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Abstract: The concept of spherical hesitant fuzzy set is a mathematical tool that have the ability
to easily handle imprecise and uncertain information. The method of aggregation plays a great role
in decision-making problems, particularly when there are more conflicting criteria. The purpose
of this article is to present novel operational laws based on the Yager t-norm and t-conorm under
spherical hesitant fuzzy information. Furthermore, based on the Yager operational laws, we develop
the list of Yager weighted averaging and Yager weighted geometric aggregation operators. The basic
fundamental properties of the proposed operators are given in detail. We design an algorithm to
address the uncertainty and ambiguity information in multi-criteria group decision making (MCGDM)
problems. Finally, a numerical example related to Parkinson disease is presented for the proposed
model. To show the supremacy of the proposed algorithms, a comparative analysis of the proposed
techniques with some existing approaches and with validity test is presented.
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1. Introduction

Many of the routine tasks, such as entering the bedroom, employing technology, reading the
newspaper, or typing text, necessitate action. We never notice how the brain functions, and we cannot
think twice before doing an action that goes through the brain and allows us to move; nevertheless,
some of us suffer from movement disorders as a result of anything happening to the brain’s deep parts,
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the basal ganglia and the substantia nigra, and you lose control over the motor system. Changes of
speech and movement, as well as depression and anxiety, are all symptoms of deficiency. The most
well-known movement disorder is Parkinson’s disease (PD) [31]. Worryingly, the global prevalence of
Parkinson’s disease is rising. According to the American Parkinson Disease Association (APDA),
about 1 million Americans and 10 million people worldwide suffer from Parkinson’s disease, a
progressive neurological condition. Muhammad Ali, Michael J. Fox, and Janet Reno are only a few
of the popular patients-turned-advocates. We looked at the research on complementary and alternative
medicine (CAM) therapy for Parkinson’s disease, with an emphasis on mind-body approaches and
natural products [12].

The multi-criteria group decision making (MCGDM) process, which depicts a method for choosing
the best option to a group of decision makers (DMs) and circumstances, is an important and evolving
subject. In this approach, there are two major objectives. The first goal is to create an atmosphere in
which the values of a few key attributes can be easily evaluated, while the second is to analyze the
information. However, as the systems become more complex to manage, it is becoming increasingly
difficult to collect data from records, properties, and practitioners in a simple and easy format. As a
result, the concept of fuzzy sets [51] was developed by Zadeh to convey knowledge more amenably.
The most basic property of a fuzzy sets is membership degree only. After a large number of applications
of FS theory, Atanassov discovered a number of flaws in this concept. As a result, he developed the
intuitionistic fuzzy set (IFS) model [11]. IFS stands for FS in its entirety. Each factor of the IFS
is expressed by an ordered pair with positive and negative membership grades. The sum of grades
value is atmost 1. Yager [47] recently proposed the concept of Pythagorean fuzzy sets (PFSs), whose
membership values are ordered pairs with square sums of membership and non-membership less
than or equal to unity. More researchers are working on improving the capabilities of PFSs. For
example, Yager [48] gave Pythagorean membership grades in MADM. Zhang and Xu [53] suggested
in extensions of the method for order preference by similarity to an ideal solution (TOPSIS) to
MADM with Pythagorean and HFSs. Zhang [54] proposed a new technique for Pythagorean fuzzy
MGDM based on a similarity measure. Ren et al. [38] presented a Pythagorean fuzzy TODIM (an
acronym in Portuguese for Interative Multi-criteria Decision Making) method to MCGDM. Peng and
Yang [32] established a Pythagorean fuzzy Choquet integral based MABAC (multi-attributive border
approximation area comparison) technique for MCGDM. Zhang [55] introduced a QUALIFLEX
(qualitative flexible multiple criteria method) method that was hierarchical. Pythagorean fuzzy
information measures were studied by Peng et al. [34]. Generalized Pythagorean fuzzy Bonferroni
mean aggregation operations were proposed by Zhang et al. [56]. TOPSIS was extended to hesitant
Pythagorean fuzzy sets by Liang and Xu [26]. It should be observed that both IFSs and PFSs
have still some limitations, although they have been seen to be efficient when dealing with complex
fuzzy information in some practical applications. Yager [49] thereafter introduced the concept q-
rung orthopair fuzzy (q-ROF) set as an extension to the conventional IFS set. The limitation of q-
ROF set is that the sum of the qth-power of membership and non-membership is less than or equal
to 1. Xu et al. [43] discussed some improved q-rung orthopair fuzzy aggregation operators and their
applications to multi attribute group decision-making. Riaz et al. [37] developed q-Rung orthopair
fuzzy geometric aggregation operators based on generalized and group-generalized parameters for
water loss management. A q-rung orthopair fuzzy MCGDM technique based on a new distance
measure for supplier selection were discussed by Pinar et al. [33]. For more study of decision making
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methods we refer to [15, 18, 25, 27, 44, 45, 50, 57].
Mahmood [28] presented the generalized structure of bipolar soft sets and discussed their

application in DMPs. The role of aggregation operators is essential throughout the assimilation
procedure for the accumulation of all administrative criteria. Xu [40] presented the weighted averaging
operator for IFSs. Xu [41] also presented weighted geometric and hybrid geometric operators for IFSs.
The IFS has received more importance after its appearance [14,46]. The definition of IFSs for t-norms
and t-conorms was extensively defined by Deschrijver [17]. When the summation of positive and
negative membership grades is greater than one, in this case, DMs have not enough space for their
decisions. As a result, in those circumstances, IFSs is unable to produce any appropriate results.
Yager [47, 48] proposed the Pythagorean fuzzy set (PyFS), which is a general type of IFS, to deal
with such a situation. Ashraf et al. [1] further upgraded the notion of PyFS to the proposed idea
of spherical fuzzy sets (SFSs), which is a complete setup of all current fuzzy set structures in the
literature. In decision-making issues, SFS deals with uncertainty more effectively and proficiently.
Researchers using spherical fuzzy (SF) information to contribute the SFS notion by establishing a
number of decision-making techniques. The theory of the SF Dombi aggregation operators under the
SF information was formulated by Ashraf et al. [8]. Rafiq et al. [36] proposed a DM approach based
on cosine similarity measures to tackle the uncertain information in the form of SF setting. Ashraf et
al. [9] developed a DM technique focused on spherical distance measure based aggregation operator
(AGOp). Ashraf et al. [10] adapted the SFS representations of SF t-norm and t-conorm and debated
the TOPSIS [13] under SF environment. Jin et al. [21] proposed SF logarithmic AGOp based on
entropy measures and discussed their applicability in DMPs. Jin et al. [22] established the linguistic
SF AGOp and highlighted their applicability for addressing uncertain information under SF settings.
Zeng et al. [52] proposed the SF rough set on the basis of TOPSIS method. For detail study, we
recommended [2–7].

Torra [52] introduced the concept of hesitant FS to encourage the creation of a fuzzy set with a
collection of values rather than a single value in the form of membership. Hesitant FS is a useful
method for addressing the uncertain and ambiguous SF information in DMPs. Xu and Xia [42]
established the novel distance and similarity measures under hesitant FSs. Qian et al. [35] presented a
novel concept of generalized hesitant FSs and discussed their applicability in DMPs. Farhadinia [19]
proposed the information measures under hesitant FSs and presented the application in real life decision
making problems. Chen [16] established the novel correlation coefficients under HFSs and presented
the application in clustering analysis. Guan [20] introduced the Grey relational analysis under hesitant
FSs. Mahmood et al. [29] established the Jaccard and Dice similarity measures under complex dual
hesitant FSs and discussed their applicability in DMPs. Furthermore, Khan et al. [23] established
the generalized hesitant fuzzy set, so-called spherical hesitant fuzzy set, by considering the positive,
neutral, and negative membership grades in the form of hesitant fuzzy sets. Also additionally, we
proposed novel operational laws based on the logarithmic function under spherical hesitant fuzzy
settings. Naeem et al. [30] established the sine function based spherical hesitant fuzzy AGOp and
discussed their application in decision making problems.

