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Abstract: In this study, a fourth-order nonlinear wave equation with variable coefficients was investigated.  

Through appropriate choice of the free parameters and using the simplified linear superposition principle 

(LSP) and velocity resonance (VR), the examined equation can be considered as Hirota–Satsuma–Ito, 

Calogero–Bogoyavlenskii–Schiff and Jimbo–Miwa equations. The main objective of this study was to 

obtain novel resonant multi-soliton solutions and investigate inelastic interactions of traveling waves for 

the above-mentioned equation. Novel resonant multi-soliton solutions along with their essential conditions 

were obtained by using simplified LSP, and the conditions guaranteed the existence of resonant solitons. 

Furthermore, the obtained solutions were used to investigate the dynamic and fission behavior of Y-type 

multi-soliton waves. For an accurate investigation of physical phenomena, appropriate free parameters 

were chosen to ascertain the impact on the speed of traveling waves and the initiation time of fission. Three-

dimensional and contour plots of the obtained solutions are presented in Figures 1–6. Additionally, two 

nonlinear equations were formulated and investigated using VR, and the related soliton molecules were 

simultaneously extracted. The reported resonant Y-type multi-soliton waves and equations are new and 

have not been previously investigated. They can be used to explain modeled physical phenomena and can 

provide information about dynamic behavior of shallow water waves. 

Keywords: simplified linear superposition principle; velocity resonance; soliton molecule; resonant 

Y-type multi-soliton 
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1. Introduction 

Soliton theory is a branch of nonlinear science and is widely used in various fields of physical 

science. Over the past decades, with the rapid development of soliton theory, the use of numerical 

analysis and scientific computing in mathematical physics has attracted considerable attention, 

especially for solving real-world problems [1–6]. Accordingly, interest in studies related to exact 

solutions is likely to increase in the field of nonlinear mathematics, where extracted solutions are of 

considerable significance for furthering our understanding of nonlinear wave dynamics in applications 

such as optical fibers [3,4], magneto-electro-elastic circular rod [5] and multifaceted bathymetry [6]. 

Inelastic interactions of traveling waves play an important role in various complex physical phenomena. 

It is known that related physical phenomena could be simulated using nonlinear evolution equations 

(NLEEs) under certain constraints. Furthermore, the inelastic interactions can be represented by 

resonant multi-soliton solutions. The findings are expected to contribute to a better understanding of 

wave propagation in fields such as optics, plasmas and fluid mechanics [7–19]. Although various 

reliable approaches have been proposed, obtaining exact resonant soliton solutions and identifying 

inelastic interactions remains a major challenge for researchers in the field of soliton theory. Past 

studies have focused on finding exact solutions in mathematical physics to better explain and understand 

mechanisms underlying physical phenomena. Fortunately, two state-of-the-art approaches, namely the 

simplified linear superposition principle (LSP) [9–19] and velocity resonance (VR) [20–29], have been 

developed to deal with inelastic interactions based on two resonant mechanisms. Importantly, two 

recent studies have detailed the special connection between a resonant multi-soliton solution and a 

soliton molecule [15,29]. The results obtained in these studies provided new information about 

different types of wave solutions, and the studies showed that the obtained solutions were accurate. 

Very recently, Ma [7] developed a new fourth-order nonlinear model, which is as follows: 

𝑁(𝑢) = 𝛼[3(𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑥𝑥𝑥𝑡] + 𝛽 [3(𝑢𝑥𝑢𝑦)
𝑥

+ 𝑢𝑥𝑥𝑥𝑦] + 𝛿1𝑢𝑦𝑡 

+𝛿2𝑢𝑥𝑥 + 𝛿3𝑢𝑥𝑡 + 𝛿4𝑢𝑥𝑦 + 𝛿5𝑢𝑦𝑦 = 0,        (1.1) 

where 𝛼, 𝛽 and 𝛿𝑗(𝑗 = 1,2,3,4,5) are variable coefficients. Notably, the study of the formulation of 

new NLEEs and the simultaneous determination of their exact wave solutions has attracted considerable 

attention, and newly constructed equations and solutions are helpful for simulating the propagation of 

traveling waves. Moreover, the obtained results could help unravel the nature of nonlinearity in various 

sciences [30–43]; examples of such studies are those of Wazwaz [42] and Ma [43]. Resonant multi-

soliton solutions are mainly used to simulate inelastic collisions of multi-wave solutions, which are 

relevant to real-world problems. To the best of our knowledge, there are few studies on the model in 

Eq (1.1). By determining the specific values of the free coefficients, we can reduce the model in Eq (1.1) 

to a variety of well-known NLEEs used in shallow-water wave theory and Jimbo–Miwa (JM) 

classification [16,19,30,32,40,41,43], such as the Hirota–Satsuma–Ito (HSI) [19,43], Calogero–

