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Abstract: A numerical analysis of the incompressible two-dimensional flow of a non-Newtonian
Williamson fluid is offered by expanding the sheet embedded in a porous medium and combining
it with the Cattaneo-Christov model. Additionally, it is considered that the thermal conductivity
and fluid viscosity both change as a linear function of temperature and an exponential function,
respectively. The velocity, temperature and concentration field are all affected by thermal radiation,
viscous dissipation, fluid variable properties, chemical reactions, and the slip velocity phenomenon.
When the appropriate variables are employed, a system of non-linear, non-dimensional parameters
emerges. The shooting method is used to numerically address this system. To better comprehend the
impact of dimensionless parameters on dimensionless velocity, concentration, and temperature profiles,
physical descriptions are prepared and justified using graphical representations. The values of the local
skin-friction coefficient, the rate of heat transfer, and the rate of mass transfer are also investigated
using tables. The behavior of changing fluid properties, on the other hand, establishes the link between
Williamson fluid flow and the rate of heat mass transfer. According to the results, increasing the slip
velocity and viscosity factors lowers both the Nusselt number and the Sherwood number. Also, due to
an increase in Deborah number and the chemical reaction parameter, the temperature profiles decrease.
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Nomenclature
a coefficient of velocity
cp specific heat at constant pressure
C nanoparticles concentration
C fx skin friction coefficient
Cw concentration of the fluid at the surface
C∞ ambient concentration
D the diffusion coefficient
De1 the thermal Deborah number
De2 the Deborah number of concentration field
Ec the Eckert number
f dimensionless stream function
j the mass flux
k permeability of porous medium
k1 the rate of chemical reaction
k∗ mean absorption coefficient
K chemical reaction parameter
Nux local Nusselt number
Pr Prandtl number
q the heat flux
qr radiative heat flux
R radiation parameter
Re local Reynolds number
S c Schmidt number
S hx the local Sherwood number
T the temperature of the fluid
Tw sheet temperature
T∞ fluid temperature away the sheet
u the component of the velocity in the x− direction
v the component of the velocity in the y− direction
We the local Weissenberg number
x, y Cartesian coordinates

Greek symbols
µ the viscosity coefficient
µ∞ the ambient viscosity
ρ the fluid density
ρ∞ the ambient fluid density
α the viscosity parameter
γ1 the relaxation time for heat flux
γ2 the relaxation time for mass flux
Γ Williamson parameter
κ the fluid thermal conductivity
ε thermal conductivity parameter
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φ dimensionless fluid concentration
θ dimensionless fluid temperature
λ1 slip velocity factor
λ slip velocity parameter
ν the kinematic viscosity
ν∞ the ambient kinematic viscosity
∆ the porous parameter
η similarity variable
σ∗ Stefan-Boltzmann constant

Superscripts
′ differentiation with respect to η
w wall condition
∞ free stream condition

1. Introduction

Fluids can be categorized into Newtonian and non-Newtonian categories based on shear stress,
according to the rheological behavior presented earlier [1]. The linear relationship between stress and
strain identifies the Newtonian type. Physical problems involving Newtonian fluids have piqued the
interest of scientists and engineers in recent years [2–6]. Unlike Newtonian fluids, the non-Newtonian
fluid’s viscosity does not remain constant with the shear rate and can be affected by a variety of
factors. Slurries, foams, polymer melts, emulsions, and solutions are examples of non-Newtonian
fluids. Non-Newtonian fluids have been extensively researched due of their numerous industrial
applications. Furthermore, given the wide range of fluids of interest, heat transfer with
non-Newtonian fluids is a vast topic that cannot be treated in its entirety in this study. Paint and
adhesives industries, nuclear reactors, cooling systems, and drilling rigs are all examples of
non-Newtonian fluid applications. To discover applications in new sectors, non-Newtonian fluid flows
need a full investigation in terms of analytical, experimental, and numerical features. A variety of
models have been used to explain non-Newtonian fluids in a number of works [7–20].
Non-Newtonian fluids were examined further by Megahed [7] and Ahmed and Iqba [8] for the
power-law model; Cortell [9], Midya [10] and Megahed [11] for the viscoelastic model; Ibrahim and
Hindebu [12], Bilal and Ashbar [13] and Abbas and Megahed [14] for the Powell-Eyring model;
Pramanik [15], Rana et al. [16] and Alali and Megahed [17] for the Casson model; and Hayat et
al. [18], Prasad et al. [19] and Megahed [20] for the Maxwell model. It is important to note that this
study considers the viscous dissipation phenomenon. Only if the friction increases to the point where
the fluid temperature field is noticeably warmed should this phenomenon be taken into account. There
is a vast amount of information accessible on the viscous dissipation phenomenon and many fluid
flow models [21–23].