Due to the motivation of the above discussion, in this study, we propose novel spherical hesitant
fuzzy Yager aggregation operators to address the uncertain and incomplete information under spherical
hesitant fuzzy information. Spherical hesitant fuzzy Yager aggregation operators have namely as:
spherical hesitant fuzzy Yager weighted averaging (SHFYWA), spherical hesitant fuzzy Yager
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ordered weighted averaging (SHFYOWA), spherical hesitant fuzzy Yager hybrid weighted averaging
(SHFYHWA), spherical hesitant fuzzy Yager weighted geometric (SHFYWG), spherical hesitant fuzzy
Yager ordered weighted geometric (SHFYOWG) and spherical hesitant fuzzy Yager hybrid weighted
geometric (SHFYHWG). The main contribution of this study is followed as:

(1) To construct the list of novel Yager norm-based basic operational laws.
(2) To develop a list of aggregation operators based on Yager t-norm and t-conorm and to discuss

the related properties in detail.
(3) To develop a decision making methodology using the proposed aggregation operators to

aggregate the uncertain information in real word decision making problems.
(4) To provide a numerical case study concerning to tackle Parkinson’s disease, to show the

applicability and reliability of the developed methodology.
(5) To provide ”Validity and Reliability” test to show the validation of the proposed decision making

methodology.
The rest of this manuscript is organized as follows: Section 2 briefly recalls some basic concepts.

A novel operational laws are established using Yager t-norm and t-conorm in Section 3. Section 4
highlights a list of Yager aggregation operators based on the yager operational laws and their basic
properties. Section 5 is devoted to a decision making methodology based on the developed aggregation
operators. Section 6 presents the numerical illustration concerning to tackle the Parkinson’s disease
problem. Section 7 establishes the validity and reliability test to validate the proposed aggregation
operator based multi-attribute decision making methodology. Section 8 concludes this manuscript.

2. Preliminaries

Definition 1. [51] A fuzzy set (FS) V on the ground set Z is a structure having the following form

V = {〈e, A(e)〉 |e ∈ Z},

where A(e) ∈ [0, 1] known to be membership grade.

Definition 2. [39] A hesitant FS (HFS) V on the ground set Z is a structure having the following form

V = {〈e, h(e)〉 |e ∈ Z},

where h(e) be the set of some possible membership degrees in [0, 1] .

Definition 3. [1] A spherical FS (SFS) V on the ground set Z is a structure having the following form

V = {〈e, A(e), B(e),C(e))〉 |e ∈ Z},

where A(e) ∈ [0, 1] , B(e) ∈ [0, 1] and C(e) ∈ [0, 1] known to be positive, neutral and negative
membership grades, subject to the condition A2(e) + B2(e) + C2(e) ≤ 1, for all e ∈ Z.

The space of the spherical fuzzy set is presented in Figure 1:
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Figure 1. Spherical fuzzy set space.

Definition 4. [30] A spherical hesitant FS (SHFS) V on the ground set Z is a structure having the
following form

V = {〈e, A(e), B(e),C(e))〉 |e ∈ Z},

where
A(e) = {a|a ∈ [0, 1]}, B(e) = {b|b ∈ [0, 1]} and C(e) = {c|c ∈ [0, 1]},

known to be positive, neutral and negative membership grades, subject to the condition 0 ≤ (a+)2 +

(b+)2 + (c+)2
≤ 1,∀ e ∈ Z, such that

a+ =
⋃

a∈A(e)

max{a}, b+ =
⋃

b∈B(e)

max{b}, and c+ =
⋃
c∈C(e)

max{c}.

Definition 5. [24] Let us consider V = {Ae, Be,Ce} ∈ S HFS (e ∈ N) . The elementary operational
laws are given below;
(1) (V1)c =

⋃
(a1,b1,c1)∈(A1,B1,C1)

{c1, b1, a1} ;

(2) V1 ∪ V2 =
⋃

(ae,be,ce)∈(Ae,Be,Ce)(e=1,2)
{max (ae) ,min (be) ,min (ce)} ;

(3) V1 ∩ V2 =
⋃

(a1,b1,c1) ∈(A1,B1,C1)
{min (ae) ,min (be) ,max (ce)} ;

Definition 6. [24] Let we have V = {A, B,C}, V1 = {A1, B1,C1}, and V2 = {A2, B2,C2} three sets of
SHFNs with δ > 0. Then, the operations of SHFEs are shown below:

(1) V1 ⊕ V2 =
⋃

a∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C1

{√
a2

1 + a2
2 − a2

1a2
2, b1b2, c1c2

}
;

(2) V1 ⊗ V2 =
⋃

a∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C1

{
{a1a2, b1b2,

√
c2

1 + c2
2 − c2

1c2
2

}
;
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(3) δV =
⋃

a∈A,b∈B,c∈C

{ √
1 − (1 − a2)δ, (b)δ , (c)δ

}
;

(4) Vδ =
⋃

a∈A,b∈B,c∈C

{
(a)δ , (b)δ,

√
1 − (1 − c2)δ

}
.

Example 1. Let we have two SHFNs, V1 = {{0.2, 0.5} , {0.3} , {0.3, 0.4}} and V2 =

{{0.2} , {0.3, 0.6} , {0.1, 0.2}} with δ > 2 then the operations of SHFEs are shown below:

(1) V1 ⊕ V2 =
⋃

a∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C1

{√
a2

1 + a2
2 − a2

1a2
2, b1b2, c1c2

}

{{0.2, 0.5} , {0.3} , {0.3, 0.4}} ⊕ {{0.2} , {0.3, 0.6} , {0.1, 0.2}}

=


{√

(0.2)2 + (0.5)2
− (0.2)2 (0.5)2,

√
(0.2)2 + (0.2)2

− (0.2)2 (0.2)2
}
,

{(0.3) (0.3) , (0.3) (0.6)} ,
{(0.3) (0.1) , (0.3) (0.2) , (0.4) (0.1) , (0.4) (0.2)}


= {{0.28, 0.529} , {0.09, 0.18} , {0.03, 0.06, 0.04, 0.08}} .

(2) V1 ⊗ V2 =
⋃

a∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C1

{
{a1a2, b1b2,

√
c2

1 + c2
2 − c2

1c2
2

}
{{0.2, 0.5} , {0.3} , {0.3, 0.4}} ⊗ {{0.2} , {0.3, 0.6} , {0.1, 0.2}}

=


{(0.2) (0.2) , (0.5) (0.2)} , {(0.3) (0.3) , (0.3) (0.6)} ,

√
(0.3)2 + (0.1)2

− (0.3)2 (0.1)2,
√

(0.3)2 + (0.2)2
− (0.3)2 (0.2)2,√

(0.4)2 + (0.1)2
− (0.4)2 (0.1)2,

√
(0.4)2 + (0.2)2

− (0.4)2 (0.2)2




= {{0.04, 0.10} , {0.09, 0.18} , {0.31, 0.35, 0.41, 0.44}} .

(3) δ · V1 =
⋃

a∈A1,b1∈B1,c1∈C1

{√
1 − (1 − a2

1)δ, (b1)δ , (c1)δ
}

δ · V1 = 2 · {{0.2, 0.5} , {0.3} , {0.3, 0.4}}

=


{√

1 −
(
1 − (0.2)2

)2
,

√
1 −

(
1 − (0.5)2

)2
}
,{

(0.3)2
}
,
{
(0.3)2 , (0.4)2

}


= {{0.28, 0.66} , {0.09} , {0.09, 0.16}} .

