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1. Introduction

In control systems, neural networks, missile systems and many fields, finite-time stability is a more
practical method which is much valuable to analyze the transient behavior of nature of a system
within a finite interval of time [1-4]. We know that the traditional stability, asymptotical stability and
exponential stability in the sense of Lyapunov, which the stable property of a system is considered in
an infinite-time interval. Finite time stability just focuses on the behavior of a given system in a fixed
time interval [5].

With the development of science and applied mathematics, people have found that some physical
phenomenon systems are actually described by fractional differential equations, in which such systems
cannot be effectively modeled by using the classical integer order differential equations. In recent
decades, researchers have become more and more interested in the study of the stability of the solution
for fractional-order system, see [6,7]. The finite-time stability analysis of fractional differential systems
has received considerable attention, for instance [8—11] and the references therein. As we all known,
either in nature or in artificial systems, noise or stochastic discomfort cannot be prohibited. Thus,
stochastic differential equations have sparked interest as a result of their wide application in physical,
pharmaceutical domains, scientific and engineering, one can check [12—15]. Considering fractional
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order and randomness, Mchin et al. in [16] investigated the finite-time stability of the solution for
linear stochastic fractional-order time delay system as follows:

dw(1)
dt ’

DG y(1) = Ay(1) + By(t = 1) + Cy(t = v) (1.1)
where the initial condition is {y(¢), —v < t < 0} = ¢(¢) € R", CDg’t denotes the operator of the Caputo
fractional derivative of order « € (%, 1), A,B,C € R™" and W(¢) is a 1-dimensional Brownian motion
defined on the probability space.

In the literature, there exist several definitions of fractional integrals and derivatives, in which the
most popular are Riemann-Liouville and Caputo-type fractional derivatives. A generalization of both
Riemann-Liouville and Caputo derivatives was given by Hilfer [17], which was known as the Hilfer
fractional derivative. Theoretical simulations of thermoelastic in crystal compounds, engineering,
rheological constitutive modelling, chemical processing and other domains have uncovered the
usefulness and applicability of the Hilfer fractional derivative. Recently, Vanterler and Capelas de
Oliveira [18] presented a fractional differential operator of a function with respect to another function,
the so-called y-Hilfer fractional derivative. Obviously, the class of fractional derivatives derived from
the y-Hilfer operator is making the fractional operator a generalization of the fractional operators.
Some properties of this operator could be found in [18]. There are some authors who have worked on
the existence, stability of solutions of -Hilfer fractional-order differential equations as in [19-22].

From the above statement, it makes sense that Caputo fractional derivative of (1.1) is generalized to
the y-Hilfer fractional derivative type. Moreover, (1.1) is a linear stochastic fractional-order time delay
system, which is lack of nonlinear term. It is noted that the nonlinear term in system is more important
and more general.

Motivated by the above works, we are concerned with the following nonlinear stochastic y-Hilfer
fractional systems with time delay of the form

HDIPY x(t) = Ax(t) + Bx(t — 7) + f(t, x(t), x(t = T))

+HCx(t) + Dx(t — 1)) 22, t€[0,T1, (1.2)
X(t) = ¢(t)a re [_T’ O]’
where HD(C)';ﬁ Y is the W-Hilfer fractional derivative of order % < a < 1, with respect to function

and 0 < B < 1;A,B,C,D € R are matrices; f : J X XX X — X (X = C([-7,T],R")) is a function
satisfying some specific assumptions given in (H1) and (H2). W(¢) is a 1-dimensional Brownian motion
defined on the probability space.

The main contributions and advantages of this paper are as follows:

(1) For the first time in literature, the finite time stability for nonlinear stochastic y-Hilfer fractional-
order time-delay systems is investigated.

(2) New set of sufficient conditions are established for the finite time stability for nonlinear
stochastic y-Hilfer fractional-order time-delay systems (1.2). This work generalizes the main results
of [16].

(3) Our main technique relies on generalized Gronwall’s inequality for y-Hilfer derivative and
stochastic analysis techniques is effectively used to establish the new results.

(4) A numerical example is presented to show the proposed theoretical results.
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This paper will be organized as follows. In Section 2, we will briefly recall some notations,
definitions and preliminaries. Section 3 is devoted to proving the finite-time stability for system (1.2).
In Section 4, an example is given to illustrate our theoretical result. Finally, the paper is concluded in
Section 5.