Bogoyavlenskii–Schiff (CBS) [30,32], JM equations [16,41] and the references therein. However, a 

variety of models that are likely to be useful in mathematical physics and that have hitherto been 

unreported can be derived from Eq (1.1). For determining the mechanism of the resonant wave and for 

constructing new NLEEs, this study derived several models from Eq (1.1). Furthermore, in order to 

determine the exact resonant multi-soliton solutions for different cases, we employed the simplified 

LSP and VR to examine the extended equations. 

https://www.sciencedirect.com/topics/mathematics/mathematical-physics
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The objectives of this work were twofold. First, we identified specific conditions of Eq (1.1) and 

used them along with the simplified LSP to determine the existence of resonant multi-soliton solutions. 

Second, the extracted new equations and solutions were examined using VR, and the particular 

conditions for displaying the soliton molecules were formally confirmed. 

2. Methodology 

The LSP is an effective tool for obtaining resonant N-wave solutions with the aid of the Hirota 

bilinear form [9–12]. The constraint guaranteeing the existence of resonant solutions is that wave 

numbers should satisfy the related bilinear equation. 

𝐿(𝑘𝑖 − 𝑘𝑗 , 𝑙𝑖 − 𝑙𝑗 , 𝑚𝑖 − 𝑚𝑗 … , 𝜔𝑖 − 𝜔𝑗) = 0, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁.     (2.1) 

Solving Eq (2.1) is considerably difficult for highly nonlinear partial equations, (i.e., high-

dimensional high-order equations), and it involves a considerable amount of tedious calculations. In 

order to reduce the complex calculations and simultaneously increase the accuracy of the extracted 

results, we present the simplified version of the LSP. Detailed algorithms can be found in recent works 

[13–19,29]. Herein, we briefly illustrate the main steps of the simplified LSP. 

Step 1. Extract the dispersion relation of the examined equation as 

𝜔 = 𝐹(𝑘, 𝑙, 𝑚, 𝜔 … ),          (2.2) 

where 𝑘, 𝑙, 𝑚 and 𝜔 are wave numbers, and 𝜂 = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 + ⋯ + 𝜔𝑡. 

Step 2. From the formula form of the dispersion relation, we can intuitively conjecture the 

corresponding wave numbers to be 

𝑘𝑖 = 𝑘𝑖 , 𝑙𝑖 = 𝑎𝑘𝑖
𝜆, 𝜔𝑖 = 𝑏𝑘𝑖

𝜇
,        (2.3) 

where 𝜆 and 𝜇 are powers of 𝑘𝑖, and 𝑎 and 𝑏 are real constants to be determined later. Importantly, 

𝜇 should be consistent with the one obtained by substituting 𝑘𝑖 = 𝑘𝑖 and 𝑙𝑖 = 𝑎𝑘𝑖
𝜆 into Eq (2.2). 

Substituting Eq (2.3) into Eq (2.1) and solving the equation yields the values of 𝜆, 𝜇, 𝑎 and 𝑏, 

and the resonant N-wave solutions can be directly constructed. 

3. Constrained equations and resonant multi-soliton solutions 

3.1. Application of simplified LSP 

In [4], the expression 𝑢 = 2(𝑙𝑛 𝑓)𝑥 was used to transform Eq (1.1) into the bilinear form 

(𝛼𝐷𝑥
3𝐷𝑡 + 𝛽𝐷𝑥

3𝐷𝑦 + 𝛿1𝐷𝑦𝐷𝑡 + 𝛿2𝐷𝑥
2 + 𝛿3𝐷𝑥𝐷𝑡 + 𝛿4𝐷𝑥𝐷𝑦 + 𝛿5𝐷𝑦

2)𝑓 ∙ 𝑓 = 0.    (3.1) 

After applying the algorithms mentioned in Section 2, we thoroughly investigated Eq (3.1) and 

divided the constraints into two cases, which guarantees the existence of resonant multi-soliton 
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solutions to the corresponding equations. 

Case 1. 

𝛽 = 𝛿3 = 𝛿4 = 𝛿5 = 0,          (3.2) 

and 

𝑘𝑖 = 𝑘𝑖 , 𝑙𝑖 = 𝑎𝑘𝑖
3, 𝜔𝑖 = 𝑏𝑘𝑖

−1.         (3.3) 

Using Eq (2.1) and substituting Eqs (3.2) and (3.3) into Eq (3.1), we obtain 

𝛼𝑏(𝑘𝑖 − 𝑘𝑗)
3

(𝑘𝑖
−1 − 𝑘𝑗

−1) + 𝑎𝑏𝛿1(𝑘𝑖
3 − 𝑘𝑗

3)(𝑘𝑖
−1 − 𝑘𝑗

−1) + 𝛿2(𝑘𝑖 − 𝑘𝑗)
2

= 0.  (3.4) 