(4) (V1)δ =
⋃

a∈A1,b1∈B1,c1∈C1

{
(a1)δ , (b1)δ,

√
1 − (1 − c2

1)δ
}

(V1)δ = ({{0.2, 0.5} , {0.3} , {0.3, 0.4}})2

=


{
(0.2)2 , (0.5)2

}
,
{
(0.3)2

}
,{√

1 −
(
1 − (0.3)2

)2
,

√
1 −

(
1 − (0.4)2

)2
} 

= {{0.04, 0.25} , {0.09} , {0.41, 0.54}} .

Definition 7. [24] Suppose Zg =
{
Mg, Lg,Kg

}
=


{
κ1

g, κ
2
g, κ

3
g, ..., κ

l(M)
g

}
,
{
δ1

g, δ
2
g, δ

3
g, ..., δ

l(L)
g

}
,{

∂1
g, ∂

2
g, ∂

3
g, ..., ∂

l(K)
g

}  ∈
S HFS (R) (g ∈ N) , where l represent the possible number of elements in Mg, Lg and Kg respectively.
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The score (S c) and accuracy (Ac) functions are defined as follows;
(1) S c(Zg) =

2+
∑n

g=1 κg−
∑n

g=1 δg−
∑n

g=1 ∂g

3 ;

(2) Ac(Zg) =
∑n

g=1 κg+
∑n

g=1 δg+
∑n

g=1 ∂g

3 .

Definition 8. Suppose Zg =
{
Mg, Lg,Kg

}
∈ S HFS (R) (g ∈ N) . Then,

(1) If S c(Z1) > S c(Z2), then Z1 > Z2;
(2) If S c(Z1) = S c(Z2), then;
(a) If Ac(Z1) > Ac(Z2), then Z1 > Z2;
(b) If Ac(Z1) = Ac(Z2), then Z1 = Z2.

Yager operational laws for spherical HFS.

Definition 9. Let us consider for any real numbers m and n, Yager t-norm and t-conorm are described
as
(1) T (m, n) = 1 − min(1, ((1 − m)µ + (1 − n)µ)

1
µ );

(2) S (m, n) = min(1, (mµ − nµ)
1
µ ), µ ∈ (0,∞) .

Definition 10. Let we have V1 = {A1, B1,C1} and V2 = {A2, B2,C2} the two sets of SHFNs withω, µ > 0.
Then, Yager norm based operating laws (YOLs) are fallows below:

(1) V1 ⊕ V2 =
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B2,c2∈C2



√
min

(
1, a2µ

1 + a2µ
2

)
,√

1 −min
(
1,

(
(1 − b2

1)µ + (1 − b2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − c2

1)µ + (1 − c2
2)µ

)) 1
µ


;

(2) V1 ⊗ V2 =
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B2,c2∈C2



√
1 −min

(
1,

(
(1 − a2

1)µ + (1 − a2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − b2

1)µ + (1 − b2
2)µ

)) 1
µ
,√

min
(
1, c2µ

1 + c2µ
2

)


;

(3) ω.V1 =
⋃

a1∈A1,b1∈B1,c1∈C1


√

min
(
1,

(
ωa2

1

)µ) 1
µ
,

√
1 −min

(
1,

(
ω(1 − b2

1)µ
)) 1

µ
,√

1 −min
(
1,

(
ω(1 − c2

1)µ
)) 1

µ

 ;

(4) (V1)ω =
⋃

a1∈A1,b1∈B1,c1∈C1


√

1 −min
(
1,

(
ω(1 − a2

1)µ
)) 1

µ
,

√
1 −min

(
1,

(
ω(1 − b2

1)µ
)) 1

µ
,√

min
(
1,

(
ωc2

1

)µ) 1
µ

 .
Theorem 1. For any two SHFSs V1 = {A1, B1,C1} & V2 = {A2, B2,C2} with ω1,ω2 > 0. Then
(1) V1 ⊕ V2 = V2 ⊕ V1;
(2) V1 ⊗ V2 = V2 ⊗ V1;
(3) ω1 (V1 ⊕ V2) = ω1V1 ⊕ ω1V2;
(4)(ω1 ⊕ ω2) V1 = ω1V1 ⊕ ω2V1;
(5)(V1 ⊗ V2)ω1 = (V1)ω1 ⊗ (V2)ω1;
(6)(V1)ω1 ⊗ (V1)ω2 = (V1)ω1+ω2 .
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Proof. For any V1,V2 be any two SHFSs with ω1, ω2 > 0. We have

V1 ⊕ V2

=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B2,c2∈C2



√
min

(
1,

(
a2µ

1 + a2µ
2

))
,√

1 −min
(
1,

(
(1 − b2

1)µ + (1 − b2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − c2

1)µ + (1 − c2
2)µ

)) 1
µ



=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C2



√
min

(
1,

(
a2µ

2 + a2µ
1

))
,√

1 −min
(
1,

(
(1 − b2

2)µ + (1 − b2
1)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − c2

2)µ + (1 − c2
1)µ

)) 1
µ


= V2 ⊕ V1

V1 ⊗ V2

=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C2



√
1 −min

(
1,

(
(1 − a2

1)µ + (1 − a2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − b2

1)µ + (1 − b2
2)µ

)) 1
µ
,√

min
(
1,

(
c2µ

1 + c2µ
2

))


;

=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C2



√
1 −min

(
1,

(
(1 − a2

2)µ + (1 − a2
1)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − b2

2)µ + (1 − b2
1)µ

)) 1
µ
,√

min
(
1,

(
c2µ

2 + c2µ
1

))


;

= V1 ⊗ V2

ω1 (V1 ⊕ V2) =
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B2,c2∈C2


ω1



√
min

(
1,

(
a2µ

1 + a2µ
2

))
,√

1 −min
(
1,

(
(1 − b2

1)µ + (1 − b2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
(1 − c2

1)µ + (1 − c2
2)µ

)) 1
µ





=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B2,c2∈C2





√
min

(
1,

(
ω1a2µ

1 + ω1a2µ
2

))
,√

1 −min
(
1,

(
ω1(1 − b2

1)µ + ω1(1 − b2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
ω1(1 − c2

1)µ + ω1(1 − c2
2)µ

)) 1
µ




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ω1V1 ⊕ ω1V2 =
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C2





√
min

(
1,

(
ω1a2µ

1

)) 1
µ
,√

1 −min
(
1,

(
ω1(1 − b2

1)µ
)) 1

µ
,√

1 −min
(
1,

(
ω1(1 − c2

1)µ
)) 1

µ



⊕



√
min

(
1,

(
ω1a2µ

2

)) 1
µ
,√

1 −min
(
1,

(
ω1(1 − b2

2)µ
)) 1

µ
,√

1 −min
(
1,

(
ω1(1 − c2

2)µ
)) 1

µ





=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C2





√
min

(
1,

(
ω1a2µ

1 + ω1a2µ
2

)) 1
µ
,√

1 −min
(
1,

(
ω1(1 − b2

1)µ + ω1(1 − b2
2)µ

)) 1
µ
,√

1 −min
(
1,

(
ω1(1 − c2

1)µ + ω1(1 − c2
2)µ

)) 1
µ




= ω1 (V1 ⊕ V2)

Hence
ω (V1 ⊕ V2) = ωV1 ⊕ ωV2

Proof of (4), (5) and (6) are similarly as above. �

3. Spherical hesitant fuzzy Yager aggregation operators

In this portion, we introduce some SHF AGOp based on the Yager t-norm and t-conorm.

3.1. Weighted averaging aggregation operators for Yager’s norms

Definition 11. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) . Then, Yager weighted averaging
aggregation operators for SHFNs are stated as below;

S HFYWA (V1,V2, ...Vk) = δ1V1 ⊕ δ2V2 ⊕ ... ⊕ δkVk (3.1)

=

k∑
e=1

δeVe

where δ = (δ1, δ2, ...δk)T denote the weighted values of (V1,V2, ...Vk) such that δe ≥ 0;
∑k

e=1 δe = 1.