2. Preliminaries

In this section, we recall some basic definitions and lemmas which are used in the sequel.

Let {X, ¥, (1)r=0, P} be a complete probability space with a filtration fulfilling the usual conditions.
W(z) is a 1-dimensional Brownian motion defined on the probability space.

Let C([—-7,0],R") be the space of the continuous functions ¢ : [-7,0] — R” with the norm ||¢|| =
SUp_, <o ll¢(s)ll, and C([—7, T],R") be the space of the continuous functions x : [-7,T] — R" with the
norm |lxi| = sup__,.7 [x(s)]l.

Definition 2.1. [23] System (1.2) is finite-time stochastically stable (FTSS) w.r.t. {6,&,T}, 6 < &, if

Ellgll* < 6

implying
Ellx®)|* <&, VYtel0,T].

Now we present some definitions and properties of fractional calculus which will be used throughout
this paper.
Definition 2.2. [18] Let > 0, f be an integrable function defined on [a, b] and ¥ € C'([a, b]) be an
increasing function with y'(t) # O for all t € [a, b]. The left y-Riemann-Liouville fractional integral
operator of order « of a function f is defined by

I fo) = @ )fl/'(S)(lﬂ(t) W) f(s)ds. 2.1)

Definition 2.3. [18] Letn—1 < a < n, f € C"([a, b]) and ¢ € C"([a, b]) be an increasing function with
W'(t) # 0 for all t € [a, b]. The left y-Riemann-Liouville fractional derivative of order « of a function
f is defined by

d) e gy = — (

n—a—1
(1) dt T —a) ) f W) = ()™ f (s)ds.  (2.2)

f()_( W() dt

Definition 2.4. [18] Letn—1 < a < n, f € C"([a,b]) and ¥ € C"([a, b]) be an increasing function with
Y'(t) # 0 for all t € [a, b]. The left y-Caputo fractional derivative of order « of a function f is defined

by

DY f(r) = (T (@) = sy (s)ds, (2.3)

where n = [a] + 1 and f"(r) := (%%) f(#) on [a, b).

AIMS Mathematics Volume 7, Issue 10, 18837-18852.



18840

Definition 2.5. [I18] Letn — 1 < @ < n withn € N, f,¥ € C"(|a,b],R) two functions such that
is increasing and y/'(x) # 0, for all x € [a, b). The left-sided y-Hilfer fractional derivative DZf Y oof
function of order @ and type O < B < 1, are defined by

. . 1 dY .
H DB ¢y = [P JIB=00 £y 24
o SO =1 Vo dx) la J) (2.4)

In the following, we will give some properties of the combinations of the fractional integral and the
fractional derivatives of a function with respect to another function.
Lemma 2.1. [14] Let f € C"([a,b]),n— 1 <a <nand0 < B < 1. Then we have

Y(x) — (@)™ (n—k] 7(1-B)(n—a)p
Ty —k+1) W o fla, 2.5)

D fx) = - D
k=1

wherey = a + f(n — a).
Lemma 2.2. [14] Let f € C'([a,b]), @ > 0 and 0 < 8 < 1. Then we have

DY f(x) = f). (2.6)

Lemma 2.3. [24] Suppose that « > 0 and f € C[0,b] is nonnegative and nondecreasing. Then
F() = Ot (t_rff:)_l f(s)ds is nondecreasing on [0, b].

From Lemma 2.3, we can give and prove the following lemma.
Lemma 2.4. Assume that « > 0, ¢ € C'[0,b] and ¥’ € C[0,b] with ¥'(t) > 0 on [0,b] ae. If
f € CI0,b] is nonnegative and nondecreasing, then F(t) = F(l(z 5 fot(i,b(t) — ()W (s)f(s)ds is
nondecreasing on [0, b].
Proof. We first suppose that f € C'[0, b] is nonnegative and nondecreasing. Setting w = (¢) — ¥(s),
we get

1 (oo
F(t) = — f W F( () — w))dw.
I'(a) Jo
Thus, we have

1
F'(H) = — (@) — y(0)* f(¥~" (¥(0)))

I'(@)
| oo .
el IR A O A
1 @ 1 [ .y’ 7
= F WO = v O 0+ 7 [ @O = v OF s)ds > 0

for all ¢ € [0, b] which implies that F is nondecreasing on [0, b].

