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in a sublinear expectation (Ω,H , Ê) with a capacity V under Ê. In this paper, under some suitable
conditions, I show that a general form of precise asymptotics for complete convergence holds under
sublinear expectation. It can describe the relations among the boundary function, weighted function,
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expectation space. The results also generalize the known results obtained by Xu and Cheng [34].
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1. Introduction

Recently, limit theorems for sublinear expectations have raised a large number of issues of interest,
because that the sublinear expectation space has advantages of modelling the uncertainty of
probability and distribution. Classical limit theorems only hold in the case of model certainty.
However, in practice, such model certainty assumption is not realistic in many areas of applications
because the uncertainty phenomena cannot be modeled using model certainty. Motivated by
modelling uncertainty in practice, Peng [1] introduced a new notion of sublinear expectation. As an
alternative to the traditional probability/expectation, capacity/sublinear expectation has been studied
in many fields such as statistics, finance, economics, and measures of risk (see Denis and Martini [2],
Gilboa [3], Marinacci [4], Peng [5] etc.). Peng [1, 6, 7] introduced the reasonable framework of the
sublinear expectation of random variables in a general function space by relaxing the linear property
of the classical linear expectation to the subadditivity and positive homogeneity. And sublinear
expectation is a natural extension of the classical linear expectation. Later on, more and more limit
theorems under sublinear expectation space have been established, which generalize the
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corresponding fundamental, important limit theorems in probability and statistics. Zhang [8–11]
proved the central limit theorem and Donskers invariance principle, the exponential inequalities ,
Rosenthals inequalities and Lindeberg’s central limit theorems for martingale like sequences under
sublinear expectation. Chen [12] proved strong laws of large numbers for sublinear expectation. Wu
and Jiang [13] obtained a strong law of large numbers and Chovers law of the iterated logarithm under
sublinear expectation. Xu and Zhang [14, 15] studied three series theorem and the law of logarithm
for arrays of random variables under sublinear expectation. Song [16] obtained normal approximation
by Stein’s method under sublinear expectation. Liu and Zhang [17, 18] established the central limit
theorem and the law of iterated logarithm for linear processes generated by independent identically
distributed random variables under sublinear expectation. For more results about limit theorems under
sublinear expectation, the interested reader could refer to the studies of Chen et al. [19], Wu
et al. [20], Feng [21], Fang et al. [22], Zhang [23], Kuczmaszewska [24], Feng et al. [25], Guo and
Li [26], and references therein.

Let {X, Xn, n ≥ 1} be a sequence of identically distributed random variables with EX = 0 and
EX2 < ∞ in a traditional probability space (Ω,F , P) and define the partial sums S n =

∑n
i=1 Xi for

n ≥ 1. Hsu and Robbins [27] introduced the concept of complete convergence, since then there have
been extensions in several directions. One of them is to discuss the precise rate and limit value of
∞∑

n=1
ϕ(n)P{|S n| ≥ εg(n)} as ε ↓ a, a ≥ 0, where ϕ(x) and g(x) are the positive functions defined on

[0,∞). We call ϕ(x) and g(x) weighted function and boundary function. A first result in this direction
was Heyde [28], who proved that

lim
ε↓0

ε2
∞∑

n=1

P{|S n| ≥ εn} = EX2, (1.1)

where EX = 0 and EX2 < ∞. For analogous results in more general case, see Spătaru [29], Gut and
Spătaru [30, 31]. The research in this field are called the precise asymptotics. Recently, some results
on precise asymptotics under sublinear expectation have been obtained. Wu [32] established precise
asymptotics for complete integral convergence under sublinear expectation. Zhang [33] established the
Heyde’s theorem under the sublinear expectation. Xu and Cheng [34] obtained the precise asymptotics
in the law of the iterated logarithm under sublinear expectations.

The purpose of this paper is to establish the general form of precise asymptotics for complete
convergence under sublinear expectation. The paper is organized as follows: In Section 2, some basic
concepts and related lemmas under sublinear expectation which are used in this paper are given. In
Section 3, the main result of this paper is sated. The proofs of main results are presented in Sections 4
and 5. The conclusion part is listed in Section 6.