Theorem 2. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and δ = (δ1, δ2, ...δk)T denote
the weighted values of (V1,V2, ...Vk) such that δe ≥ 0;

∑k
e=1 δe = 1. Then, SHFYWA aggregation

operator is a mapping αk → α such that;

S HFYWA (V1,V2, ...Vk) =

k∑
e=1

δeVe
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=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑k
e=1 δea

2µ
e

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2

e)µ
)) 1

µ


(3.2)

Proof. To prove this theorem, we apply mathematical induction on k.
Take k = 2

S HFYWA (V1,V2) = δ1V1 ⊕ δ2V2

=
⋃

a1∈A1,b1∈B1,c1∈C1
a2∈A2,b2∈B,c2∈C2




√

min
(
1,

(
δ1a2µ

1

)) 1
µ
,

√
1 −min

(
1,

(
δ1(1 − b2

1)µ
)) 1

µ
,√

1 −min
(
1,

(
δ1(1 − c2

1)µ
)) 1

µ

⊕
√

min
(
1,

(
δ2a2µ

2

)) 1
µ
,

√
1 −min

(
1,

(
δ2(1 − b2

2)µ
)) 1

µ
,√

1 −min
(
1,

(
δ2(1 − c2

2)µ
)) 1

µ




=

⋃
(ae,be,ce)∈(Ae,Be,Ce)(e=1,2)




√
min

(
1,

(∑2
e=1 δea

2µ
e

)) 1
µ
,

√
1 −min

(
1,

(∑2
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑2
e=1 δe(1 − c2

e)µ
)) 1

µ




Let Eq (3.2) is true for k = m;

S HFYWA (V1,V2, ...Vk)

=
⋃

ae∈Ae,be∈Be,ce∈Ce


√

min
(
1,

(∑m
e=1 δea

2µ
e

)) 1
µ
,

√
1 −min

(
1,

(∑m
e=1 δe(1 − b2

e)µ
)) 1

µ ,√
1 −min

(
1,

(∑m
e=1 δe(1 − c2

e)µ
)) 1

µ


To show Eq (3.2) is true for k = m + 1;

S HFYWA (V1,V2, ...Vk) =

k∑
e=1

δeVe ⊕ δk+1Vk+1

=
⋃

ae∈Ae,be∈Be,ce∈Ce





√
min

(
1,

(∑m
e=1 δea

2µ
e

)) 1
µ
,√

1 −min
(
1,

(∑m
e=1 δe(1 − b2

e)µ
)) 1

µ ,√
1 −min

(
1,

(∑m
e=1 δe(1 − c2

e)µ
)) 1

µ


⊕



√
min

(
1,

(
δe+1a2µ

e+1

)) 1
µ
,√

1 −min
(
1,

(
δe+1(1 − b2

e+1)µ
)) 1

µ
,√

1 −min
(
1,

(
δe+1(1 − c2

e+1)µ
)) 1

µ




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=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑m+1
e=1 δea

2µ
e

)) 1
µ
,√

1 −min
(
1,

(∑m+1
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑m+1
e=1 δe(1 − c2

e)µ
)) 1

µ


Thus Eq (3.2) is true for k = m + 1. Hence it is true ∀ +ve integers. �

Theorem 3. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) such that Ve = V. Then

S HFYWA (V1,V2, ...Vk) = V (3.3)

Proof. Since Ve = V (e = 1, 2, ...k) , then by Theorem (2) , we have

S HFYWA (V1,V2, ...Vk)

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑k
e=1 δea

2µ
e

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2

e)µ
)) 1

µ



=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑k
e=1 δea2µ

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2)µ

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2)µ

)) 1
µ


=

⋃
ae∈Ae,be∈Be,ce∈Ce



√
min

(
1, (a2µ)

) 1
µ ,√

1 −min
(
1,

(
(1 − b2)µ

)) 1
µ ,√

1 −min
(
1,

(
(1 − c2)µ

)) 1
µ


= (a, b, c)

= V.

�

Theorem 4. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and V−e =

{min (Ae) , min (Be) , max (Ce)}, V+
e = {max (Ae) , min (Be) , min (Ce)}. Then we have,

V−e ≤ S HFYWA (V1,V2, ...Vn) ≤ V+
e .

Proof. Since,

S HFYWA (V1,V2, ...Vk) =

k∑
e=1

δeVe
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=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

∑k
e=1 δea

2µ
e

) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2

e)µ
)) 1

µ


We have Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and V−e ={

min
(
A−e

)
, min

(
B−e

)
, max

(
C−e

)}
, V+

e =
{
max

(
A+

e
)
, min

(
B+

e
)
, min

(
C+

e
)}

.
Since

a−e ≤ ae ≤ a+
e

Therefore, we have√√√√
min

1, k∑
e=1

δea
−2µ
e


1
µ

≤

√√√√
min

1, k∑
e=1

δea
2µ
e


1
µ

≤

√√√√
min

1, k∑
e=1

δea
+2µ
e


1
µ

Also,
b−e ≤ be ≤ b+

e

Similarly we obtaine√√√√
1 −min

1,  k∑
e=1

δe(1 −
(
b−e

)2)µ


1
µ

≤

√√√√
1 −min

1,  k∑
e=1

δe(1 − (be)2)µ


1
µ

≤

√√√√
1 −min

1,  k∑
e=1

δe(1 −
(
b+

e
)2)µ


1
µ

and √√√√
1 −min

1,  k∑
e=1

δe(1 −
(
c−e

)2)µ


1
µ

≤

√√√√
1 −min

1,  k∑
e=1

δe(1 − (ce)2)µ


1
µ

≤

√√√√
1 −min

1,  k∑
e=1

δe(1 −
(
c+

e
)2)µ


1
µ

Hence,
V−e ≤ S HFYWA (V1,V2, ...Vn) ≤ V+

e .

�

Theorem 5. Suppose Ve = {Ae, Be,Ce} & V∗e =
{
A∗e, B

∗
e,C

∗
e
}
∈ S HFS (e ∈ N) . If Ae ≥ A∗e, Be ≤ B∗e and

Ce ≤ C∗e , then
S HFYWA

(
V∗1 ,V

∗
2 , ...V

∗
n
)
≤ S HFYWA (V1,V2, ...Vk)
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Proof. Suppose that S HFYWA
(
V∗1 ,V

∗
2 , ...V

∗
n

)
=

(
A∗e, B

∗
e,C

∗
e
)

and S HFYWA (V1,V2, ...Vk) =

(Ae, Be,Ce) . First of all, we are to show that (Ae, Be,Ce) ≥
(
A∗e, B

∗
e,C

∗
e
)
. As given that a∗e ≤ ae.

Therefore, we have  ś∑
i=1

(
αiu∗δi

)
1
δ

≤

 ś∑
i=1

(
αiuδi

)
1
δ

√√√√
min

1, k∑
e=1

δea
∗2µ
e


1
µ

≤

√√√√
min

1, k∑
e=1

δea
2µ
e


1
µ

Similarly, we obtained√√√√
1 −min

1,  k∑
e=1

δe(1 −
(
b∗e

)2)µ


1
µ

≤

√√√√
1 −min

1,  k∑
e=1

δe(1 − (be)2)µ


1
µ

and √√√√
1 −min

1,  k∑
e=1

δe(1 −
(
c∗e

)2)µ


1
µ

≤

√√√√
1 −min

1,  k∑
e=1

δe(1 − (ce)2)µ


1
µ

Hence,
S HFYWA

(
V∗1 ,V

∗
2 , ...V

∗
n
)
≤ S HFYWA (V1,V2, ...Vk) .

�

Definition 12. Suppose Ve = {Ae, Be,Ce} ∈ S HFS (e ∈ N) . Then, Yager order weighted averaging
aggregation operators for SHFNs are stated as below;

S HFYOWA (V1,V2, ...Vk) = δ1Vr(1) ⊕ δ2Vr(2) ⊕ ... ⊕ δnVr(k)

=

k∑
e=1

δeVr(e)

where r (e) is represented the order according to (r (1) , r (2) , r (3) , ..., r (k)) and (δ1, δ2, ...δk)T denote
the weighted values of (V1,V2, ...Vk) such that δe ≥ 0;

∑k
e=1 δe = 1.