For the general case that f € CJ[0,b], we choose a sequence of nonnegative and nondecreasing
functions {f,} € C'[0,b] such that f, - f € C[0, b]. Since each
F.(r) = ﬁ fot(:,l/(t) — () ' (s) f,(s)ds is nondecreasing, we obtain that the limit F = lim, F,, is
therefore nondecreasing.

The Gronwall inequality plays an important role in the study of qualitative and qualitative properties
of solution of fractional differential and integral equations [25-27]. In order to work with continuous
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dependence of differential equations via -Hilfer fractional derivative, the authors in [28] gave the
generalized Gronwall inequality by means of the fractional integral with respect to another function ¥
as follows :
Theorem 2.1. [28] Let u, v be two integrable functions and g be continuous defined on domain [a, b].
Let s € C'[a, b] be an increasing function such that y/'(t) # 0, ¥t € [a, b]. Assume that

(1) u and v are nonnegative;

(2) g is nonnegative and nondecreasing.
If

u(t) < v(t) + g(@) f W (@OW() — Y(1)* u(r)dr,
then

'«
u() < V(1) + f 3 [g(;)( (k)) W @O0 — (@) W(Ddr, Vi€ [a,b]
a k=1

Corollary 2.1. [28] Under the hypothesis of Theorem 2.1, let v be a nondecreasing function on |[a, b].
Then

u(t) < vIOE(OTN (@)W (1) - Y(a)"), Vi€ [a,b],
where E,, is the Mittag-Leffler function given by the series

S
Ea(2) = kzz(; Tak+1)

In [29], Lin provided several generalizations of the Gronwall inequality for fractional derivative.
Seemab et al. in [30] generalized Gronwalls inequality for y/-fractional derivative as follows:
Theorem 2.2. [30] Let u,v be two integrable functions, with domain [a,b]. Let € C'[a,b] an
increasing function such that y'(t) # 0. Vt € [a, b]. Assume that

(i) u and v are nonnegative;

(ii) The function (g;);=1..., are the bounded and monotonic functions on [a, b];

(iii) The constants p; > 0 (i = 1,2, ...,n). If

u(t) < v(t) + Z gi(?) f Y (O - Y)Y u(r)dr,
i=1 a
then

k
- [1(g:(OT(py))
u(t) < () + Z =l

— | W (@W(() —y( ))Z?’=1pi/—1] (t)de .
k=1 | 12, k=1 F(Zf-(ﬂpi') Lw 24 49 v(T)at

For n = 2 in Theorem 2.2, let v(¢) be a nondecreasing function on a < ¢ < b. Then we have
Corollary 2.2. Let u,v be two nonnegative integrable functions defined on domain [a, b]. And let v(t)
be a nondecreasing function. Assume that y € C'[a, b] is an increasing function such that y/(t) # 0.
VYt € [a,b). If

2 f
u(t) < v(D) + ) gil) f W @O0 - (@Y u(r)dr,
i=1 a
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where functions g, and g, are the bounded and monotonic functions on [a, b], and constants p; > 0
(i =1,2). Then we have

u(®) < vOLE,, (81O (o)W () — Y(@))") + E,, (8201 (02) W (1) — Y(@))?) — 11.

Proof. Since v is nondecreasing, we have v(t) < v(t) for any 7 € [a,t]. Thus, by Theorem 2.2, we
obtain

*® k
u(t) < v(t) + f Z MW( () =y (@ v(r)de

I'(p1k)
fa ki gz;lz;(,ff) VOO —w@OF v
=Vl f ki gl(rt();(f;)]kw(r)[wu)—lp(f)]mk—ldr
fa ki gz(rtg(,f;) W@~ p@)dr
=v(1)|1 ki 1;’55)” (@) piwﬂp"‘ . i [g2(rt();(£)2)]k [y () - i(a)]pzk]
— v |1 i [g1<t>r(prl()ﬁlp]£ti l)wm))ﬂ It i [gg(t)F(plf()/[()lzp]Eti _l)w(a))pz]k}

VOLE,, (21T (o)1) — Y(@)") + E, (82O (p2) (1) — w(@)y™) — 1].
3. Main results

This section is devoted to the finite-time stability problem for system (1.2).
Lemma 3.1. If x is a solution of system (1.2), then it is a solution of stochastic Volterra integral
system