The Cattaneo-Christov heat transfer model is a modified form of the Fourier law that is used to
calculate the characteristics of a heat flux model while considering the relaxation time for heat flux
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dispersion across the physical model [24]. As a result, several researchers [25–30] have conducted
more research on this model’s most essential characteristics. In many industrial and technical sectors,
including natural processes, biomedical engineering, chemical engineering and petroleum engineering,
the Cattaneo-Christov heat transfer model makes the heat transfer mechanism and fluid flow in porous
media crucially important [31]. So, the cooling process, which is one of the benefits, is one of the
most important real life applications of our research, especially in light of the influence of the double
diffusive Cattaneo-Christov model on the non-Newtonian Williamson model. Also, this benefit can
lower the cost of the finished product and serve as the primary component in preventing product fault.
In addition, the novelty of the current work is to examine how Cattaneo-Christov heat mass fluxes affect
non-Newtonian dissipative Williamson fluids due to a slippery stretching sheet under the presence of
thermal radiation, chemical reactions, and changing thermal characteristics.

2. Basic governing equations

Consider the flow of a non-Newtonian Williamson fluid with the Cattaneo-Christov phenomenon in
two dimensions. It is assumed that the stretched sheet, which is embedded in a porous medium with
permeability k, is what causes the fluid to flow. Likewise, it is considered that the fluid concentration
along the sheet is Cw and that the sheet at y = 0 is heated with temperature Tw. The fluid is flowing
in a streamlined pattern, and its viscosity is low but not negligible. The modifying impact appears
to be restricted within a narrow layer adjacent to the sheet surface; this is called the boundary layer
region. Within such a layer, the fluid velocity rapidly changes from its starting value to its mainstream
value. We chose this model because it can accurately describe a large number of non-Newtonian fluids,
possibly the majority, over a vast scope of shear rates. The x-axis is chosen parallel to the surface of the
sheet in the flow direction, with the origin at the sheet’s leading edge, and the y-axis is perpendicular
to it (Figure 1). Let T be the Williamson fluid temperature and u and v be the x-axial and perpendicular
velocity components, respectively.
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Thermal boundary layer
Momentum boundary layer
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Figure 1. A physical diagram of a boundary layer slip flow system.

The sheet on which the slip velocity phenomenon occurs is supposed to be rough and exposed to
thermal radiation with a radiative heat flux of qr. The concept of the slip phenomenon was put forth by
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Mahmoud [32], who proved that it linearly depends on the shear stress τw at the surface, i.e.,

u − Uw = λ∗τw, (2.1)

where τw =

[
µ∂u
∂y + µ Γ

√
2

(
∂u
∂y

)2
]

y=0
and Uw is the fluid velocity at the sheet. Also, chemical reactions and

the viscous dissipation phenomenon are taken into consideration in this study. Similarly, the
temperature Tw and concentration Cw are constant on the sheet. We continue to assume that the
Williamson fluid thermal conductivity varies linearly with temperature κ = κ∞(1 + εθ) [33], although
its viscosity varies nonlinearly with temperature as µ = µ∞e−αθ [33], where µ∞ is the Williamson
fluid’s viscosity at ambient temperature, α is the viscosity parameter, κ∞ is the liquid thermal
conductivity at ambient temperature, and ε is the thermal conductivity parameter. According to the
aforementioned hypotheses, the fundamental equations governing the flow are

∇.U
¯

= 0, (2.2)

ρ∞
(
U
¯
.∇

)
U
¯

= −∇p + ∇.τ + r
¯
, (2.3)

ρ∞cp
(
U
¯
.∇

)
T = −∇.q − ∇.qr + Φ, (2.4)(

U
¯
.∇

)
C = −∇. j − k1 (C −C∞) , (2.5)

where U
¯

= (u, v, 0), p is the pressure, r
¯

=
−µ

k U
¯

is the Darcy impedance for a Williamson fluid, Φ is the
function of dissipation, q is the heat flux, and j is the mass flux. Also, the heat flux q and the mass flux
j satisfy the following relations, respectively [34]:

q + γ1
(
U
¯
.∇q − q.∇U

¯
)

= −κ∇T, (2.6)

j + γ2
(
U
¯
.∇ j − j.∇U

¯
)

= −D∇C. (2.7)

Then, using the conventional boundary layer approximation, we can show that the equations below
control the flow and heat mass transfer in our physical description [35].