Theorem 6. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and δ = (δ1, δ2, ...δk)T denote
the weighted values of V1,V2, ...Vk such that δe ≥ 0;

∑k
e=1 δe = 1. Then, SHFYOWA aggregation

operator is a mapping αk → α such that;

S HFYOWA (V1,V2, ...Vk) =

k∑
e=1

δeVr(e)

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑k
e=1 δea

2µ
r(e)

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

r(e))
µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2

r(e))
µ
)) 1

µ


(3.4)
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Theorem 7. (1) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) such that Ve = V. Then

S HFYOWA (V1,V2, ...Vk) = V.

(2) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and V−e =

{min (Ae) , min (Be) , max (Ce)}, V+
e = {max (Ae) , min (Be) , min (Ce)}. Then we have,

V−e ≤ S HFYOWA (V1,V2, ...Vn) ≤ V+
e .

(3)Suppose Ve = {Ae, Be,Ce} & V∗e =
{
A∗e, B

∗
e,C

∗
e
}
∈ S HFS (e ∈ N) . If Ae ≥ A∗e, Be ≤ B∗e and Ce ≤ C∗e ,

then
S HFYOWA (V1,V2, ...Vk) ≤ S HFYOWA

(
V∗1 ,V

∗
2 , ...V

∗
k
)
.

Definition 13. Suppose Ve = {Ae, Be,Ce} ∈ S HFS (e ∈ N) . Then, Yager hybrid weighted averaging
aggregation operators for SHFNs are stated as below;

S HFYHWA (V1,V2, ...Vk) = δ1V ′r(1) ⊕ δ2V ′r(2) ⊕ ... ⊕ δkV ′r(k) (3.5)

=

k∑
e=1

δeV ′r(e)

where r (e) is represented the order according to (r (1) , r (2) , r (3) , ..., r (k)) , such that
V ′r(e)

(
V ′r(e) = kδeVr(e) : e ∈ N

)
and (δ1, δ2, ...δk)T is the associated weight information respectively of

(V1,V2, ...Vk) such that δe ≥ 0;
∑k

e=1 δe = 1.

3.2. Weighted geometric aggregation operators for Yager’s norms

Definition 14. Suppose Ve = {Ae, Be,Ce} ∈ S HFS (e ∈ N) . Then, Yager weighted geometric
aggregation operators for SHFNs are stated as below;

S HFYWG (V1,V2, ...Vk) = (V1)δ1 ⊗ (V2)δ2 ⊗ ... ⊗ (Vn)δk (3.6)

=

k∏
e=1

(Ve)δe

where (δ1, δ2, ...δk)T denote the weighted values of (V1,V2, ...Vn) such that δe ≥ 0;
∑k

e=1 δe = 1.

Theorem 8. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and δ = (δ1, δ2, ...δk)T denote
the weighted values of (V1,V2, ...Vk) such that δe ≥ 0;

∑k
e=1 δe = 1. Then, SHFYWG aggregation

operator is a mapping αk → α such that;

S HFYWG (V1,V2, ...Vk) =

k∏
e=1

(Ve)δe

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
1 −min

(
1,

(∑k
e=1 δe(1 − a2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

min
(
1,

(∑k
e=1 δec

2µ
e

)) 1
µ


(3.7)
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Proof. We prove by using mathematical induction
For k = 2, we have

S HFYWG (V1,V2) = Vδ1
1 ⊗ Vδ2

2

=
⋃

ae∈Ae,be∈Be,ce∈Ce(e=1,2)





√√
1 −min

(
1,

(
δ1(1 − a2

1)µ
)) 1

µ
,√

1 −min
(
1,

(
δ1(1 − b2

1)µ
)) 1

µ
,

min
(
1,

(
δ1c2µ

1

)) 1
µ


⊗



√√
1 −min

(
1,

(
δ2(1 − a2

2)µ
)) 1

µ
,√

1 −min
(
1,

(
δ2(1 − b2

2)µ
)) 1

µ
,

min
(
1,

(
δ2c2µ

2

)) 1
µ





=
⋃

ae∈Ae,be∈Be,ce∈Ce(e=1,2)



√√
1 −min

(
1,

(∑2
e=1 δe(1 − a2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑2
e=1 δe(1 − b2

e)µ
)) 1

µ
,

min
(
1,

(∑2
e=1 δec

2µ
e

)) 1
µ


Let Eq (3.7) is true for k = m;

S HFYWG (V1,V2, ...Vm)

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√√
1 −min

(
1,

(∑m
e=1 δe(1 − a2

e)µ
)) 1

µ ,√
1 −min

(
1,

(∑m
e=1 δe(1 − b2

e)µ
)) 1

µ ,

min
(
1,

(∑m
e=1 δec

2µ
e

)) 1
µ


To show Eq (3.7) is true for k = m + 1;

S HFYWG (V1,V2, ...Vk) =

m∏
e=1

(Ve)δe ⊗ (Vm+1)δm+1

S HFYWG (V1,V2, ...Vm+1)
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=
⋃

ae∈Ae,be∈Be,ce∈Ce





√
1 −min

(
1,

(∑m
e=1 δe(1 − a2

e)µ
)) 1

µ ,√
1 −min

(
1,

(∑m
e=1 δe(1 − b2

e)µ
)) 1

µ ,√
min

(
1,

(∑m
e=1 δec

2µ
e

)) 1
µ


⊗



√
1 −min

(
1,

(
δm+1(1 − a2

m+1)µ
)) 1

µ
,√

1 −min
(
1,

(
δm+1(1 − b2

m+1)µ
)) 1

µ
,√

min
(
1,

(
δm+1c2µ

m+1

)) 1
µ





=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
1 −min

(
1,

(∑m+1
e=1 δe(1 − a2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑m+1
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

min
(
1,

(∑m+1
e=1 δec

2µ
e

)) 1
µ


So, the given result is true for k = m + 1.
Hence it is true ∀ positive integers. �

Theorem 9. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) such that Ve = V. Then

S HFYWG (V1,V2, ...Vk) = V

Proof. Since Ve = V (e = 1, 2, ...k) , then by Theorem (10) , we have

S HFYWG (V1,V2, ...Vk)

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
1 −min

(
1,

(∑k
e=1 δe(1 − a2)µ

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2)µ

)) 1
µ
,√

min
(
1,

(∑k
e=1 δec2µ

)) 1
µ


=

⋃
ae∈Ae,be∈Be,ce∈Ce


√

1 −min
(
1, (1 − a2)

)
,√

1 −min
(
1, (1 − a2)

)
,

min
(
1, (c2

)
)


= (a, b, c)

= V.

�

Theorem 10. (1) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and V−e =

{min (Ae) , min (Be) , max (Ce)}, V+
e = {max (Ae) , min (Be) , min (Ce)}. Then we have,

V−e ≤ S HFYWA (V1,V2, ...Vn) ≤ V+
e .
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(2) Suppose Ve = {Ae, Be,Ce} & V∗e =
{
A∗e, B

∗
e,C

∗
e
}
∈ S HFS (e ∈ N) . If Ae ≥ A∗e, Be ≤ B∗e and Ce ≤ C∗e ,

then
S HFYWA (V1,V2, ...Vk) ≤ S HFYWA

(
V∗1 ,V

∗
2 , ...V

∗
n
)
.