Throughout the paper, C denotes a positive constant, which may take different values whenever
it appears in different expressions, an ∼ bn stands for lim

n→∞

an
bn

= 1, [x] denotes the integer part of x,
log x = ln{max{e, x}}, log log x = ln ln{max{ee, x}}.

2. Preliminaries

Let us recall some notations on sublinear expectation space. More detailed information are referred
to Peng [1, 6, 7]. Let (Ω,F ) be a given measurable space. Let H be a linear space of real functions
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defined on (Ω,F ) such that if X1, X2, ..., Xn ∈ H then ϕ(X1, X2, ..., Xn) ∈ H for each ϕ ∈ Cl,Lip(Rn)
where ϕ ∈ Cl,Lip(Rn) denotes the linear space of local Lipschitz continuous functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ c(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ Rn,

for some c > 0, m ∈ N depending on ϕ. H contains all IA where A ∈ F . I also denote ϕ ∈ Cb,Lip(Rn)
as the linear space of bounded Lipschitz continuous functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ c|x − y|, ∀x, y ∈ Rn,

for some c > 0.

Definition 2.1. A function Ê : H → [−∞,+∞] is said to be a sublinear expectation if it satisfies for
∀X,Y ∈ H ,

(1) Monotonicity: X ≥ Y implies Ê[X] ≥ Ê[Y].
(2) Constant preserving: Ê[c] = c, ∀c ∈ R.
(3) Subadditivity: Ê[X + Y] ≤ Ê[X] + Ê[Y].
(4) Positive homogeneity: Ê[λX] = λÊ[X], ∀λ ≥ 0.

The triple (Ω,H , Ê) is called a sublinear expectation space. Give a sublinear expectation Ê, let us
denote the conjugate expectation Ê of Ê by Ê[X] := −Ê[−X], ∀X ∈ H .

Remark 2.2. (i) The sublinear expectation Ê[·] satisfies translation invariance: Ê[X + c] = Ê[X] +

c, ∀c ∈ R.
(ii) From the definition, it is easily shown that Ê[X] ≤ Ê[X] and Ê[X−Y] ≥ Ê[X]− Ê[Y], ∀X,Y ∈ H

with Ê[Y] being finite.

Next, I introduce the capacities corresponding to the sublinear expectation.

Definition 2.3. A set function V: F → [0, 1] is called a capacity, if
(1) V(∅) = 0, V(Ω) = 1.
(2) V(A) ≤ V(B), ∀A ⊂ B, A, B ⊂ F .
It is called to be subadditive if V(A ∪ B) ≤ V(A) + V(B) for all A, B ∈ F with A ∪ B ∈ F .
A sublinear expectation Ê could generate a pair (V,V) of capacity denoted by
V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H}, V(A) = 1 − V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then

V(A) := Ê[IA],

V(A) := Ê[IA], i f IA ∈ H ,

Ê[ f ] ≤ V(A) ≤ Ê[g], Ê[ f ] ≤ V(A) ≤ Ê[g], if f ≤ IA ≤ g, f , g ∈ H . (2.1)

In addition, a pair (CV, CV) of the Choquet integrals/expecations denoted by

CV[X] =

∫ ∞

0
V(X ≥ t)dt +

∫ 0

−∞

[V(X ≥ t) − 1]dt,
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with V being replaced by V andV, respectively. If Ê is countably subadditive or

Ê[|X|p] = lim
c→∞
Ê[(|X| ∧ c)p]

then

Ê[|X|p] ≤ CV(|X|p) < ∞

for all p > 0 (See Lemma 4.5 (iii) of Zhang [9]).

Definition 2.4. (a) A sublinear expectation Ê : H → [−∞,+∞] is called to be countably subadditive
if it satisfies

Ê[X] ≤ Σ∞n=1Ê[Xn],

whenever X ≤ Σ∞n=1Xn, X, Xn ∈ H and X ≥ 0, Xn ≥ 0, n = 1, 2, ...
(b) It is called to be continuous if it satisfies
b1. Continuity from below: Ê[Xn] ↑ Ê[X], if Xn ↑ X, where Xn, X ∈ H .
b2. Continuity from above: Ê[Xn] ↓ Ê[X], if Xn ↓ X, where Xn, X ∈ H .
(c) A function V: F → [0, 1] is called to be countably subadditive if

V
( ∞⋃

n=1

An

)
≤ Σ∞n=1V(An), ∀An ∈ F .