We solve this equation and obtain 

𝑎 =
−𝛼

𝛿1
, 𝑏 =

−𝛿2

3𝛼
,          (3.5) 

and 

𝜉𝑖 = 𝑘𝑖𝑥 −
𝛼

𝛿1
𝑘𝑖

3𝑦 −
𝛿2

3𝛼
𝑘𝑖

−1𝑡.        (3.6) 

Then, the corresponding equation and resonant multi-soliton solution can be constructed as 

𝛼[3(𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑥𝑥𝑥𝑡] + 𝛿1𝑢𝑦𝑡 + 𝛿2𝑢𝑥𝑥 = 0,     (3.7) 

𝑢 = 2(𝑙𝑛 𝑓)𝑥 = 2(𝑙𝑛(∑ 𝑒𝜉𝑖𝑁
𝑖=1 ))𝑥.        (3.8) 

Specifying 𝛼 = 𝛿1 = 𝛿2 = 1 in Eq (3.7) gives the HSI equation, and the results are consistent 

with our report in [19]. 

Case 2. 

𝛿1 = 𝛿3 = 0, 𝛿2 + 𝑎𝛿4 + 𝑎2𝛿5 = 0,       (3.9) 

and 

𝑘𝑖 = 𝑘𝑖 , 𝑙𝑖 = 𝑎𝑘𝑖 , 𝜔𝑖 = 𝑏𝑘𝑖 .        (3.10) 

Using Eqs (3.9) and (3.10) and proceeding as before, we obtain 

𝛼(𝑘𝑖 − 𝑘𝑗)
3

𝑏(𝑘𝑖 − 𝑘𝑗) + 𝑎(𝑘𝑖
3 − 𝑘𝑗

3)𝛽(𝑘𝑖 − 𝑘𝑗) = 0.     (3.11) 

Clearly, from this equation, we can obtain 

𝛼𝑏 + 𝑎𝛽 = 0,          (3.12) 

where the free coefficients 𝛼 and 𝑏 can be determined by specifying values for 𝛿2, 𝛿4 and 𝛿5 in Eq (3.9). 

For example, specifying 𝛿2 = 𝛿5 = 1 and 𝛿4 = 2 yields 

𝑎 = −1, 𝑏 =
𝛽

𝛼
.          (3.13) 
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Thus, the corresponding equation and resonant multi-soliton solution can be constructed as 

𝛼[3(𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑥𝑥𝑥𝑡] + 𝛽 [3(𝑢𝑥𝑢𝑦)
𝑥

+ 𝑢𝑥𝑥𝑥𝑦] + 𝛿2𝑢𝑥𝑥 + 𝛿4𝑢𝑥𝑦 + 𝛿5𝑢𝑦𝑦 = 0,  (3.14) 

𝑢 = 2(𝑙𝑛 𝑓)𝑥 = 2(𝑙𝑛(∑ 𝑒𝜉𝑖𝑁
𝑖=1 ))𝑥,       (3.15) 

where 

𝜉𝑖 = 𝑘𝑖𝑥 + 𝑎𝑘𝑖𝑦 + 𝑏𝑘𝑖𝑡.         (3.16) 

Equations (3.6) and (3.16) are constructed with distinct physical structures. In other words, they 

represent different traveling waves. Hence, the corresponding nonlinear wave equations (3.7) and (3.14) 

describe different physical phenomena, respectively. 

3.2. Velocity resonance behavior 

We recall that in [15,29], the VR conditions (𝑘𝑖 ≠ 𝑘𝑗 , 𝑙𝑖 ≠ 𝑙𝑗) were 

𝑘𝑖

𝑘𝑗
=

𝑙𝑖

𝑙𝑗
=

𝜔𝑖

𝜔𝑗
.           (3.17) 

Using the related dispersion relation of Eq (3.7) [15,29], we obtain 

𝛼𝑘𝑗
3𝜔𝑗 + 𝛿1𝑙𝑗𝜔𝑗 + 𝛿2𝑘𝑗

2 = 0.        (3.18) 

Equation (3.17) can be used to solve Eq (3.18), and the wave numbers can then be obtained as 

𝑘𝑗 = ±√−
−𝑘𝑖

𝛼𝜔𝑖
(𝛿1

𝑙𝑖𝜔𝑖

𝑘𝑖
2 + 𝛿2) , 𝑙𝑗 = ±√−

−𝑙𝑖
2

𝛼𝑘𝑖𝜔𝑖
(𝛿1

𝑙𝑖𝜔𝑖

𝑘𝑖
2 + 𝛿2) , 𝜔𝑗 = ±√−

−𝜔𝑖

𝛼𝑘𝑖
(𝛿1

𝑙𝑖𝜔𝑖

𝑘𝑖
2 + 𝛿2).  (3.19) 

Thus, VR is successfully used to extract the wave numbers in Eq (3.19) to soliton molecules. In 

what follows, we show that the solutions (3.3) and (3.5) are consistent with the VR conditions (3.17) 

and (3.19). 

