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article, we determine the explicit and analytical fuzzy solution for various classes of the fuzzy
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the fuzzy Laplace transformation technique. Furthermore, the solution of FFLDEs is defined in terms
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1. Introduction

Fuzzy sets are used to describe the dynamical model that does not involve randomness but has
some uncertain parameters. Some of these models naturally result in fuzzy differential equations
(FDEs). FDEs have been attaining much attention in the field of mathematics under the impact of
applied scientific domains including physics, automated control theory, artificial intelligence,
abnormal diffusion, medical sciences, random processes, and many more. It has been used to analyze
the dynamical behavior of real-world physical problems. FDEs [1] were introduced in 1982 based on
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the fuzzy derivative called Dubois-Prade derivative. Subsequently, several definitions of fuzzy
derivatives were introduced among which Hukuhara derivative (H-derivative) [2] (which is known as
Puri Ralescu derivative) in 1983, Goetschel-Voxman [3] derivative in 1986, Seikkala [4] derivative in
1987, and Friedman-Ming-Kandel [5] derivative in 1996. Although many definitions of fuzzy
derivatives have been defined in various forms, these definitions give the equivalent result of fuzzy
function via a-cut. Puri-Ralescu derivative and Seikkala derivative are the most well-known
derivatives. Puri and Ralescu derivatives are defined on the base of H-difference, whereas the Seikkala
derivative is defined using the a-level set of the fuzzy function. The representation of the same and
reverse order derivative based on Seikkala derivative [6] were another effort in 1998 to overcome the
difficulty arising from the use of H-derivative or equivalently Seikkala derivative. This derivative is
closely related to ones that present a fuzzy derivative, called generalized H-derivative and generalized
Seikkala derivative. In 2005, Bede and Gal [7] introduced the concept of strongly generalized
Hukuhara derivative (SGHD). The structure of SGHD offers two types of differentiability of a fuzzy
function, which are referred to as the first and second form of differentiability. The H-derivative
corresponds to the first form and the non-decreasing diameter of a differentiable fuzzy function is the
second form of differentiability if it exists.

The concept of the fractional-order appears to be universal and the integer-order looks like local.
The revelation of fractional-order has been shown effective in symbolizing complicated systems
whereas the computational effects are very vague. In many domains of the field of fractional calculus,
calculation procedures are not straightforward; they are subject to complicated methodologies and
approaches. Many authors attracted the attention for the solution of fractional differential equations
and fractional integro-differential equations both in crisp and uncertain environment. Recently, Raja
et al. [8] developed optimal control results for integro-differential equations; for example, for
Sobolev-type fractional mixed Volterra-Fredholm with order belongs to (0,1), approximate
controllability results for integro-differential equations [9], for existence and continuous dependence
results [10], results on controllability for Sobolev type fractional differential equations [11] and the
approximate controllability results for fractional integro-differential systems [12]. A comprehensive
study of fuzzy fractional calculus makes us capable to deal with many problems in both theoretical
and applied science. The idea of fuzzy derivatives has resulted in the introduction of several
definitions of fuzzy fractional derivatives (FFDs). Agarwal et al. [13] initially proposed the concept of
fuzzy fractional-order differential equations in 2010. The Riemann-Liouville (R-L) FFDs in the sense
of H-derivative [14] and Seikkala derivative [15] were introduced in 2010 and 2011, respectively.
After that, Salahshour et al. [16] introduced the concept of SGHD based on R-L FFD in 2012. SGHD
presents two types of differentiability of fuzzy function. If the order belongs to (0, 1), then we have
two solutions of FFDEs that come from the first and second form of differentiability. The two-type
solution of FFDEs [17, 18] in the sense of Caputo H-derivative was investigated in 2012.