∂u
∂x

+
∂v
∂y

= 0, (2.8)

u
∂u
∂x

+ v
∂u
∂y

=
1
ρ∞

∂

∂y

µ∂u
∂y

+ µ
Γ
√

2

(
∂u
∂y

)2
 − µ

ρ∞k
u, (2.9)

u
∂T
∂x

+ v
∂T
∂y

+ γ1ΩE =
1

ρ∞cp

∂

∂y

(
κ
∂T
∂y

)
−

1
ρ∞cp

∂qr

∂y

+
µ

ρ∞cp


(
∂u
∂y

)2

+
Γ
√

2

(
∂u
∂y

)3


(2.10)

u
∂C
∂x

+ v
∂C
∂y

+ γ2ΩC = D
∂2C
∂y2 − k1 (C −C∞) . (2.11)

In terms of boundary conditions, the fluid flow model is subjected to the following [36]:

u = ax +
λ1

µ∞

µ∂u
∂y

+ µ
Γ
√

2

(
∂u
∂y

)2 , v = 0, T = Tw, C = Cw at y = 0, (2.12)
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u→ 0, T → T∞, C → C∞, at y→ ∞, (2.13)

where

ΩE = u2∂
2T
∂x2 + v2∂

2T
∂y2 + u

∂u
∂x
∂T
∂x

+ v
∂v
∂y
∂T
∂y

+ u
∂v
∂x
∂T
∂y

+ v
∂u
∂y
∂T
∂x

+ 2uv
∂2T
∂x∂y

, (2.14)

ΩC = u2∂
2C
∂x2 + v2∂

2C
∂y2 + u

∂u
∂x
∂C
∂x

+ v
∂v
∂y
∂C
∂y

+ u
∂v
∂x
∂C
∂y

+ v
∂u
∂y
∂C
∂x

+ 2uv
∂2C
∂x∂y

. (2.15)

In addition, ρ∞ represents the ambient density, and µ represents the Williamson viscosity. Γ stands
for a Williamson time constant, k is the permeability of the porous medium, cp signifies the specific
heat at constant pressure, k1 is the reaction rate, D is the diffusion coefficient, γ1 is the time it takes
for the heat flux to relax, γ2 is the time it takes for the mass flux to relax, and C∞ is the ambient fluid
concentration. Now, we utilize suitable similarity transforms, such as [35]:

u = ax f ′(η), v = −
√

aν∞ f (η), η = y
√

a
ν∞
, θ(η) =

T − T∞
Tw − T∞

, φ(η) =
C −C∞

Cw −C∞
. (2.16)

When the last postulate is taken into account, Equation (2.8) is consequently confirmed, and the
other equations are reduced to the following form:((

1 + We f ′′
)

f ′′′ − αθ′ f ′′
(
1 +

We

2
f ′′

))
e−αθ − f ′2 + f f ′′ − ∆e−αθ f ′ = 0, (2.17)

1
Pr

(
(1 + R + εθ)θ′′ + εθ′2

)
+ f θ′ − De1

(
f f ′θ′ + f 2θ′′

)
+ Ec

(
f ′′2 +

We

2
f ′′3

)
e−αθ = 0, (2.18)

1
S c
φ′′ + fφ′ − De2

(
f f ′φ′ + f 2φ′′

)
− Kφ = 0. (2.19)

The relevant physical boundary conditions are also modified as a result of the invocation of the prior
dimensionless transformations as

f = 0, f ′ = 1 + λ
(

f ′′ +
We

2
f ′′2

)
e−αθ, θ = 1, φ = 1 at η = 0, (2.20)

f ′ → 0, θ → 0, φ→ 0 at η→ ∞. (2.21)

The dimensionless controlling factors that have emerged are the local Weissenberg number We =