Specifying 𝛼 = 𝛿1 = 𝛿2 = 1 and substituting Eqs (3.3) and (3.5) into (3.19) yields 

𝑘𝑗 = ±2𝑘𝑖 , 𝑙𝑗 = ±2𝑘𝑖
3, 𝜔𝑗 = ±

2

3
𝑘𝑖

−1.       (3.20) 

Apparently, the result (3.20) reveals that the results (3.3), (3.5) and (3.19) are perfect because of 

the relationship 

𝑘𝑖

𝑘𝑗
=

𝑙𝑖

𝑙𝑗
=

𝜔𝑖

𝜔𝑗
= ±

1

2
.         (3.21) 

In other words, by choosing the appropriate values for the free parameters 𝑘𝑖 , 𝑙𝑖 and 𝜔𝑖, the two 

approaches give the same results. Equation (3.19) can be used to simulate the dynamics of soliton 

molecules, and Eq (3.21) revealed that the special connection between resonant multi-soliton and 

soliton molecule is considered as one kink wave 

𝑢 = 2(𝑙𝑛(𝑒𝑘𝑖𝑥+𝑙𝑖𝑦+𝜔𝑖𝑡 + 𝑒−2𝑘𝑖𝑥−2𝑙𝑖𝑦−2𝜔𝑖𝑡))𝑥.      (3.22) 
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Case 1 guarantees the existence of resonant multi-soliton solutions by using the simplified LSP 

and VR. Moreover, the derived Eq (3.7) with variable coefficients provides many more versions of 

mathematical models than the constant-coefficient equation [19]. Notably, VR cannot be used for Case 2 

since for the special conditions in (3.9), the corresponding dispersion relation is obtained as 𝛼𝜔𝑖 =

𝛽𝑙𝑖; similar cases were reported in [15]. 

3.3. Discussions 

In this work, a novel fourth-order (2+1)-dimensional nonlinear wave equation was investigated 

using the LSP and VR. The following results were obtained. 

(i) Equation (3.1) was examined in detail by using the simplified LSP, and it was confirmed that 

the two reduced equations (3.7) and (3.14) guarantee the existence of a resonant multi-soliton 

solution. The results were double checked by using VR. Moreover, compared to the methods 

reported in the critical references [44,45], the simplified LSP is found to be much easier to 

use to generate the exact resonant multi-soliton solutions without resorting to computational 

software. In other words, by applying the simplified LSP with the dispersion relationship, 

researchers can handle the examined nonlinear NLEEs directly. Furthermore, the accuracy 

of exact multi-soliton solutions can be checked by substituting the wave numbers into the 

phase shift term and making the phase shift term vanish, and detailed explanations can be 

found in the literature [16–19]. 

(ii) Compared with the existing HSI equation [19], Eq (3.7) in Case 1 can be considered as a 

general form of the HSI equation. Furthermore, we found that Case 2 cannot be solved using 

VR because its dispersion relation is 𝛼𝜔𝑖 = 𝛽𝑙𝑖, which is consistent with the work reported 

in [15]. Importantly, a literature survey showed that Eq (3.14) is new, and it may be of great 

help in studying real-world nonlinear wave problems.  

(iii) By assigning specific values to the free parameters in solutions (3.6), (3.8), (3.15) and (3.16), 

we can simulate a variety of inelastic interactions of Y-type multi-soliton waves by using the 

mathematical software MATLAB. Moreover, the dynamic characteristics of the obtained 

solution (3.8) can be determined by considering the distinct values of free parameters 

presented in Figures 1–4. Figure 1(a1)–(a4) shows 3D plots of the solution (3.8) in the (x, 

y)-plane for 𝑁 = 2, 𝑁 = 3, 𝑁 = 4 and 𝑁 = 5 and correspondingly gives one kink, 2-kink, 

3-kink and 4-kink waves, respectively. Figure 2( a1 )–( a4 ) shows the contour plots 

corresponding to Figure 1(a1)–(a4). It is apparent from Figures 1 and 2 that when 𝑁 ≥ 3, 

the solution (3.8) signifies a multi-kink wave. From the above observations, we found that 

the number of stripes increased with 𝑁 at t = 0. Figure 3 presents the splitting propagation 

of a traveling 2-kink wave at different times in solution (3.8) for 𝑁 = 3. In Figures 3 and 4, 

3D plots and their corresponding contour graphs for different times, namely, t =

−200, −50, 0, 50 and 200, are displayed. It is remarkable that the graphs and plots show 

the fission behavior when time (t) increases. In particular, the 𝑘𝑖 value affects the amplitude 

and speed of the traveling wave. Accordingly, the kink wave is split into two waves that 

travel at different speeds. The upward kink wave moves faster than the other one. 