(d) A capacity V: F → [0, 1] is called a continuous capacity if it satisfies
d1. Continuity from below: V(An) ↑ V(A), if An ↑ A, where An, A ∈ F .
d2. Continuity from above: V(An) ↓ V(A), if An ↓ A, where An, A ∈ F .

It is obvious that a continuous subadditive capacity V is countably subadditive.
Peng [7] introduced the concept of independent and identically distributed (IID) random variable

and G-normal distribution under sublinear expectation. The definitions are as follows.

Definition 2.5. (i) (Identical distribution) Let X1 and X2 be two n-dimensional random vectors defined
respectively in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically
distributed, denoted by X1

d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite. A sequence of random variables {Xn, n ≥ 1} is said to be
identically distributed if Xi

d
= X1 for each i ≥ 1.

(ii) (Independence) In a sublinear expectation space (Ω,H , Ê), a random vector
Y = (Y1, ...,Yn)(Yi ∈ H) is said to be independent to another random vector X = (X1, ..., Xm)(Xi ∈ H)
under Ê if for each test function ϕ ∈ Cl,Lip(Rm × Rn) we have

Ê[ϕ(X,Y)] = Ê[Ê[ϕ(x,Y)]|x=X],

whenever ϕ(x) := Ê[|ϕ(x,Y)|] < ∞ for all x and Ê[|ϕ(x)|] < ∞.
(iii) (IID random variables) A sequence of random variables {Xn, n ≥ 1} is said to be independent

and identically distributed (IID), if Xi
d
= X1 and Xi+1 is independent to (X1, ..., Xi) for each i ≥ 1.
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Definition 2.6. (G-normal distribution) A random variable ξ ∈ H under sublinear expectation Ê with
σ2

= Ê[ξ2], σ2 = −Ê[−ξ2] is called G-normal distribution, denoted by N(0; [σ2, σ2]), if for any
function ϕ ∈ Cl,Lip(R), u(t.x) := Ê[ϕ(x +

√
tξ)], (t, x) ∈ [0,∞) × R, then u is the unique viscosity

solution of PDE:  ∂tu −G(∂xxu) = 0,
u|t=0 = ϕ,

where G(α) = 1
2 (σ2α+ − σ2α−) and α+ := max(α, 0), α− := (−α)+.

In the following, some useful lemmas are given. Lemma 2.7 (Markov inequality) in sublinear
expectation space (Ω,H , Ê) was established by Zhang [9].

Lemma 2.7. (Markov inequality) Let {Xn, n ≥ 1} be a sequence of independent random variables on
the sublinear expectation space (Ω,H , Ê), and denote S k = X1 + X2 + ...+ Xk, S 0 = 0. If both the upper
expectation Ê[Xk] and the lower expectation Ê[Xk] are zeros, k = 1, 2, ... , then

V(|S n| ≥ x) ≤ C
∑n

k=1 Ê[|Xk|
2]

x2 , ∀ x > 0.

The last lemma obtained by Wu [32] shows the uniform convergence rate of Berry-Esseen ineqality.

Lemma 2.8. Assume that {Xn, n ≥ 1} is a sequence of independent and identically distributed random
variables with Ê[X1] = Ê[−X1] = 0 and limc→∞ Ê[(X2

1 − c)+] = 0. Denote S n =
∑n

k=1 Xk, σ
2

=

Ê[X2
1], σ2 = Ê[X2

1]. Suppose that Ê is continuous and set

∆n(x) = V(
|S n|
√

n
≥ x) − V(|ξ| ≥ x), ξ ∼ N(0; [σ2, σ2]) under Ê.

Then
∆n = sup

x≥0
|∆n(x)| → 0, as n→ ∞.

3. Main results

At first, I give the following assumptions on boundary functions and weighted functions:
(A1) Let g(x) be a positive and differentiable function defined on [n0,∞), which is strictly increasing

to∞.
(A2) ρ(x) = g′(x)/gt(x) is monotone for t < 1, and if ρ(x) is monotone nondecreasing, we assume

limn→∞ ρ(n + 1)/ρ(n) = 1.
(A3) ϕ(x) = g′(x)/g(x) is monotone, and if ϕ(x) is monotone nondecreasing, we assume

limn→∞ ϕ(n + 1)/ϕ(n) = 1.
The following are main results.