Γx
√

2a3

ν∞
, the porous parameter ∆ = ν∞

ak , the radiation parameter R =
16σ∗T 3

∞

3k∗κ∞
, the slip velocity parameter

λ = λ1

√
a
ν∞

, the thermal Deborah number De1 = γ1a, the Eckert number Ec =
u2

w
cp(Tw−T∞) , the Deborah

number which related to the mass transfer field De2 = γ2a, the chemical reaction parameter K = k1
a and

the Prandtl number Pr =
µ∞cp

κ∞
. It is interesting to see that when We = 0, the nature of the non-Newtonian

Williamson fluid model transforms into a Newtonian fluid model.
Furthermore, the local Nusselt number Nux, the local Sherwood number S hx, and the drag force

coefficient in terms of C fx are determined by [37]:

C fxRe
1
2 = −

(
f ′′(0) +

We

2
f ′′2(0)

)
e−αθ(0),

NuxRe
−1
2

1 + R
= −θ′(0), S hxRe

−1
2 = −φ′(0), (2.22)

where Re = uw x
ν∞

is the local Reynolds number.
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3. Outcomes with discussion

Table 1 compares the values of the local skin-friction coefficient (C fxRe
1
2 ) with those from

Andersson’s earlier work [38] to validate the current findings acquired by the shooting technique.
This comparison is carried out for various slip velocity parameter values. We can confidently state
that our results are in good accord with those references based on this comparison. Furthermore, the
collected results show that the proposed strategy is both reliable and efficient.

Table 1. Comparison of C fxRe
1
2 with the results of Andersson [38] when We = α = ∆ = 0.

λ Andersson [38] Present work
0.0 1.0000 1.0000000000
0.1 0.8721 0.8720029514
0.2 0.7764 0.7763995210
0.5 0.5912 0.5911972051
1.0 0.4302 0.4301859007
2.0 0.2840 0.2839991098
5.0 0.1448 0.1447985799

The simulation studies of a non-Newtonian Williamson fluid over a stretching surface are presented
in this section. The momentum field considers the slip velocity phenomenon, the energy equation
includes the viscous dissipation and thermal radiation effects, and the mass transport equation includes
the chemical process. Via the shooting approach, the governing equations are numerically solved
using supported dimensionless transformation. All the governing physical parameters are utilized in
the following ranges: 0.0 ≤ ∆ ≤ 0.5, 0.0 ≤ α ≤ 0.5, 0.0 ≤ λ ≤ 0.4, 0.0 ≤ We ≤ 0.5, 0.0 ≤ ε ≤ 0.5, 0.0 ≤
De1 ≤ 0.4, 0.0 ≤ De2 ≤ 1.0, 0.0 ≤ K ≤ 0.5 and 0.0 ≤ Ec ≤ 0.5. Thus, the values of the parameters with
fixed values which are used for graphical display can be chosen as ∆ = 0.2,We = 0.4, S c = 4.0,R =

0.5, α = 0.2,K = 0.2, ε = 0.2, λ = 0.2,De1 = 0.2, Pr = 7.0,De2 = 0.2 and Ec = 0.2. This section
discusses the graphical effects of physical dimensionless amounts on complicated profiles. The effect
of porous parameter ∆ on the Williamson fluid velocity is tested and introduced by means of Figure
2(a). When we assume ∆ = 0.0, 0.2 and 0.5, both the velocity of the Williamson fluid and the thickness
of the boundary layer are dramatically reduced. The porous parameter exhibits this behavior due to
its direct presence in the velocity field. Figure 2(b) shows the impact of the porous parameter on both
the fluid temperature and the fluid concentration. We discovered that the Williamson fluid temperature
θ(η) rises as the porous parameter rises. Likewise, the Williamson fluid concentration φ(η) is subject
to the same phenomenon. Physically, the porous parameter causes a restriction in the flow of the fluid,
which reduces the fluid’s velocity and raises the temperature and concentration distributions.
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Figure 2. (a) f ′(η) for chosen ∆. (b) θ(η) and φ(η) for chosen ∆.