Furthermore, in Figures 5 and 6, 3D plots and their corresponding contour graphs with 𝛼 =

0.1, 𝛼 = 0.5, 𝛼 = 1, 𝛼 = 3, 𝛼 = 10 are displayed, where the nonlinear term 𝛼 influences the 
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traveling wave speed and the initiation time of splitting. The result is consistent with Eq (3.6). 

Similar results can be obtained for 𝑁 = 4 and 𝑁 = 5. 

(iv) Other equations derived from Eq (1.1) may provide multi-soliton, lump and rogue wave 

solutions, but they should be free from resonant multi-soliton solutions, such as the CBS and 

JM equations [30–32]. The main reason for this is that the related wave numbers are 

constructed as 𝑘𝑖 ± 𝑘𝑗 = 0; the related works can be found in [1,15,19,30]. 

 

Figure 1. Three-dimensional plots of multi-kink waves described by the solution (3.8) for 

(a1 ) 𝑁 = 2 , (a2 ) 𝑁 = 3 , (a3 ) 𝑁 = 4  and (a4 ) 𝑁 = 5  when 𝑘1 = 0.25 , 𝑘2 = 0.50 , 

𝑘3 = 0.75, 𝑘4 = 1.00, 𝑘5 = 1.25, 𝛼 = 1, 𝛿1 = 𝛿2 = 1 and t = 0.  

 

Figure 2. Panels (a1)–(a4) correspond to the contour plots (a1)–(a4) in Figure 1, respectively. 

 

Figure 3. Fission of traveling 2-kink wave by the solution (3.8) with 𝑘1 = 0.25, 𝑘2 =

0.50 , 𝑘3 = 0.75 , 𝛼 = 1  and 𝛿1 = 𝛿2 = 1  at (a1 ) t = −200 , (a2 ) t = −50 , (a3 ) t =

0, (a4) t = 50 and (a5) t = 200. 
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Figure 4. Panels (a1)–(a5) correspond to the contour plots (a1)–(a5) in Figure 3, respectively. 

 

Figure 5. The effect of nonlinear term 𝛼 to the traveling 2-kink wave by the solution (3.8) 

with 𝑘1 = 0.25, 𝑘2 = 0.50, 𝑘3 = 0.75, t = 0 and 𝛿1 = 𝛿2 = 1 at (a1) 𝛼 = 0.1, (a2) 

𝛼 = 0.5, (a3) 𝛼 = 1, (a4) 𝛼 = 3 and (a5) 𝛼 = 10. 

 

Figure 6. Panels (a1)–(a5) correspond to the contour plots (a1)–(a5) in Figure 5, respectively. 

4. Conclusions 

In summary, this study investigated resonant Y-type multi-soliton solutions and the soliton 

molecules for the fourth-order nonlinear wave equation (1.1) by using the simplified LSP and VR. The 

results of multi-soliton solutions and the soliton molecule for the generated equations (3.7) and (3.14) 

are discussed. In case 1, under the specified constraints, Eq (3.7) provides resonant Y-type multi-soliton 

solutions and the soliton molecule. On the basis of past studies, Eq (3.7) can be considered as a general 

variable-coefficient HSI equation. In case 2, Eq (3.14) can be considered as a novel nonlinear wave 

model. However, under certain constraints, Eq (3.14) provides only resonant multi-soliton solutions, 

without any soliton molecule, because of the corresponding dispersion relation constructed as 𝛼𝜔𝑖 =

𝛽𝑙𝑖. Notably, the results demonstrate the fact that the 𝑘𝑖 value affects the amplitude and the speed of 

the traveling wave; furthermore, the nonlinear term 𝛼 influences the traveling wave speed and the 
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initiation time of splitting. 

To the best of our knowledge, the presented resonant Y-type waves and equations are new and 

have not been reported before. This study presents comprehensive results and contributes significantly 

to existing knowledge in nonlinear wave dynamics. The presented simplified LSP and VR are direct, 

concise and effective mathematical tools for generating resonant multi-soliton solutions and soliton 

molecules. Finally, the newly formulated equations (3.7) and (3.14) will boost the study of resonant 

multi-wave solutions. The soliton molecule is a special kind of N-soliton solution, and the dynamic 

characteristics of nonlinear traveling waves play an important role in studying real-world problems. 

Therefore, investigating the dynamical behaviors of soliton molecules, lump waves, and rogue waves 

associated with these equations are worth further exploring in future studies. 