¢(0)
T2 -v) F( )

<w( ) — ()W ()Bx(s — T)ds

f(l//( ) = ()Y (DAx(s)ds

x(1) = W) = (s (5)f (5. x(5), (s = 7)) A

T@ J,

r—f

r— f (1) — W)™ W (HCx(5)AW(s)

r— f WD) = ()W ()Dx(s — DAW(s), 1€ [0,T),

(1), e

wherey = a + (1 — a).
Proof. If x € X satisfies the problem (1.2), then by applying the operator Ig;‘/’ to both sides of the first
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equation of (1.2), one has

IYHDEPY x(r) = I3V Ax(t) + IS Bx(t — 1)

+15 (2, x(2), x(t — 7)) + I3/ (Cx(t) + Dx(t — 7)) dW(t) (3.2)

By properties of y-Hilfer fractional derivative and using Lemma 2.1, we obtain the left hand side
of (3.2) as

(1) — y(0)y"! J0-B-a)y

I D x() = x(r) - Ty o x(0)
W - oyt ’ o,
= (1) - N2 m — fo W) - ()W (HxO) s (3.3)
=0 Fre—y

Combining (3.2) and (3.3), we get that x is a solution of the stochastic Volterra integral system (3.1).
To study the finite-time stability of system (1.2), we need the following assumptions.
(H1) For f : C([0,T] x R* x R* — R", there exist two positive constants L; and L, such that

If @, x(0), x(2 = 7)) = f(£,y(1), y(t = T)I| < Lillx(r) = yOIl + Lollx(r = 7) — y(t = DI,

foranyt € [0,T], x,y € R".
(H2) £(¢,0,0) =10,0,---,0].
———

Let T > 7 and m € N such that (m + 1)t < T < (m + 2)r.
Theorem 3.1. Assume that (H1) and (H2) hold. System (1.2) is FTSS with respect to (6, &, T), if the
following condition is satisfied:

Ir(1) < (3.4)

SORY

where
,U rMs

M;
lT(r):(Ml =2 (D) = Y0 +
| EaMaT (@) (T) = p(0))™)
+Esq 1 (MayurT Qe — DY(W(T) — w<0>>2f*—1) 1] EllglP,
M + T
lkH(r):(Ml+73zk<r><w(<k+1>r> V) R lk< )k + 1)7) — ()" 1)

2a
: [Ea(MzF(a)(lﬁ((k + D7) = $(0)*)

+Enq 1 (MaptgesyeT Qe = D ((k + D7) — (071 - 1] Ell¢lI>,
and pr = Sup,go 71 ¥’ (0, K1y = SUPepo ss 1y ¥ (D), k € [0,m], Io(7) =1,

Lt (DT) = (0) 1)

6 6(lIAIP + 2L7)

PorER-y - Hela+)’
6(||B||Z+ 2L2 6/|C]]2 6||D|]2 3.5)

T+’ " Ta) 7 Ta)

l =

3:
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Proof. According to Lemma 3.1, we know that the solution of the system (1.2) satisfies stochastic
Volterra integral system (3.1). By using the Cauchy-Schwartz inequality, (H1) and (H2), we obtain

6llgll°
x| < m

2
+F2fa) fo <w<r>—w(s»“—l||A||||x<s>||w(s)ds)
' 2
+1‘2ny) fo(‘ﬂ(f) —lﬁ(S))a_lllBllIIX(s—T)||¢’(S)ds)
6 ([ X
il (‘W)‘lﬂ(s))“‘lnf(s,x(s),x(s—r)>||w'<s>ds)
I“(a) \Jo
6 [ a—1 7 2
@) ' fo W (@) — ()™ Y (5)Cx(s)dW(s)
! 2
+F2?a') L W(t) — ()™ ' (s)Dx(s — T)dW(s)
6|1l

CTore-y ,
+r26 f W () = Y()* "¢/ (s)dss ( f (w(t)—w<s>>“‘1w'<s)||A||2||x(s)||2ds)
(@) \Jo 0
L6
()
L
I(a)