Meanwhile, Agarwal et al. [13] proposed the solution of FFDEs using R-L differentiability. In 2013,
Arshad [19] ensured the existence and uniqueness of FFDEs. Allahviranloo et al. [20,21] introduced
the solution procedure for FFDEs using generalized fuzzy Caputo-differentiability. In parallel, Khastan
et al. [22] prove the existence and uniqueness theorem for the solution of FFDEs using the Schauder
fixed point theorem under the R-L fuzzy fractional derivative. Hoa et al. [23] proposed the idea of
generalized Hukuhara differentiability using interval numbers. Ngo et al. [24] introduced the fuzzy
fractional initial-value problem using Caputo-differentiability. Several considerable investigations of
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FFDEs in the sense of Caputo gH-derivative introduced in [24]. By using the fixed point approach,
Vu et al. [25] studied the stability of both fuzzy fractional integral and fuzzy Ulam-Hyers-Rassias
fractional differential equations. Vu and Hoa [26] develop the solution procedure for FFDEs on a
time scale under granular differentiability. Ezadi and Allahviranloo [27] developed an artificial neural
network approach for solving fuzzy fractional initial-value problems using gH-differentiability. Akram
et al. [28,29] developed the numerical technique for solving bipolar and m-polar fuzzy initial-value
problems. Further, Akram et al. [30-32] presented methods for solving bipolar and m-polar fuzzy linear
systems. Ghaffari et al. [33] introduced the solution of time-fractional FDEs using the fuzzy Laplace
and Fourier transformation technique. Moreover, we refer to the reader for other different techniques
and applications of fractional differential equations in an uncertain environment [34-37,39-42].
Langevin [38] proposed the idea of Langevin differential equations (LDE) to describe the
dynamical behavior of fluctuation and interpretation of Brownian motion. Indeed, LDE is a useful
tool for investigating the dynamical features of a wide range of important systems in science and
engineering [43,44]. Kubo [45] later presented the concept of generalized LDE, where the fractional
memory kernel was inserted into the equation to characterized the fractal and memory features. As a
result, this gives the idea to study of fractional Langevin differential equation [46]. After that, various
types of fractional Langevin differential equation were introduced and investigated [47—49] with
different fractional order on the different interval and boundary points. Many researchers [50-52]
studied the existence and uniqueness of solutions to fractional Langevin differential equations and
anti-periodic fractional Langevin differential equations. Applications of fractional differential
equations play a vital role in the study of electrical circuits. A considerable growing interest in
electrical circuit theory and simulation has been seen in the last few years. Many researchers used
three types of fractional differential operators to explain electrical circuit equations. Kaczorek [53]
obtained the solutions of the fractional differential equation using the Laplace transformation
technique as well as discussed their applications in electric circuit theory. But certain errors occur due
to environmental conditions in circuit parameters that may lead to the account uncertainty and
vagueness in circuit analysis. Devi and Ganesan [54] developed a circuit equation as a fuzzy
differential equation with fuzzy variables using a conventional type of fuzzy derivative. We
investigate an initial-value problem of inhomogeneous fuzzy fractional Langevin differential
equations with same dynamics given in [55] with general fractional orders as shown in the following:
CDv(m) — ADiv(m) — pu(m) = gm), (L)
vi(0) = v;(0,), 0<i<q-1, '

where €D and “Dg: Caputo type conventional fuzzy fractional derivative of order 7| and 7, in various
mtervalsg -2 <1, <g-1,g-1<71, <gand g > 2 with y, > 1 (for short y, = 7, — ) and 4, u are
the real parameters, = € [0, 1].

Although, several authors developed many interesting techniques and approaches to solve FFDEs
with their applications. The current article asserts its novelty from the following perspectives:

(i) We determine the explicit and analytical fuzzy solutions for the various classes of fuzzy fractional
Langevin differential equations involving two independent fractional-orders both in homogeneous
and non-homogeneous cases.

(i) We extract two possible potential solutions for general and special cases of fuzzy fractional
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Langevin differential equations under the strongly generalized H-differentiability using fuzzy
Laplace transformation tool.

(iii)) Moreover, we discuss an application of fuzzy fractional Langevin differential equations in RLC-
electrical circuit.

The remaining part of the article is organized as follows: Section 2 presents preliminary results
of the R-L fractional derivative, Caputo fractional derivative, and integral in both crisp and uncertain
environments. Solution procedure of multi-order FFLDEs is presented in Section 3. The Section 4
is devoted for the application of FFLDEs in RLC-electrical circuit. The conclusion and the future
direction of this work are presented in Section 5.

2. Basic concepts

We begin this section with some basic definitions and terminologies of fuzzy sets and preliminaries
of the fundamental structure of fractional calculus. Throughout this article, the class of all real numbers
is denoted by R and the family of all fuzzy numbers (FNs) on R by F*. The x-cut of the fuzzy set v is
denoted by v...

Definition 2.1. [3] Suppose that the fuzzy set v in a non-empty subset Q of R identified with the rule
of membership grade v : Q — [0, 1]. Firmly, v is convex because

v(<m + (1 = <)1) > min {v(m), v(n)}, V=, m,nwithx € [0,1], m,n e R;

v is upper semi-continuous so that {m € R| v(m) > A} is closed for all 4 € [0, 1]; and v is normal
because there exist m € R such that v(m) = 1. The support of v is {m € R| v(m) > 0}.

The <-cut of v € F* is closed and bounded interval [v; (), v2(<)] with v;(x) and v,(x) are called the
left and right end points of v(<). The triangular fuzzy number (TFN) v € F® is characterized in the
form of parametric fuzzy number as (v;(x), v2(x)), 0 < =< < 1. The functions v;(x) and v,(<) have
fulfil the following requirements:

(i) The function v;(x) is bounded, monotonically increasing and left continuous,
(i1) The function v, () is bounded, monotonically decreasing, left continuous,

(ii1) vy(x) < va().
Definition 2.2. Let v;,v, € FF, if there exist v3 € F¥ such that v; = v, + vs3. Then v; is called
Hukuhara difference (H-difference for short) of v and v, and is defined as v © v,.