Acknowledgments 

This work was supported by the Ministry of National Defense, Taiwan, and the Ministry of 

Science and Technology, Taiwan, under grant number MOST 111-2221-E-013-002. 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

1. A. M. Wazwaz, Partial differential equations and solitary waves theory, Heidelberg: Springer, 

2009. https://doi.org/10.1007/978-3-642-00251-9 

2. R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. 

https://doi.org/10.1017/CBO9780511543043 

3. S. W. Yao, L. Akinyemib, M. Mirzazadeh, M. Inc, K. Hosseini, M. Şenol, Dynamics of optical 

solitons in higher-order Sasa–Satsuma equation, Results Phys., 30 (2021), 104825. 

https://doi.org/10.1016/j.rinp.2021.104825 

4. M. N. Rasoulizadeh, O. Nikan, Z. Avazzadeh, The impact of LRBF-FD on the solutions of the 

nonlinear regularized long wave equation, Math. Sci., 15 (2021), 365–376. 

https://doi.org/10.1007/s40096-021-00375-8 

5. M. M. A. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. A. Akbar, M. Inc, Propagation of 

new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, Mod. 

Phys. Lette. B, 35 (2021), 2150381. https://doi.org/10.1142/S0217984921503814 

6. O. Nikan, A. Golbabai, T. Nikazad, Solitary wave solution of the nonlinear KdV–Benjamin–

Bona–Mahony–Burgers model via two meshless methods, Eur. Phys. J. Plus, 134 (2019), 367. 

https://doi.org/10.1140/epjp/i2019-12748-1 

7. W. X. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-

dimensions, J. Appl. Anal. Comput., 9 (2019), 1319–1332. https://doi.org/10.11948/2156-

907X.20180227 

8. W. X. Ma, N-soliton solutions and the Hirota conditions in (1+1)-dimensions, Int. J. Nonlin. Sci. 

Numer. Simula., 23 (2022), 123–133. https://doi.org/10.1515/ijnsns-2020-0214 

 

https://doi.org/10.1007/978-3-642-00251-9
https://doi.org/10.1017/CBO9780511543043
https://www.sciencedirect.com/science/article/pii/S2211379721008731#!
https://www.sciencedirect.com/science/article/pii/S2211379721008731#!
https://doi.org/10.1016/j.rinp.2021.104825
https://doi.org/10.1007/s40096-021-00375-8
https://doi.org/10.1142/S0217984921503814
https://doi.org/10.1140/epjp/i2019-12748-1
https://doi.org/10.11948/2156-907X.20180227
https://doi.org/10.11948/2156-907X.20180227
https://doi.org/10.1515/ijnsns-2020-0214


20749 

AIMS Mathematics  Volume 7, Issue 12, 20740–20751. 

9. W. X. Ma, E. G. Fan, Linear superposition principle applying to Hirota bilinear equations, 

Comput. Math. Appl., 61 (2011), 950–959. https://doi.org/10.1016/j.camwa.2010.12.043 

10. W. X. Ma, Y. Zhang, Y. N. Tang, J. Y. Tu, Hirota bilinear equations with linear subspaces of 

solutions, Appl. Math. Comput., 218 (2012), 7174–7183. https://doi.org/10.1016/j.amc.2011.12.085 

11. Ö. Ünsal, W. X. Ma, Linear superposition principle of hyperbolic and trigonometric function 

solutions to generalized bilinear equations, Comput. Math. Appl., 71 (2016), 1242–1247. 

https://doi.org/10.1016/j.camwa.2016.02.006 

12. H. Q. Zhang, W. X. Ma, Resonant multiple wave solutions for a (3+1)-dimensional nonlinear 

evolution equation by linear superposition principle, Comput. Math. Appl., 73 (2017), 2339–2343. 

https://doi.org/10.1016/j.camwa.2017.03.014 

13. C. K. Kuo, W. X. Ma, An effective approach for constructing novel KP-like equations, Waves 

Random Complex, 32 (2020), 629–640. https://doi.org/10.1080/17455030.2020.1792580 

14. C. K. Kuo, Y. C. Chen, C. W. Wu, W. N. Chao, Novel solitary and resonant multi-soliton solutions 

to the (3+1)-dimensional potential-YTSF equation, Mod. Phys. Lett. B, 35 (2021), 2150326. 

https://doi.org/10.1142/S0217984921503280 

15. C. K. Kuo, Novel resonant multi-soliton solutions and inelastic interactions to the (3+1)-and 

(4+1)-dimensional Boiti–Leon–Manna–Pempinelli equations via the simplified linear 

superposition principle, Eur. Phys. J. Plus, 136 (2021), 77. https://doi.org/10.1140/epjp/s13360-

020-01062-8 

16. C. K. Kuo, B. Ghanbari, Resonant multi-soliton solutions to new (3+1)-dimensional Jimbo–Miwa 

equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459–464. 

https://doi.org/10.1007/s11071-019-04799-9 

17. C. K. Kuo, Resonant multi-soliton solutions to the (2+1)-dimensional Sawada–Kotera equations 

via the simplified form of the linear superposition principle, Phys. Scr., 94 (2019), 085218. 