Theorem 3.1. Let {X, Xn, n ≥ 1} be a sequence of independent and identically distributed random
variables in a sublinear expectation space (Ω,H , Ê) with Ê[X] = Ê[−X] = 0 and σ2

= Ê[X2] <
∞, σ2 = Ê[X2], S n =

∑n
k=1 Xk. Suppose that Ê is continuous and limc→∞ Ê[(X2 − c)+] = 0 and

CV(X2) < ∞. Assume that (A1), (A3) hold. Then for any s > 0,

lim
ε↓0

1
− log ε

∞∑
n=n0

ϕ(n)V{
|S n|
√

n
≥ εgs(n)} =

1
s
, (3.1)
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here and later, ξ ∼ N(0; [σ2, σ2]).

Theorem 3.2. Let {X, Xn, n ≥ 1} be a sequence of independent and identically distributed random
variables in a sublinear expectation space (Ω,H , Ê) with Ê[X] = Ê[−X] = 0 and σ2

= Ê[X2] <
∞, σ2 = Ê[X2], S n =

∑n
k=1 Xk. Suppose that Ê is continuous and limc→∞ Ê[(X2 − c)+] = 0 and

CV(X2) < ∞. Assume that (A1), (A2) hold. Then for any s > (1 − t)/2, where t < 1,

lim
ε↓0

ε
1−t

s

∞∑
n=n0

ρ(n)V{
|S n|
√

n
≥ εgs(n)} =

1
1 − t

CV(|ξ|
1−t

s ), (3.2)

here and later, ξ ∼ N(0; [σ2, σ2]).

Remark 3.3. Assumptions (A1)–(A3) are all mild conditions. g(x) = xα, (log x)β, (log log x)γ with
some suitable conditions of α > 0, β > 0, γ > 0 and some others all satisfy these conditions. In the
following, some typical examples are given.

If taking g(n) = n
2−p
2p , s = 1 in Theorem 3.1 with 1 ≤ p < 2, then

Corollary 3.4. For 1 ≤ p < 2,

lim
ε↓0

1
− log ε

∞∑
n=1

1
n
V{
|S n|
√

n
≥ n

2−p
2p } =

2p
2 − p

.

If taking g(n) = log n, s = 1/2 in Theorem 3.1, then

Corollary 3.5.

lim
ε↓0

1
− log ε

∞∑
n=1

1
n log n

V{
|S n|
√

n
≥ ε

√
log n} = 2.

If taking g(n) = (log log n)2, s = d/2 in Theorem 3.1 with d > 0, then

Corollary 3.6. For d > 0,

lim
ε↓0

1
− log ε

∞∑
n=3

1
n log n log log n

V{
|S n|
√

n
≥ ε(log log n)d} =

1
d
.

If taking g(n) = n, s =
2−p
2p , t =

2p−r
p in Theorem 3.2 with 1 ≤ p < r < 2, then

Corollary 3.7. For 1 ≤ p < r < 2,

lim
ε↓0

ε
2(r−p)

2−p

∞∑
n=1

n
r−2p

p V{
|S n|
√

n
≥ εn

2−p
2p } =

p
r − p

CV(|ξ|
2(r−p)

2−p ).

If taking g(n) = log n, s = 1/2, t = −δ in Theorem 3.2 with −1 < δ < 0, then

Corollary 3.8. For −1 < δ < 0,

lim
ε↓0

ε2(1+δ)
∞∑

n=3

(log n)δ

n
V{
|S n|
√

n
≥ ε

√
log n} =

1
1 + δ

CV(|ξ|2(1+δ)).
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If taking g(n) = log log n, s = d, t = 1 − b in Theorem 3.2 with b > 0, d > 0, then

Corollary 3.9. For b > 0, d > 0,

lim
ε↓0

ε
b
d

∞∑
n=3

(log log n)b−1

n log n
V{
|S n|
√

n
≥ ε(log log n)d} =

1
b

CV(|ξ|
b
d ).