X fo (@) = ()™ ()L llx( + Lollx(s ~ T)||)2ds)

fo(aﬁ(t) — Y)Y (s)ds (fo W (O = Y)Y (IIBIPllx(s ~ r)||2ds)

f(; (D) = ()™ (s)ds

2

+r2?a,) Ly (5)Cx(s)dW(s)
! 2
+%a> | WO =) Y ()Dx(s = 1)AW(s)
_ Ol
T2 -vy)
LA”Z({/](I) - l//(O))‘l ft(l//(l) _ l//(s))a_l||x(S)||zl//,(S)dS
I'ao)l'(a+1) 0
2 t
Mo 70~ [0 s its — P s
2
- a-1
Nor@s pve vy f W(0) = ()" Ix(s)IPy (s)ds
2
W(w() Y (0))* f(tl/(t) Y())* lx(s = DIPY (5)ds

2

Ly (5)Cx(s)dW(s)
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2

F2 @ f (1) = ()™Y' (5)Dx(s — T)AW ()
Taking the expectation on the two sides of (3.6), we have

Ellx0I* < Ell¢II°

EOIEQ-y)

el .

F(a)l“(a+1)(w(t) v(0)) fo (W (@) — Y () Ellx(9)II7y (s)ds

s

)@+ 1)
2

T+ D)
2

W (1) — ¥ (0))* f W (1) = ¥())* ™ Ellx(s = DIPY (s)ds
W (1) =y (0))* f(wa) Y()* Ellx(s)IPy’ (s)ds

- = < - @ a—1 _
r<a>r(a+1)(‘/’(> ¥(0) f W) — () Ellx(s - DIPY (s)ds

_ 2a-2 2 2
+F2(a) fo W@ = Y)W $)ICIPEl(s)IPds
+t f W) = Y)W ($)IIDIPEIIx(s — Dl ds
(@) Jo
2
“rore-p
+M( Ok (0))"‘(f( (0) = Y(s)* ™ Ellx(s)IP ()d)
(e 1)"// ¥ Y(o) — s X()IY' (s)ds
CUBE +2L) o g (o
m(tﬁ(l)—w( ) ( f W) = y()" Ellx(s = DIFY'(s) S)
6//C|>
rlﬁ(ll) f W) = ¥ ()™ W () Ellx(s)lPds
, OlDiP?

@) f(w() Y)W () Ellx(s — DlPds

= MiEl¢I”> + My (1) - y(0))" fo(lﬁ(t) —y(s)* T Ellx(s)IPy (s)ds
+M3( (1) — ¥(0))* fol(lﬁ(t) — ()" Ellx(s = DIy (s)ds
+M, fo t(w(t) — ()W () Ellx(s)IPds

!
+Ms f W() = Y()** W' ())°Ellx(s — 7)lPPds,
0
where M, M,, M3 and M, are as in (3.5).
For t € [0, 7], by (3.7), we get

Ellx()I* < MiElIgI* + Ma(y(7) = $(0)) j(; W (D) = w(s)* ™ Ellx(s)IPy’ (s)ds
+M;3( (1) — ¥ (0))" fo W (1) = ()" EllgIPy (s)ds

+ Mt fo (1) = Y ()Y (DEl(s)|Pds

(3.6)

(3.7)
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+ Mg, f W) — ()™ (E|IgIds
(M1+—(w(f) WO + £ Ms 2 - w(O»Z“‘l)Enfﬁnz
+Mo(() — Y(O))" fo W) — ()" Bllx(s)IPY (s)ds

+Mapt, f W(t) — Y())** ¢ (9ElIx(s)|ds,
0
where u; = sup,jo ¥’ (1). By Corollary 2.2, one has
M
Ellx()I* < (M1 + 730//(7) Y (0))* +5

[EsMT (@) W(7) - w<0>>2“>
+Epg 1 (Mgt T2 = D)(@(7) = (0 ") = 1] EllglP
= L(DElgI’, Vi€ [0,7],

e Ms L i) - w0 1)

where

IUTS

(1) = (M1 + —(lﬁ(T) w(0)y* t g - (WO - lﬁ(O))z"_l)

|E LT @) Wo) - w(0)>2“>

+ Eng 1 (MapteT (2 = D@(7) = 9(0)* ™) — 1]
For t € [, 27], from (3.7), we have

Ellx®I* < MiEIIBI® + Ma(y(27) = ¢(0))° j:(lﬁ(t) — () T Elx(s)IPy (s)ds
+M3((27) — Y (0))* fo t(tﬁ(l) — () L@EIBIPY (s)ds
+Maptor fo t(l/f(t) — ()Y (DElx()IPds
+Mspo f t('ﬁ(t) — ()Y (DL (DENPIds