18. C. K. Kuo, Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified 

linear superposition principle, Mod. Phys. Lett. B, 33 (2019), 1950299. 

https://doi.org/10.1142/S0217984919502993 

19. C. K. Kuo, W. X. Ma, A study on resonant multi-soliton solutions to the (2+1)-dimensional 

Hirota–Satsuma–Ito equations via the linear superposition principle, Nonlinear Anal., 190 (2020), 

111592. https://doi.org/10.1016/j.na.2019.111592 

20. Z. Zhang, S. X. Yang, B. Li, Soliton molecules, asymmetric solitons and hybrid solutions for 

(2+1)-dimensional fifth-order KdV equation, Chinese Phys. Lett., 36 (2019), 120501. 

21. S. X. Yang, Z. Zhang, B. Li, Soliton molecules and some novel types of hybrid solutions to (2+1)-

dimensional variable coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Adv. Math. 

Phys., 2020 (2020), 2670710. https://doi.org/10.1155/2020/2670710 

22. W. T. Li, J. H. Li, B. Li, Soliton molecules, asymmetric solitons and some new types of hybrid 

solutions in (2+1)-dimensional Sawada–Kotera model, Mod. Phys. Lett. B, 34 (2020), 2050141. 

https://doi.org/10.1142/S0217984920501419 

23. Z. Zhang, X. Y. Yang, B. Li, Novel soliton molecules and breather-positon on zero background 

for the complex modified KdV equation, Nonlinear Dyn., 100 (2020), 1551–1557. 

https://doi.org/10.1007/s11071-020-05570-1 

24. X. Y. Yang, R. Fan, B. Li, Soliton molecules and some novel interaction solutions to the (2+1)-

dimensional B-type Kadomtsev–Petviashvili equation, Phys. Scr., 95 (2020), 045213. 

https://doi.org/10.1088/1402-4896/ab6483 

https://doi.org/10.1016/j.camwa.2010.12.043
https://doi.org/10.1016/j.amc.2011.12.085
https://doi.org/10.1016/j.camwa.2016.02.006
https://doi.org/10.1016/j.camwa.2017.03.014
https://doi.org/10.1080/17455030.2020.1792580
https://www.worldscientific.com/doi/10.1142/S0217984921503267
https://www.worldscientific.com/doi/10.1142/S0217984921503267
https://www.worldscientific.com/doi/10.1142/S0217984921503267
https://doi.org/10.1142/S0217984921503280
https://www.worldscientific.com/doi/10.1142/S0217984921503267
https://doi.org/10.1140/epjp/s13360-020-01062-8
https://doi.org/10.1140/epjp/s13360-020-01062-8
https://doi.org/10.1007/s11071-019-04799-9
https://doi.org/10.1142/S0217984919502993
https://doi.org/10.1016/j.na.2019.111592
https://doi.org/10.1155/2020/2670710
https://doi.org/10.1142/S0217984920501419
https://doi.org/10.1007/s11071-020-05570-1
https://doi.org/10.1088/1402-4896/ab6483


20750 

AIMS Mathematics  Volume 7, Issue 12, 20740–20751. 

25. J. J. Dong, B. Li, M. Yuen, Soliton molecules and mixed solutions of the (2+1)-dimensional 

bidirectional Sawada–Kotera equation, Commun. Theor. Phys., 72 (2020), 025002. 

26. B. Wang, Z. Zhang, B. Li, Soliton molecules and some hybrid solutions for the nonlinear 

Schrödinger equation, Chinese Phys. Lette., 37 (2020), 030501. 

27. Z. Zhang, Q. Guo, B. Li, J. C. Chen, A new class of nonlinear superposition between lump waves 

and other waves for Kadomtsev–Petviashvili I equation, Commun. Nonlinear Sci. Numer. 

Simulat., 101 (2021), 105866. https://doi.org/10.1016/j.cnsns.2021.105866 

28. S. Y. Lou, Soliton molecules and asymmetric solitons in three fifth order systems via velocity 

resonance, J. Phys. Commun., 4 (2020), 014002. 