The velocity, temperature and concentration profiles for the viscosity parameter α are shown in
Figure 3. It’s worth noting that α has a greater impact on velocity profiles than on temperature or
concentration profiles. Increases in the viscosity parameter α result in decreases in the velocity profile
f ′(η) and associated boundary layer thickness, whereas the temperature θ(η) and concentration φ(η)
fields show the opposite tendency. Physically, a barrier type of force will be produced in the Williamson
flow due to the fluid viscosity’s reliance on temperature. The fluid velocity can be slowed down by this
force. The fluid layers consequently acquire little thermal energy via the same force.

Figure 3. (a) f ′(η) for chosen α. (b) θ(η) and φ(η) for chosen α.

Figure 4 shows the velocity, temperature, and concentration for the slip velocity parameter λ. When
the slip velocity parameter is increased, both the temperature θ(η) and concentration φ(η) profiles
increase, and as a result, the thermal boundary layer thickness increases. With the same parameter,
however, the reverse tendency is observed for both the velocity distribution f ′(η) and the sheet velocity
f ′(0). In terms of physics, the existence of the slip phenomenon produces a resistance force between
the fluid layers, which in turn reduces the fluid’s velocity and enhances the fluid temperature.
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Figure 4. (a) f ′(η) for chosen λ. (b) θ(η) and φ(η) for chosen λ.

The influence of the local Weissenberg number We on Williamson fluid velocity, Williamson fluid
temperature, and Williamson fluid concentration is depicted in Figure 5. The graph illustrates that
raising the local Weissenberg number We causes temperature and concentration distributions to rise,
whereas the same value of We causes fluid velocity to decrease. Physically, a high local Weissenberg
number increases the viscous forces that hold the Williamson fluid layers together, which lowers the
fluid’s velocity and improves the fluid’s heat distribution through the boundary layer.

Figure 5. (a) f ′(η) for chosen We. (b) θ(η) and φ(η) for chosen We.

The impact of the thermal conductivity parameter ε has been depicted in Figure 6. The larger values
of ε correspond to a broader temperature distribution θ(η) and a marginal increase in the concentration
field φ(η), but an increase in the same parameter results in a slight decrease in the velocity graphs
f ′(η). Physically, higher values of the thermal conductivity characteristic indicate a fluid’s ability to
gain higher temperatures, which may cause the fluid’s temperature to rise through the thermal layer.
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Figure 6. (a) f ′(η) and φ(η) for chosen ε. (b) θ(η) for chosen ε.

The effect of the thermal Deborah number De1 on velocity distribution, temperature distribution
and concentration distribution is depicted in Figure 7. The Deborah number is a rheological term that
describes the fluidity of materials under specified flow circumstances. Low-relaxation-time materials
flow freely and exhibit quick stress decay as a result. The fluid motion f ′(η) scarcely improves with the
bigger De1 parameter, but the concentration profiles φ(η) are slightly reduced. Furthermore, extended
values of the thermal Deborah number De1 reduce both the thickness of the thermal region and the
profiles of temperature θ(η).

Figure 7. (a) f ′(η) and φ(η) for chosen De1. (b) θ(η) for chosen De1.

Figure 8 depicts the dimensionless velocity, dimensionless concentration, and thermal profiles for
different Eckert number Ec estimates. It is evident that as the Eckert number is increased, the
dimensionless velocities f ′(η) diminish modestly, while the dimensionless concentration φ(η)
increases slightly. Furthermore, the increase in Eckert number Ec obviously increases both the
temperature profile and the thickness of the thermal region. Physically, the Williamson fluid moves
quickly, causing some kinetic energy to be transformed into thermal energy as a result of the viscous
dissipation phenomenon. This promotes the fluid distributing heat more through the thermal layer.
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Figure 8. (a) f ′(η) and φ(η) for chosen Ec. (b) θ(η) for chosen Ec.

Figure 9 shows the effects of the Deborah number De2, which is related to mass transfer, and the
chemical reaction parameter K on Williamson fluid concentration. Because both the concentration
characteristics φ(η) and the concentration boundary thickness of the Williamson fluid decrease when
both the chemical reaction parameter and the Deborah number increase, the mass transfer rate increases
as well.

Figure 9. (a) φ(η) for chosen De2. (b) φ(η) for chosen K.

