∈ Aut S such that σ(g(x)) has a root in T, where g(x) is an
Eisenstein polynomial over L. Assume θ is the root of σ(g(x)), and let ζ ∈ O2 be a lifting of θ. Note that
σ(g(θ)) = 0 and so τ(g(ζ)) ∈ (θm), where τ ∈ AutQp L is the corresponding to σ since AutQp L � Aut S
(L is unramified over Qp). Since m > 2[(l + 1)k − 1], then by Lemma 4.1, f (x) = τ(g(x)) has a root π2

in K2. Thus,
K1 = L(π1) � L(π2) = K2, (4.3)

where π1 is a root of g(x) in K1. Also note that π2 � ζ mod θ. This ends the proof. �

The following example shows that the condition on m in Theorem 4.1 is necessary.

Example 4.1. Consider K1 = Q2(
√

2) and K2 = Q2(
√

6). Now, let O1 and O2 be the rings of integers
of K1 and K2, respectively. Assume that

R = O1/(π4) � Z4[x]/(g1(x)),
T = O2/(θ4) � Z4[x]/(g2(x)),

where g1(x) = x2 − 2 and g2(x) = x2 − 6 (mod 4), i.e., g2(x) = x2 − 2. Then, clearly R and T are finite
chain rings with invariants 2, 2, 1, 2, 4 which are isomorphic. While K1 and K2 are not isomorphic.
Note that m = 4 < 6 = 2(l + 1)k − 1.

5. Conclusions

In this paper, we have investigated the classification of finite commutative chain rings with the same
invaraints p, n, r, k,m. If (p − 1) - k, the full classification of these rings is given. While if (p − 1) | k,
we showed that the number of non-isomorphic classes of finite commutative chain rings depends not
only on their invariants but also on their Eisenstein polynomials. In this case, we classified such rings
up to isomorphism under some conditions concerning the Eisenstein polynomials.
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