29. C. K. Kuo, A study on the resonant multi-soliton waves and the soliton molecule of the (3+1)-

dimensional Kudryashov–Sinelshchikov equation, Chaos Soliton. Fract., 152 (2021), 111480. 

https://doi.org/10.1016/j.chaos.2021.111480 

30. S. T. Chen, W. X. Ma, Lump solutions of a generalized Calogero–Bogoyavlenskii–Schiff 

equation, Comput. Math. Appl., 76 (2018), 1680–1685. 

https://doi.org/10.1016/j.camwa.2018.07.019 

31. W. X. Ma, Comment on the (3+1) dimensional Kadomtsev–Petviashvili equations, Commun. 

Nonlinear Sci. Numer. Simulat., 16 (2011), 2663–2666. 

https://doi.org/10.1016/j.cnsns.2010.10.003 

32. A. M. Wazwaz, Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa 

and YTSF equations, Appl. Math. Comput., 203 (2008), 592–597. 

https://doi.org/10.1016/j.amc.2008.05.004 

33. H. C. Ma, H. F. Wu, W. X. Ma, A. Ping. Deng, Localized interaction solutions of the (2+1)-

dimensional Ito Equation, Opt. Quant. Electron., 53 (2021), 303. https://doi.org/10.1007/s11082-

021-02909-9 

34. W. X. Ma, X. L. Yong, X. Lü, Soliton solutions to the B-type Kadomtsev–Petviashvili equation 

under general dispersion relations, Wave Motion, 103 (2021), 102719. 

https://doi.org/10.1016/j.wavemoti.2021.102719 

35. W. X. Ma, N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, 

Math. Comput. Simulat., 190 (2021), 270–279. https://doi.org/10.1016/j.matcom.2021.05.020 

36. B. Günay, C. K. Kuo, W. X. Ma, An application of the exponential rational function method to 

exact solutions to the Drinfeld-Sokolov system, Results Phys., 29 (2021), 104733. 

https://doi.org/10.1016/j.rinp.2021.104733 

37. Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+1)-dimensional Kadomtsev–Petviashvili equation 

and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simulat., 187 

(2021), 505–519. https://doi.org/10.1016/j.matcom.2021.03.012 

38. B. Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising 

from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 

106822. https://doi.org/10.1016/j.aml.2020.106822 

39. R. Hirota, M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Jpn., 52 (1983), 744–

748. https://doi.org/10.1143/JPSJ.52.744 

40. R. Hirota, J. Satsuma, N-soliton solutions of model equations for shallow water waves, J. Phys. 

Soc. Jpn., 40 (1976), 611–612. https://doi.org/10.1143/JPSJ.40.611 

41. A. M. Wazwaz, Multiple-soliton solutions for extended (3+1)-dimensional Jimbo–Miwa 

equations, Appl. Math. Lett., 64 (2017), 21–26. https://doi.org/10.1016/j.aml.2016.08.005 

https://doi.org/10.1016/j.cnsns.2021.105866
https://doi.org/10.1016/j.chaos.2021.111480
https://doi.org/10.1016/j.camwa.2018.07.019
https://doi.org/10.1016/j.cnsns.2010.10.003
https://doi.org/10.1016/j.amc.2008.05.004
https://doi.org/10.1007/s11082-021-02909-9
https://doi.org/10.1007/s11082-021-02909-9
https://doi.org/10.1016/j.wavemoti.2021.102719
https://doi.org/10.1016/j.matcom.2021.05.020
https://doi.org/10.1016/j.rinp.2021.104733
https://doi.org/10.1016/j.matcom.2021.03.012
https://doi.org/10.1016/j.aml.2020.106822
https://doi.org/10.1143/JPSJ.52.744
https://doi.org/10.1143/JPSJ.40.611
https://doi.org/10.1016/j.aml.2016.08.005


20751 

AIMS Mathematics  Volume 7, Issue 12, 20740–20751. 

42. A. M. Wazwaz, A new integrable equation combining the modified KdV equation with the 

negative-order modified KdV equation: Multiple soliton solutions and a variety of solitonic 

solutions, Waves Random Complex, 28 (2018), 533–543. 

https://doi.org/10.1080/17455030.2017.1367440 

43. W. X. Ma, J. Li, C. M. Khalique, A Study on lump solutions to a generalized Hirota-Satsuma-Ito 

equation in (2+1)-Dimensionals, Complexity, 2018 (2018), 905958. 

https://doi.org/10.1155/2018/9059858 

44. Z. Zhang, Z. Q. Qi, B. Li, Fusion and fission phenomena for (2+ 1)-dimensional fifth- order KdV 

system, Appl. Math. Lett., 116 (2021), 107004. https://doi.org/10.1016/j.aml.2020.107004 

45. Y. Kodama, KP solitons and the Grassmannians: Combinatorics and geometry of two-dimensional 

wave patterns, Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-4094-8 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0). 

 

https://doi.org/10.1080/17455030.2017.1367440
https://doi.org/10.1155/2018/9059858
https://doi.org/10.1016/j.aml.2020.107004
https://doi.org/10.1007/978-981-10-4094-8