Definition 15. Suppose Ve = {Ae, Be,Ce} ∈ S HFS (e ∈ N) . Then, Yager order weighted averaging
aggregation operators for SHFNs are stated as below;

S HFYOWG (V1,V2, ...Vk) =
(
Vr(1)

)δ1 ⊕
(
Vr(2)

)δ2 ⊕ ... ⊕
(
Vr(1)

)δ1

=

k∏
e=1

(
Vr(e)

)δe

where r (e) is represented the order according to (r (1) , r (2) , r (3) , ..., r (k)) and (δ1, δ2, ...δk)T denote
the weighted values of (V1,V2, ...Vk) such that δe ≥ 0;

∑k
e=1 δe = 1.

Theorem 11. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and δ = (δ1, δ2, ...δk)T is
weight information of (V1,V2, ...Vk) such that δe ≥ 0;

∑k
e=1 δe = 1. Then, SHFYOWG aggregation

operator is a mapping αk → α such that;

S HFYOWG (V1,V2, ...Vk) =

k∏
e=1

(
Vr(e)

)δe

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
1 −min

(
1,

(∑k
e=1 δe(1 − a2

r(e))
µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

r(e))
µ
)) 1

µ
,√

min
(
1,

(∑k
e=1 δec

2µ
r(e)

)) 1
µ


(3.8)

Theorem 12. (1) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) such that Ve = V. Then

S HFYOWG (V1,V2, ...Vk) = V.

(2) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and V−e =

{min (Ae) , min (Be) , max (Ce)}, V+
e = {max (Ae) , min (Be) , min (Ce)}. Then we have,

V−e ≤ S HFYOWG (V1,V2, ...Vn) ≤ V+
e .

(3) Suppose Ve = {Ae, Be,Ce} & V∗e =
{
A∗e, B

∗
e,C

∗
e
}
∈ S HFS (e ∈ N) . If Ae ≥ A∗e, Be ≤ B∗e and Ce ≤ C∗e ,

then
S HFYOWG (V1,V2, ...Vk) ≤ S HFYOWG

(
V∗1 ,V

∗
2 , ...V

∗
k
)
.

Definition 16. Suppose Ve = {Ae, Be,Ce} ∈ S HFS (e ∈ N) . Then, Yager hybrid weighted geometric
aggregation operators for SHFNs are stated as below;

S HFYHWG (V1,V2, ...Vk) =
(
V ′r(1)

)δ1
⊗

(
V ′r(1)

)δ2
⊗ ...

(
V ′r(k)

)δk
(3.9)
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=

k∏
e=1

(
V ′r(e)

)δe

where r (e) is represented the order according to (r (1) , r (2) , r (3) , ..., r (k)) , such that
V ′r(e)

(
V ′r(e) = kδeVr(e) : e ∈ N

)
and (δ1, δ2, ...δk)t is weight, associated weight information respectively

of (V1,V2, ...Vk) such that δe ≥ 0;
∑k

e=1 δe = 1.

Theorem 13. Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and δ = (δ1, δ2, ...δk)T denote
the weighted values of (V1,V2, ...Vk) such that δe ≥ 0;

∑k
e=1 δe = 1. Then, SHFYHWG aggregation

operator is a mapping αk → α such that;

S HFYHWG (V1,V2, ...Vk) =

k∏
e=1

(
V ′r(e)

)δe

=
⋃

ae∈Ae,be∈Be,ce∈Ce



√
1 −min

(
1,

(∑k
e=1 δe(1 − a/2r(e))

µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b/2r(e))

µ
)) 1

µ
,√

min
(
1,

(∑k
e=1 δec

/2µ
r(e)

)) 1
µ


(3.10)

Theorem 14. (1) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) such that Ve = V. Then

S HFYHWG (V1,V2, ...Vk) = V.

(2) Suppose Ve = {Ae, Be,Ce} is a SHFS (e ∈ N) , (e = 1, 2, ...k) and V−e =

{min (Ae) , min (Be) , max (Ce)}, V+
e = {max (Ae) , min (Be) , min (Ce)}. Then we have,

V−e ≤ S HFYHWG (V1,V2, ...Vn) ≤ V+
e .

(3) Suppose Ve = {Ae, Be,Ce} & V∗e =
{
A∗e, B

∗
e,C

∗
e
}
∈ S HFS (e ∈ N) . If Ae ≥ A∗e, Be ≤ B∗e and Ce ≤ C∗e ,

then
S HFYHWG (V1,V2, ...Vk) ≤ S HFYHWG

(
V∗1 ,V

∗
2 , ...V

∗
k
)
.

4. Algorithm for decision making problems

We develop a technique for dealing with uncertainty in decision making problems under
the spherical hesitant fuzzy environment. Suppose a DM problem with g possible alternatives{
V1,V2, ......,Vg

}
and {T1,T2, ....,Th} denote the set of attributes with weighted values (δ1, δ2, ...δh)t such

that δh ∈ [0, 1],
∑h

e=1 δe = 1. Let
{
D̊1, D̊2, ...., D̊ ̂

}
be a set of decision makers (DMs) and (η1, η2, ...., η ̂)T

be DMs weights such that ηs ∈ [0, 1],
∑ ̂

s=1 ηs = 1. The expert assessment matrix is defined as follows:

(A11(e), B11(e),C11(e)) (A12(e), B12(e),C12(e)) · · · (A1h(e), B1h(e),C1h(e))
(A21(e), B21(e),C21(e)) (A22(e), B22(e),C22(e)) · · · (A2h(e), B2h(e),C2h(e))
(A31(e), B31(e),C31(e)) (A32(e), B32(e),C32(e)) · · · (A3h(e), B3h(e),C3h(e))

...
...

. . .
...(

Ag1(e), Bg1(e),Cg1(e)
) (

Ag2(e), Bg2(e),Cg2(e)
)
· · ·

(
Agh(e), Bgh(e),Cgh(e)

)


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where
(
Agh(e), Bgh(e),Cgh(e)

)
∈ [0, 1], denoted the PMD, NeMD and NMD subject the condition

0 ≤
(
a+)2

+
(
b+)2

+
(
c+)2
≤ 1,∀e ∈ N,

such that
a+ =

⋃
a∈A(e)

max{a}, b+ =
⋃

b∈B(e)

max{b}, and c+ =
⋃
c∈C(e)

max{c}.

Step-1 Construct the expert evaluation matrix (R) ̂

(
A ̂

11(e), B ̂

11(e),C ̂

11(e)
) (

A ̂

12(e), B ̂

12(e),C ̂

12(e)
)
· · ·

(
A ̂

1h(e), B ̂

1h(e),C ̂

1h(e)
)(

A ̂

21(e), B ̂

21(e),C ̂

21(e)
) (

A ̂

22(e), B ̂

22(e),C ̂

22(e)
)
· · ·

(
A ̂

2h(e), B ̂

2h(e),C ̂

2h(e)
)(

A ̂

31(e), B ̂

31(e),C ̂

31(e)
) (

A ̂

32(e), B ̂

32(e),C ̂

32(e)
)
· · ·

(
A ̂

3h(e), B ̂

3h(e),C ̂

3h(e)
)

...
...

. . .
...(

A ̂

g1(e), B ̂

g1(e),C ̂

g1(e)
) (

A ̂

g2(e), B ̂

g2(e),C ̂

g2(e)
)
· · ·

(
A ̂

gh(e), B ̂

gh(e),C ̂

gh(e)
)


where ̂ denotes the number of experts.

Step-2 Make the decision matrix normalized (L) ̂ . Where

(L) ̂ =


(
A ̂

gh(q), B ̂

gh(q),C ̂

gh(q)
)

i f Benefit type criteria(
C ̂

gh(q), B ̂

gh(q), A ̂

gh(q)
)

i f Cost type criteria

Step-3 To create the aggregate matrix, combine the individual decision matrices using the spherical
hesitant fuzzy aggregation operators;

(A11(e), B11(e),C11(e)) (A12(e), B12(e),C12(e)) · · · (A1h(e), B1h(e),C1h(e))
(A21(e), B21(qe),C21(e)) (A22(e), B22(e),C22(e)) · · · (A2h(e), B2h(e),C2h(e))
(A31(e), B31(e),C31(e)) (A32(e), B32(e),C32(e)) · · · (A3h(e), B3h(e),C3h(e))

...
...