Mo M

(Ml " —h(r)@p(zr) WOy + £
+Mo((27) — (0))° fo WD) - Y(5)* 1Enx(s)nzw (s)ds

7~ 1MW) - (0 e 1) Ell¢ll*

!
M, [ 00 = 06 0 GBI,
0
where > = sup,ci, ¥'(¢). By using Corollary 2.2, we obtain

Ellx0I* < L@EIBI?, Yz € [0,27],

where
HorMss

L (2 - w0 1)

M;
B = (M1 + 22 @wED - pO)* +
[Ea (ML (@)W(27) — p(O)™)

+ Bt (Mapin:T Qe — D)(W(27) — 9(0))** 1) — 1] :
For t € [kt, (k + 1)7], we get by (3.6) that

M
Ellx(@)” < (M1 + ﬁlk(T)(w((k + 1)7) = y(0))*

AIMS Mathematics Volume 7, Issue 10, 18837-18852.
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,u(k+l)‘r 5
200 —

+M(((k + 1)) — ¢(0)" fo W (1) = ()" Ellx(s)IPy/ (s)ds

g — 1 OW(k+ D) - 7(0) e 1)EII</>II

t
Mo [ G0 = 06 GBI
0
where fs1ye = SUPeio s 1y ¥ (1) By using Corollary 2.2 again, we get

Ellx(I* < L DEIBI, Vi€ [0, (k + D,

where o
e (7) = (Ml + 2K+ D7)~ YO

,U(k+1)‘r 5

g — 1 KOW(k+ D) - (0) e 1)
a —

: [Ea<Mzr<a)<w<<k + 1)) = ¢ (0))*)
+ Eqt (Mapteanye T Qe = D((k + Dr) = p(0)* ™) - 1].
Finally, since (im+ 1)t < T < (m + 2)7, for all ¢ € [0, T], we can obtain
Ellx(0)] < (Ml + %lmﬂwwn — (0" + ﬁj‘ﬁ b (DYW(T) = w<0))2“-‘)
| E«MaT(@)@(T) = (0))™)

+Esqet(MaptrT 2 = DOU(T) = p(0) ™) — 1| Bl
where ur = sup 7 ¥'(¢), which completes the proof.
Theorem 3.2.  Assume that (H1) and (H2) hold. System (1.2) is FTSS with respect to (6,¢,T),
provided the following condition holds :

My |Eo(My + M3)[(@)((T) - y(0))")

+Eggry (M + M) = DWA(T) - w0 ) - 1] < =, (3.8)
Whge o o o o
M, =M, M,=MwWYT)-y(0)", Mz=M;W(T)—-y0)*, My = Msur, Ms= Mspur.
3.9
Here M; (i = 1,...,5) are as in (3.5).

Proof. For convenience, denote h(f) = E||x(?)||*. Then by inequality (3.7) and (3.9), one has
!
h(t) < MiE|gI* + M2 f W(0) = y(9)" h(s)y/ (s)ds
0

i, fo W) = ()" h(s — W/ (5)dss
M, fo W) = W)W (h(s)ds

+Ms f W) — Y()** Y ()h(s — T)ds, t€[0,T].

0
Let g(#) = supye_. 4 1(0), for all 7 € [0, T']. Obviously, h(s) < g(s) and h(s — 1) < g(s), ¥s € [0, T]. For
t€[0,T], we get

h(t) < M\E|i¢I* + M, fo (1) = ()" g(s) (s)ds
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+M; fo W () — ()" gl (s)ds
+M, fo W (1) — ()Y (s)g(s)d's
+Ms f W () — ()Y ()g(s)ds.

0
Since g is nondecreasing, for V0 € [0, t], we have by Lemma 2.4 that

h(6) < M E||g|> + M, fo 9(w<0> — ()" g(s)y (s)dss
+M; fo H(w«)) — ()" (W (s)ds
+M, fo H(ww) —Y())* Y (5)g(s)ds
+M; fo e(ww) — Y)Y (5)g(s)dss
< M\Ellg|* + M, fo WO~ W W ()

+M; fo W0 — ) g ()

+M, fo W0 — U ()g()ds
+Ms fo W0 — W ()g(s)ds.