From an engineering standpoint, we now concentrate on the fluctuations of physical quantities of
interest. For all regulating factors of our model, the local skin-friction C fx(Rex)

1
2 , the local Nusselt

number NuxRe
−1
2

x
1+R , and the local Sherwood number S hxRe

−1
2

x are introduced in Table 2. Skin friction
coefficient values decrease when the viscosity parameter, slip velocity parameter, and local
Weissenberg number increase, lowering both the local Nusselt number and the local Sherwood
number. The skin friction coefficient and the local Nusselt number, respectively, grow and shrink
uniformly with the thermal Deborah number and the Eckert number. Furthermore, increasing the
chemical reaction parameter or the Deborah number increases the rate of mass transfer, while
increasing the thermal conductivity parameter reduces it significantly.
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Table 2. Values for C fx(Rex)
1
2 , NuxRe

−1
2

x
1+R and S hxRe

−1
2

x for various values of ∆, α,
λ, ε, We,De1, Ec,De2 and K with Pr = 7.0, S c = 4.0 and R = 0.5.

∆ α λ We ε De1 Ec De2 K C fx(Rex)
1
2

NuxRe
−1
2

x
1+R S hxRe

−1
2

x

0.0 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.693231 0.728441 1.549131
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691424 1.521591
0.5 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.804956 0.642281 1.485710
0.2 0.0 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.797036 0.703410 1.535110
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691424 1.521591
0.2 0.5 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.658089 0.670908 1.496560
0.2 0.2 0.0 0.4 0.2 0.2 0.2 0.2 0.2 0.902041 0.698173 1.604453
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691424 1.521591
0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.629907 0.673791 1.458850
0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.2 0.2 0.796081 0.705117 1.537281
0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.758219 0.695903 1.526750
0.2 0.2 0.2 0.5 0.2 0.2 0.2 0.2 0.2 0.723105 0.685343 1.514782
0.2 0.2 0.2 0.4 0.0 0.2 0.2 0.2 0.2 0.743328 0.753634 1.521621
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691424 1.521591
0.2 0.2 0.2 0.4 0.5 0.2 0.2 0.2 0.2 0.740897 0.619058 1.521451
0.2 0.2 0.2 0.4 0.2 0.0 0.2 0.2 0.2 0.741341 0.667262 1.521580
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691424 1.521591
0.2 0.2 0.2 0.4 0.2 0.4 0.2 0.2 0.2 0.743587 0.716488 1.521622
0.2 0.2 0.2 0.4 0.2 0.2 0.0 0.2 0.2 0.744102 0.827635 1.521640
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691424 1.521591
0.2 0.2 0.2 0.4 0.2 0.2 0.5 0.2 0.2 0.739576 0.487913 1.521520
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.0 0.2 0.742281 0.691424 1.497912
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.5 0.2 0.742281 0.691424 1.559190
0.2 0.2 0.2 0.4 0.2 0.2 0.2 1.0 0.2 0.742281 0.691424 1.619098
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.0 0.742281 0.691426 1.238491
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.742281 0.691426 1.521591
0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.5 0.742281 0.691426 1.872482

4. Conclusions

A description of the heat and mass transport features of a viscous non-Newtonian Williamson fluid
across a stretching sheet that is embedded in a porous medium was attempted here. Heat and mass
transfer in the Williamson fluid in the presence of thermal radiation, slip velocity, variable thermal
characteristics, Cattaneo-Christov heat mass fluxes, chemical reaction and viscous dissipation are all
investigated in this study. The governing equations have been converted via dimensionless
transformations into a set of coupled nonlinear ordinary differential equations, which are then
numerically solved using the shooting technique. The following are the major characteristics of the
current work.
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1) A concentration field grows as the viscosity and slip parameters increase, but as the chemical
reactions and Deborah number increase, the concentration field decreases.

2) The Sherwood number decreases as the Eckert number rises, whereas the Deborah number and
chemical parameter increase it.

3) The velocity profile is reduced by the viscosity and slip velocity parameters, whereas a minor
increase in velocity profile occurs due to the Deborah number being increased.

4) The Deborah number has a lower temperature profile than the thermal conductivity parameter and
the Eckert number.

5) The heat transfer rate is reduced by both the thermal conductivity parameter and the viscous
dissipation phenomenon.

6) Skin-friction coefficient values increase with the porous parameter, but they decrease with an
increase in either the slip velocity or the viscosity parameter.

7) When the local Weissenberg number is higher, both the skin-friction coefficient and the local
Nusselt number’s magnitude fall.
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