. . .
...(

Ag1(e), Bg1(e),Cg1(e)
) (

Ag2(e), Bg2(e),Cg2(e)
)
· · ·

(
Agh(e), Bgh(e),Cgh(e)

)


Step-4 Using the developed spherical hesitant fuzzy Yager aggregation operators, we find out the

aggregated spherical hesitant fuzzy decision matrix.

Step-5 Calculate the score of all the aggregated values (according to Definition 7).

Step-6 Rank the alternatives Ve (e = 1, 2, ...g) and choose the best one with the highest score value.

4.1. Illustrative example

In this part, we look at the results of the established MAGDM technique using a mathematical
example and compare them to one of the existing MAGDM techniques.

Parkinson’s disease (PD) is a multi-system neurodegenerative disease that damages the brain
steadily. symptoms include muscle weakness, limb tremor, and poor balance, which all worsen over
time. The available therapies are aimed at improving the quality of life by addressing the symptoms.
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Apart from medication, people with PD can improve their health and well-being, maintain physical
function, reduce symptoms, and improve their quality of life in a variety of ways. Regular exercise, a
balanced diet, keeping hydrated, and having enough sleep are among the most important of these. But
what are alternative therapies? Integrative treatments, such as yoga, massage, dietary supplements, and
multiple movement exercises, have sparked years of study to see whether they can help with PD care.
Consider the following four integrative therapies V = {V1,V2,V3,V4}.

Tai Chi (V1):

Since this type of exercise improves balance and coordination, it makes sense that it will be
beneficial to PD patients. Tai chi improved balance and flexibility in people with mild Parkinson’s
disease, according to a 2012 study of three types of exercise: resistance training, stretching, and tai
chi.

Yoga (V2) :

Yoga has been shown to help people with PD improve their flexibility and balance. According to
a 2012 report, yoga can improve mobility, balance, strength, and endurance in people with movement
disorders like Parkinson’s disease if it’s tailored to their needs. It can also help you sleep better and
improve your mood.

Nutritional Supplements (V3) :

It’s possible you’ve heard that the antioxidant coenzyme Q10, or Co-Q10, will help with Parkinson’s
disease. The National Institute of Neurological Disorders and Stroke, on the other hand, halted a review
into the efficacy of Co-Q10 in 2011 when it became apparent that the reported preventive effects were
no different from a placebo.

Calcium is one supplement that may be beneficial for people with PD, owing to the fact that
certain calcium-rich foods (such as dairy products) are often full of protein, which may interfere with
medication absorption.

Acupuncture (V4) :

Acupuncture is a common practice in traditional Chinese medicine, and its basic premise is that
simulating points along the body’s meridians, or energy channels, will relieve pain and provide other
benefits. As a result, it’s widely used in China and other countries to treat PD.

On the basis of above four alternatives the health expert will select the best integrative therapy
for PD patients. Let the set of four alternatives is V = {V1,V2,V3,V4}. Through consulting experts,
the following four attributes are taken into account for reliable modelling the properties of alternatives,
which are displayed as: T = {T1,T2,T3,T4}. The weights of the attributes specified by the professionals
are (0.2, 0.1, 0.3, 0.4)t with µ = 2.
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Step-1 The skilled assessment data in the form of SHYFSs contains in Table 1:

Table 1. Expert evaluation information.
T1 T2

V1 {(0.29, 0.36, 0.39) , (0.14, 0.12, 0.41, )} {(0.31, 0.30, 0.46)}
V2 {(0.21, 0.19, 0.35)} {(0.47, 0.37, 0.56) , (0.23, 0.16, 0.32)}
V3 {(0.27, 0.15, 0.59)} {(0.30, 0.25, 0.35)}
V4 {(0.41, 0.27, 0.52)} {(0.47, 0.23, 0.52)}

T3 T4

V1 {(0.42, 0.29, 0.65)} {(0.30, 0.29, 0.45)}
V2 {(0.40, 0.25, 0.45)} {(0.46, 0.19, 0.65)}
V3 {(0.37, 0.27, 0.47) , (0.57, 0.22, 0.74)} {(0.39, 0.36, 0.48)}
V4 {(0.41, 0.22, 0.49)} {(0.38, 0.14, 0.52) , (0.16, 0.21, 0.46)}

Step-2 Normalized spherical hesitant fuzzy yager decision matrix are calculated as shown in Table 2:

Table 2. Normalized spherical hesitant fuzzy Yager decision matrix.
T1 T2

V1 {(0.39, 0.36, 0.29) , (0.41, 0.12, 0.14)} {(0.46, 0.30, 0.31)}
V2 {(0.35, 0.19, 0.21)} {(0.56, 0.37, 0.47)}, (0.32, 0.16, 0.23)
V3 {(0.59, 0.15, 0.27)} {(0.35, 0.25, 0.30)}
V4 {(0.52, 0.27, 0.41)} {(0.52, 0.23, 0.47)}

T3 T4

V1 {(0.42, 0.29, 0.65)} {(0.45, 0.29, 0.30)}
V2 {(0.40, 0.25, 0.45)} {(0.65, 0.19, 0.46)}
V3 {(0.37, 0.27, 0.47) , (0.57, 0.22, 0.74)} {(0.48, 0.36, 0.39)}
V4 {(0.41, 0.22, 0.49)} {(0.52, 0.14, 0.38) , (0.46, 0.21, 0.16)}

Step-3(a) In this step, we use the suggested list of SHF Yager AOs to measure the aggregate overall
preference values of every option when the criteria weight value is (0.2,0.1,0.3,0.4)T. µ = 2
Case-1: Using S HFYWA aggregation operator

S HFYWA (V1,V2, ...Vk) =
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑k
e=1 δea

2µ
e

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2

e)µ
)) 1

µ


Using the SHFYWA aggregation operator, the total preference values of each option are enclosed
in Table 3:

Table 3. Total preference value (S HFYWA) .
V1 {(0.5302, 0.3059, 0.2912) , (0.5320, 0.2651, 0.2676)}
V2 {(0.5574, 0.2315, 0.4014) , (0.5443, 0.2071, 0.3795)}
V3 {(0.4982, 0.2891, 0.3534) , (0.4982, 0.2759, 0.4195)}
V4 {(0.5116, 0.2049, 0.4045) , (0.4889, 0.2280, 0.3365)}
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S c (V) =
⋃

a∈A,b∈B,c∈C

{
1

l (A)

∑
aV −

1
l (B)

∑
bV −

1
l (C)

∑
cV

}
Step-4(a) Now, every option’s score of combined total preference values is contained in Table 4:

Table 4. Score values.
Operators S c (V1) S c (V2) S c (V3) S c (V4)
S HFYWA −0.0338 −0.0589 −0.1707 −0.0867

Step-5(a) Rank the alternatives Vq(q = 1, 2, 3, 4) is enclosed in Table 5:

Table 5. Ranking of the alternatives.
Operators Score Best Alternative
S HFYWA S c (V1) > S c (V2) > S c (V4) > S c (V3) V1

Case-2: For S HFYOWA aggregation operator
Using the S HFYOWA aggregation operator, the total preference values of each option are
enclosed in Table 6:

Table 6. Total preference value (S HFYOWA) .
V1 {(0.4791, 0.3089, 0.3156) , (0.4814, 0.2683, 0.3297)}
V2 {(0.5369, 0.2757, 0.4188) , (0.4881, 0.2083, 0.3524)}
V3 {(0.4839, 0.2855, 0.3399) , (0.5318, 0.2811, 0.3633)}
V4 {(0.5172, 0.2272, 0.4288) , (0.5067, 0.2381, 0.3971)}

Step-4(b) Now, every option’s score of combined total preference values is contained in Table 7:

Table 7. Score values.
Operators S c (V1) S c (V2) S c (V3) S c (V4)
S HFYOWA 0.1987 −0.1151 −0.1245 −0.1336