Hence, for each t € [0, T'], we obtain

gt = max{ sup h(0), sup h(@)}
0e[-,0] 6e[0.1]

< MiElIgI® + (M3 + M) fo (1) = ()" g(sW (s)ds

t
+(My + Ms) f (1) = Y(5))* Y (s)g(s)ds.
Using the generalized Gronwall inequality (Co(;ollary 2.2), for t € [0, T'], we have
g(n < M\E|i¢l’ [Ea((MZ + M3)D(@) (@ (0) = (0)")
+Ezq1(My + M5)T2a = 1)((1) — y(0)** ) - 1] : (3.10)
Thus, for all 7 € [0, T'], we get
Bl = ht) < g6)
< M, |Eo((My + My)T(@)@(T) = y(0))")

+Esq1(My + M5)T2a = 1Y(W(T) — y(0))** ") — 1] Ellgl>. (3.11)
Thus, if E||¢||> < 6 and condition (3.8) holds, we have E||x(?)||> < &, ¥t € [0, T]. The proof is completed.
Remark 3.1. If y(t) = t, B =1, f = 0 and C = 0, then system (1.2) reduces to system (1.1). Thus,
Theorems 3.1 and 3.2 generalize the corresponding main results of [16].

4. Example
In this section, we give an example to show the usefulness of the main results.

AIMS Mathematics Volume 7, Issue 10, 18837-18852.
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Example 4.1. Consider the following nonlinear stochastic y-Hilfer fractional-order time-delay systems

pdsed (06 0 03 0 B B

+ [( 067 0(.)6 )x(r) +( 0(')8 0?9 )x(t - T)] %, te[0,T],

“.1)
where the initial condition is

x(t) = ¢(t), te[-1,0]

x(0) :( x1(2) )’ W—-1) :( x1(t — 1) )’ (1) :( ¢1(1) ),

Here

x(1) X(t—1) &2(1)

a = ‘3‘,,8 = 1%, W(t) = e5,7=0.2, and
1
Fit, X0, x(t = 7)) = 4 ( sin x,(7) 3\ arctan x,(r — 7)

Obviously, y =a+ (1 —a) = %, f satisfies the conditions (H1) and (H2) with L, = i and L, = %,
Al = 0.6, ||Bl| = 0.4, ||C|| = 0.7 and ||D]| = 0.9.
Since /(1) = %eé, we have y, = 0.3563, uy, = 0.3809, usz, = 0.4071, py, = 0.4352.
Let 6 = 0.1 and € = 10. It is easy to verify that
M; =59921, M, =2.6836, M;=2.1149, M,=2.1691, and Ms = 3.5856.

By Theorem 3.1, we can calculate that

sin x;(¢) )+ 1 ( arctan x;(f — 7) )

[i1(1) = 8.8049, [(1) =23.4064, [3(7)=80.9970 < 100 = g

The computed estimated time 7 in the system (4.1) is equal to 0.6. However, if T = 0.7, we can easily
verify that

M, =59921, M,=09213, M;=0.7261, M,=09130, Ms=1.5093,

and
M, |Eo(M; + M3)[(@)((T) — 4(0))°)
+Ea1(My + Ms)T Qe = D@(T) = (0" ") — 1]
=5.9921 - [E5(0.6585) + Ey6(1.6179) — 1] = 98.4220 < 100 = g

By using Theorem 3.2, the calculated estimated time 7" of the system (4.1) is equal to 0.7. Thus, we
conclude that System (4.1) is Finite time stochastic stable with respect to (6, &, T).

5. Conclusions

Based on the generalized Gronwall’s inequality for y-fractional derivative and stochastic calculus
techniques, the finite-time stability of nonlinear stochastic ¥-Hilfer fractional systems with time delay
has been investigated in this paper. The novelty of this study is -Hilfer fractional stochastic systems
has been considered. Moreover, an illustrative example is provided to demonstrate the effectiveness of
the theoretical results. Our results obtained are new and extend the existing literature on this topic. In
the future, this result could be extended to investigate the finite-time stability for a class of y-Hilfer
fractional stochastic semi-Markov jump systems.
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