Remark 3.10. In fact, Corollary 3.6 and Corollary 3.9 are the Theorem 2 and Theorem 1 from Xu and
Cheng [34] respectively, therefore our results extend the known results.

4. Proof of Theorem 3.1

Set b(ε) = [g−1(ε−r)], where g−1(x) is the inverse function of g(x) and r > 1/s.

Proposition 4.1. Under the conditions of Theorem 3.1, one has

lim
ε↓0

1
− log ε

∞∑
n=n0

ϕ(n)V{|ξ| ≥ εgs(n)} =
1
s
. (4.1)

Proof. At first I discuss the relations between the integral and the series. If ϕ(y) is nonincreasing, then
ϕ(y)V{|ξ| ≥ εgs(y)} is also nonincreasing, thus one can get∫ ∞

n0+1
ϕ(y)V{|ξ| ≥ εgs(y)}dy ≤

∞∑
n=n0+1

ϕ(n)V{|ξ| ≥ εgs(n)} ≤
∫ ∞

n0

ϕ(y)V{|ξ| ≥ εgs(y)}dy,

therefore, by L’Hospital’s rule, one can get

lim
ε↓0

1
− log ε

∞∑
n=n0

ϕ(n)V{|ξ| ≥ εgs(n)} = lim
ε↓0

1
− log ε

∫ ∞

n0

g′(y)
g(y)
V{|ξ| ≥ εgs(y)}dy

= lim
ε↓0

1
− log ε

∫ ∞

g(n0)

1
t
V{|ξ| ≥ εts}dt = lim

ε↓0

1
s

1
− log ε

∫ ∞

εgs(n0)

1
x
V{|ξ| ≥ x}dx

= lim
ε↓0

−gs(n0) · 1
εgs(n0)V{|ξ| ≥ εgs(n0)}

s
1
−1
ε

= lim
ε↓0

1
s
V{|ξ| ≥ εgs(n0)}

=
1
s
V{|ξ| ≥ 0} =

1
s
. (4.2)

If ϕ(y) is nondecreasing, noting limn→∞ ϕ(n + 1)/ϕ(n) = 1, then for any 0 < δ < 1, there exists
n1 = n1(δ), such that ϕ(n+1)/ϕ(n) < 1+δ and ϕ(n)/ϕ(n+1) > 1−δ for n ≥ n1. Then one can conclude

lim
ε↓0

1
− log ε

(1 + δ)−1
∫ ∞

n1+1
ϕ(y)V{|ξ| ≥ εgs(y)}dy

≤ lim
ε↓0

1
− log ε

∞∑
n=n0

ϕ(n)V{|ξ| ≥ εgs(n)}

≤ lim
ε↓0

1
− log ε

(1 − δ)−1
∫ ∞

n1

ϕ(y)V{|ξ| ≥ εgs(y)}dy.
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And then by (4.2), one can get

1
s

(1 + δ)−1 ≤ lim
ε↓0

1
− log ε

∞∑
n=n0

ϕ(n)V{|ξ| ≥ εgs(n)} ≤
1
s

(1 − δ)−1.

Thus (4.1) follows by letting δ ↓ 0. �

Remark 4.2. In the following, without loss of generality, one can assume that ϕ(x) is nonincreasing.
For the other case, the discussion process is similar to that of Proposition 4.1.

Proposition 4.3. Under the conditions of Theorem 3.1, one has

lim
ε↓0

1
− log ε

b(ε)∑
n=n0

ϕ(n) | V{
|S n|
√

n
≥ εgs(n)} − V{|ξ| ≥ εgs(n)} |= 0.

Proof. Noting
b(ε)∑
n=n0

ϕ(n) ∼ −r log ε, then by Lemma 2.8 and Toeplitz’s lemma, one can get

lim
ε↓0

1
− log ε

b(ε)∑
n=n0

ϕ(n) | V{
|S n|
√

n
≥ εgs(n)} − V{|ξ| ≥ εgs(n)}| ≤ lim

ε↓0

1
− log ε

b(ε)∑
n=n0

ϕ(n)∆n = 0.

Thus the proof is completed. �

Proposition 4.4. Under the conditions of Theorem 3.1, one has

lim
ε↓0

1
− log ε

∞∑
n=b(ε)+1

ϕ(n)V{|ξ| ≥ εgs(n)} = 0.