Step-5(b) Rank the alternatives Vq(q = 1, 2, 3, 4) is enclosed in Table 8:

Table 8. Ranking of the alternatives.
Operators Score Best Alternative
S HFYOWA S c (V1) > S c (V2) > S c (V3) > S c (V4) V1

Case-3: For S HFYHWA aggregation operator
Using the S HFYHWA aggregation operator, the total preference values of each option are
enclosed in Table 9:

Table 9. Total preference value (S HFYHWA) .
V1 {0.5111, 0.3015, 0.3294} , {0.5120, 0.2814, 0.3189}
V2 {0.5459, 0.2886, 0.4258} , {0.4814, 0.1992, 0.3366}
V3 {0.4753, 0.2737, 0.3306} , {0.5253, 0.2691, 0.3545}
V4 {0.5116, 0.2285, 0.4317} , {0.5062, 0.2337, 0.4161}
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Step-4(c) Now, every option’s score of combined total preference values is contained in Table 10:

Table 10. Score values.
Operators S c (V1) S c (V2) S c (V3) S c (V4)
S HFYHWA −0.1040 −0.1114 −0.1136 −0.1461

Step-5(c) Rank the alternatives Vq(q = 1, 2, 3, 4) is enclosed in Table 11:

Table 11. Ranking of the alternatives.
Operators Score Best Alternative
S HFYHWA S c (V1) > S c (V2) > S c (V3) > S c (V4) V1

5. Comparative analysis

In this section, we compared the suggested Yager aggregation operators-based decision making
approach to the current system of SHF aggregation operators based on sine trigonometric. For this,
we apply the SHF intelligence system. Naeem et al. [30] in Table 12. The attribute weight information
is (0.2, 0.4, 0.1, 0.3)T .

Step-1 The expert evaluation information [30] in the form of SHFSs is enclosed in Table 12:

Table 12. Expert evaluation data.
V1 V2 V3 V4

G1 {(0.3, 0.2, 0.4)} {(0.2, 0.6, 0.5)} {(0.1, 0.5, 0.3)}
{

(0.1, 0.5, 0.6) ,
(0.3, 0.4, 0.5)

}
G2 {(0.1, 0.5, 0.2)} {(0.2, 0.3, 0.4)}

{
(0.1, 0.1, 0.6) ,
(0.3, 0.1, 0.4)

}
{(0.1, 0.4, 0.2)}

G3 {(0.4, 0.1, 0.5)}
{

(0.1, 0.1, 0.6) ,
(0.3, 0.2, 0.4)

}
{(0.4, 0.2, 0.5)} {(0.4, 0.2, 0.5)}

G4 {(0.2, 0.2, 0.3)} {(0.1, 0.2, 0.3)} {(0.2, 0.4, 0.3) , (0.4, 0.4, 0.6)} {(0.2, 0.4, 0.3)}

Step-2 The enclosed expert assessment data has been normalized in Table 13:

Table 13. Normalized expert evaluation information.
V1 V2 V3 V4

G1 {(0.4, 0.2, 0.3)} {(0.5, 0.6, 0.2)} {(0.3, 0.5, 0.1)}
{

(0.6, 0.5, 0.1) ,
(0.5, 0.4, 0.3)

}
G2 {(0.2, 0.5, 0.1)} {(0.4, 0.3, 0.2)}

{
(0.6, 0.1, 0.1) ,
(0.4, 0.1, 0.3)

}
{(0.2, 0.4, 0.1)}

G3 {(0.5, 0.1, 0.4)}
{

(0.6, 0.1, 0.1) ,
(0.4, 0.2, 0.3)

}
{(0.5, 0.2, 0.4)} {(0.5, 0.2, 0.4)}

G4 {(0.3, 0.2, 0.2)} {(0.3, 0.2, 0.1)} {(0.3, 0.4, 0.2) , (0.6, 0.4, 0.4)} {(0.3, 0.4, 0.2)}

Step-3 This task makes use of the SHF information form.

Step-4 The weight values of the experts are given in this case study are (0.2, 0.4, 0.1, 0.3)T .
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Step-5 Now, using SHFYWA aggregation operators, under weight knowledge, we calculate the
aggregated values of each alternative as follows:

S HFYWA (V1,V2, ...Vk) =
⋃

ae∈Ae,be∈Be,ce∈Ce



√
min

(
1,

(∑k
e=1 δea

2µ
e

)) 1
µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − b2

e)µ
)) 1

µ
,√

1 −min
(
1,

(∑k
e=1 δe(1 − c2

e)µ
)) 1

µ


collective overall preference values of each alternative using S HFYWA aggregation operator is
enclosed in Table 14:

Table 14. Total preference value (S HFYWA) .
V1 {0.5140, 0.4928, 0.1939} , {0.4721, 0.4638, 0.2482}
V2 {0.3936, 0.3633, 0.1480} , {0.3415, 0.3633, 0.1723}
V3 {0.5467, 0.1480, 0.3114} , {0.4674, 0.1841, 0.3624}
V4 {0.3000, 0.2934, 0.1670} , {0.3772, 0.2934, 0.1977}

Step-6 Ranking result is enclosed in Table 15:

Table 15. Score values.
Operators S c (V1) S c (V2) S c (V3) S c (V4) Ranking of the alternatives

S T − S HFWA [30] 0.4505 0.2463 0.4983 0.2332 S c (V3) > S c (V1) > S c (V2) > S c (V4)

S HFYWA −0.2063 −0.1559 0.0041 −0.1371 S c (V3) > S c (V4) > S c (V2) > S c (V1)

5.1. Discussion

We compared proven Yager function-based aggregation operators to the known sine trigonometric
SHF aggregation operators presented in [30], demonstrating their ability to manage uncertainty in
real-world DMPs. Because of its generalized form, this approach covers the valuation spaces of
PyHFSs, PFSs, and SFSs, which is an amazing feature. The findings in Table 15 show that the
suggested decision-making strategy is accurate and effective in addressing ambiguity in decision-
making problems. Because of its generalized form, this approach covers the valuation spaces of
PyHFSs, PFSs, and SFSs, which is an amazing feature. The findings in Table 15 show that the
suggested decision-making strategy is accurate and effective in addressing ambiguity in decision-
making problems. We may apply our approach in a variety of situations; in this case, we’re using
it to find the finest hotel. The suggested DM technique is simple and basic, and it may be applied to a
variety of outcomes with ease.

6. Conclusions

This research presents a robust decision-supporting model that incorporates social data to
aid Emergency Response Systems. Unlike traditional decision support modelling techniques,
the established technique completely implements social data, such as online reviews and social
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interactions, and it considers the interconnection among parameters by using innovative SHFYAOs.
Furthermore, the proposed research introduced a list of new operation laws generated by utilizing
Yager function to create a list of SHFYAOs to address ambiguity in real-world DMPs. To solve
multi-attribute DMPs, a specialized DM algorithm is created. The suggested SHFYAOs are used
in this research to look at a case study of an Emergency Response System. In the comparison
analysis, the proposed Emergency Program Selection strategy was found to be more suitable and
effective than the comparative methods. We used the Yager t-norms and conorms in this paper
and identified six aggregation operators for SHFSs, including SHFYWA, SHFYOWA, SHFYHWA,
SHFYWG, SHFYOWG, and SHFYHWG.

We have spoken about how to solve realistic MADM problems in the Emergency Response System
based on various attributes. To compile the relevant data for each alternative, we used the SHFYWAA,
SHFYOWA, and SHFYHWA operators in this problem. The related results were then obtained using
score functions. We were able to compare the value of each alternative according to such operators.
We discovered that using the operators SHFYWAA, SHFYOWA, and SHFYHWA yielded the same
results. As a result, our existing models for dealing with spherical hesitant fuzzy MCGDM problems
are more common and versatile than other current methods.
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