Proof. Since n > b(ε) implies εgs(n) > ε1−rs. Then by the same argument in Proposition 4.1, using
L’Hospital’s rule and note that r > 1/s,

lim
ε↓0

1
− log ε

∞∑
n=b(ε)+1

ϕ(n)V{|ξ| ≥ εgs(n)}

≤ lim
ε↓0

C
− log ε

∫ ∞

εgs(b(ε))

1
x
V{|ξ| ≥ x}dx

≤ lim
ε↓0

C
− log ε

∫ ∞

ε1−rs

1
x
V{|ξ| ≥ x}dx

= lim
ε↓0

−C(1 − rs)ε−rs

ε1−rs V{|ξ| ≥ ε1−rs}
1
−1
ε

=lim
ε↓0

C(1 − rs)V{|ξ| ≥ ε1−rs} = 0.

�

Proposition 4.5. Under the conditions of Theorem 3.1, one has

lim
ε↓0

1
− log ε

∞∑
n=b(ε)+1

ϕ(n)V{
|S n|
√

n
≥ εgs(n)} = 0.
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Proof. By the same argument in Proposition 4.1, Lemma 2.7 (Markov’s inequality), σ2
= Ê[X2] < ∞

and note that r > 1/s > 0, then

lim
ε↓0

1
− log ε

∞∑
n=b(ε)+1

ϕ(n)V{
|S n|
√

n
≥ εgs(n)}

≤ lim
ε↓0

1
− log ε

∞∑
n=b(ε)+1

ϕ(n)
∑n

k=1 Ê[|Xk|
2]

n · ε2g2s(n)

≤ lim
ε↓0

C
− log ε

∞∑
n=b(ε)+1

g′(n)
g(n)

1
ε2g2s(n)

≤ lim
ε↓0

Cε−2

− log ε

∫ ∞

b(ε)

g′(x)
g1+2s(x)

dx

= lim
ε↓0

Cε−2

− log ε

∫ ∞

g(b(ε))

1
y1+2s dy

≤ lim
ε↓0

Cε2rs−2

− log ε
= 0.

�

Proof of Theorem 3.1. Theorem 3.1 will be proved by the Propositions 4.1, 4.3–4.5 and the triangular
inequality directly. �

5. Proof of Theorem 3.2

Set d(ε) = [g−1(Mε−1/s)], where g−1(x) is the inverse function of g(x), M ≥ 1.

Proposition 5.1. Under the conditions of Theorem 3.2, one has

lim
ε↓0

ε1/s−t/s
∞∑

n=n0

ρ(n)V{|ξ| ≥ εgs(n)} =
1

1 − t
CV(|ξ|1/s−t/s).

Proof. At first I discuss the relations between the integral and the series. If ρ(y) is nonincreasing, then
ρ(y)V{|ξ| ≥ εgs(y)} is nonincreasing, hence one has∫ ∞

n0+1
ρ(y)V{|ξ| ≥ εgs(y)}dy ≤

∞∑
n=n0+1

ρ(n)V{|ξ| ≥ εgs(n)} ≤
∫ ∞

n0

ρ(y)V{|ξ| ≥ εgs(y)}dy,

then one can get

lim
ε↓0

ε1/s−t/s
∞∑

n=n0

ρ(n)V{|ξ| ≥ εgs(n)}

= lim
ε↓0

ε1/s−t/s
∫ ∞

n0

ρ(y)V{|ξ| ≥ εgs(y)}dy
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= lim
ε↓0

ε1/s−t/s
∫ ∞

g(n0)

1
ytV{|ξ| ≥ εys}dy

= lim
ε↓0

1
s

∫ ∞

εgs(n0)

1
xt/s−1/s+1V{|ξ| ≥ x}dx

=
1
s

∫ ∞

0

1
xt/s−1/s+1V{|ξ| ≥ x}dx

=
1

1 − t
CV(|ξ|1/s−t/s).

If ρ(y) is nondecreasing, then by limn→∞ ρ(n + 1)/ρ(n) = 1, the proof is similar to that of
Proposition 4.1. Thus Proposition 5.1 is obtained by above steps. �

Proposition 5.2. Under the conditions of Theorem 3.2, one can get

lim
ε↓0

ε1/s−t/s
d(ε)∑
n=n0

ρ(n) | V{
|S n|
√

n
≥ εgs(n)} − V{|ξ| ≥ εgs(n)} |= 0.

Proof. Noting
d(ε)∑
n=n0

ρ(n) ∼ −M1−t

1−t ε
− 1−t

s , then by Lemma 2.8 and Toeplitz’s lemma, the proof is similar to

that of Proposition 4.3, so we omit it here. �

Proposition 5.3. Under the conditions of Theorem 3.2, one has

lim
M→∞

ε1/s−t/s
∞∑

n=d(ε)+1

ρ(n)V{|ξ| ≥ εgs(n)} = 0.

Proof. By the proof of Proposition 5.1, one can get

1
s

∫ ∞

0

1
xt/s−1/s+1V{|ξ| ≥ x}dx =

1
1 − t

CV(|ξ|1/s−t/s) < ∞.

Then

lim
M→∞

ε1/s−t/s
∞∑

n=d(ε)+1

ρ(n)V{|ξ| ≥ εgs(n)}

≤ lim
M→∞

ε1/s−t/s
∫ ∞

d(ε)
ρ(y)V{|ξ| ≥ εgs(y)}dy

≤ lim
M→∞

Cε1/s−t/s
∫ ∞

g(d(ε))

1
ytV{|ξ| ≥ εys}dy

= lim
M→∞

C
∫ ∞

εgs(d(ε))

1
xt/s−1/s+1V{|ξ| ≥ x}dx

≤ lim
M→∞

C
∫ ∞

Ms

1
xt/s−1/s+1V{|ξ| ≥ x}dx = 0.

�
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Proposition 5.4. Under the conditions of Theorem 3.2, one has

lim
M→∞

ε1/s−t/s
∞∑

n=d(ε)+1

ρ(n)V{
|S n|
√

n
≥ εgs(n)} = 0. (5.1)

Proof. By the same argument in Proposition 4.1, Lemma 2.7 (Markov’s inequality), σ2
= Ê[X2] < ∞

and note that s > (1 − t)/2, t < 1, then

lim
M→∞

ε1/s−t/s
∞∑

n=d(ε)+1

ρ(n)V{
|S n|
√

n
≥ εgs(n)}

≤ lim
M→∞

ε1/s−t/s
∞∑

n=d(ε)+1

g′(n)
gt(n)

∑n
k=1 Ê[|Xk|

2]
n · ε2g2s(n)

≤ lim
M→∞

Cε1/s−t/s−2
∫ ∞

d(ε)

g′(x)
g2s+t(x)

dx

≤ lim
M→∞

Cε1/s−t/s−2
∫ ∞

g(d(ε))

1
y2s+t dy

≤ lim
M→∞

CM1−2s−t = 0.

�

Proof of Theorem 3.2. Theorem 3.2 will be proved by the Propositions 5.1–5.4 and the triangular
inequality. �

6. Conclusions

In this paper, using the Markov’s inequality and uniform convergence rate of Berry-Esseen
ineqality, the author establish a general form of precise asymptotics for complete convergence holds
under sublinear expectation. The results extend some precise asymptotics for complete convergence
theorems from the traditional probability space to the sublinear expectation space. The results also
generalize the known results obtained by Xu and Cheng [34]. Recently, the research about statistical
probability convergence and its application is a new trend in probability and statistics, one can refer
to [35–42] and references therein for details, I will consider the statistical probability convergence and
its application under expectation space in future.
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its applications to approximation theorems, J. Nonlinear Convex Anal., 20 (2019), 1777–1792.

36. B. B. Jena, S. K. Paikray, Product of statistical probability convergence and its
applications to Korovkin-type theorem, Miskolc Math. Notes, 20 (2019), 969–984. doi:
10.18514/MMN.2019.3014.

37. H. M. Srivastava, B. B. Jena, S. K. Paikray, Statistical deferred Nörlund summability and Korovkin-
type approximation theorem, Mathematics, 8 (2020), 636. doi: 10.3390/math8040636.

38. B. B. Jena, S. K. Paikray, Product of deferred Cesàro and deferred weighted statistical probability
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