Definition 2.3. [7] The mapping v : [0,h] — F® is continuous and Lebesgue integrable fuzzy

1 m 0 .
) fa v((qnle_z;(;(T )dq. Then v(m) is called Caputo

fuzzy fractional differentiable function of order 0 < 7 < 1 at m € (0, ) in the first form, if there exists
CD7u(m) € F* such that:

number-valued function on [0, 5], and V(m) =

(i) For every 7 positive, the expressions V(m + /1) © V(m) and V(m) © V(m — &) both exists such that
Vim+neoeVm) lim Vim)ye Vim —h)
h AN hi '

Or, v(m) is called Caputo fuzzy fractional differentiable function of order 0 < 7 < 1 at m € (0, b)
in the second form, if 3 €¢D"v(m) € F* such that

CDu(m) = lim 2.1)
N0
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(i1) For every 7 positive, the expressions V(m) & V(m + f1) and V(m — /1) © V(m) both exists such that

V(im)e V(m+ h) . Vim=h)e V(m)
= lim .
—h N\0 —h

CT _1:
Dy(m) = lim (2.2)

Indeed, v is differentiable on .7 if v is differentiable for every m € 7. The limits are taken in the
metric space (F®,d;) where d;(b;,b2) = sup {dy(b;(<),by(x) : 0 < =< < 1,b;,b, € F®)} and dy is
Hausdorff distance.

Note 2.1. R-L fuzzy fractional derivative of v(m) at m is denoted by - D7v(m) can be defined as same
as the above Definition 2.3.

Definition 2.4. [7] For a mapping v : (0,b) — F® is a fuzzy number-valued function (FNVF) and
v(m, =) = (vy(m, x), vo(m, x)), where v;(m, <) and v,(m, <) are the left and right membership function
of x<-plane, respectively.

(1) If v(m, ) is Caputo fractional differentiable of first form, then the functions v;(m, ) and v, (im, )
are differentiable and

o 0(im,2) = | Dhvi(m, ), Dhvam, 29|

(i1) If w(m, ) is Caputo fractional differentiable of first form, then the functions v;(m, ) and v, (m, )
are differentiable and

DL w(m, <) = [%vz(m, ), DFv1(m, ><>],

where,

1 111 , 1 11 ,

C\T -1 C~T -1
D + , = — - N d ) d D + 5 = = - ’ d s
o+ U1 (1M, ) r(r)fo (m—q)"v,(g,>)dg, an 0+ 2(1M, ) r(r)fo (m—q)" v,(g,>)dq
(2.3)
¥ (@) = dv)(q,») () = dv,(q, =)
.
strongly generalized differentiable function of the first and second form.

,and 7 € (0, 1). The functions v,(q, <) and v,(q, ) are both

The Sobolev space of order one on .7 with a mapping v : .7 :(— R such that it can be defined as
AT)={ve’S): v,v e [}(S)}

where .7 = (0, b).

Definition 2.5. [56-58] Letv : .7 — R, v € .(.7). Then the R-L fractional integral of order 7 > 0
is defined as:

(Srv)(m) = 1 f m(m - ¢ 'u(g)dg, form > a. 2.4)
I'(7) Ja
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Definition 2.6. [56-58] Letv : 7 — R, v € (7). Then the R-L derivative of fractional order
7>0is

k
RED . v)(m) = c;ix I ) (m), form > a, (2.5)

where k € Nand k — 1 < 7 < k. In particular, if 7 € (0, 1) and a = 0 then the aforementioned definition
takes the following form

(*LD7 v)(m) = I d f (m - q)"v(g)dg, form > 0. (2.6)
0

I - 7)dm

Definition 2.7. [56-58] Letv : .7 — R, v € .¥(7). Then the Caputo-derivative of fractional order
7>0is

€D v)(m) = (f‘k < v))(m) form > a, 2.7)

where ke Nandk—-1<71t<k. In particular, if 7 € (0, 1) and a = 0 then the above definition is

(“DLv)(m) =

F(l f (m-gq)” v(q)dq, for m > 0. (2.8)

Definition 2.8. Let v : 7 — R, v € (7). The fractional integral [59] (Section 3.1, Definition 2)
in terms of bivariate Mittag-Leffler function in the univariate form is defined as

POVNED QDR f (m =gV ES 5 (m(m = )%, m(m = g )u(g)dg, u>a, (2.9)

~E 771 flzv)(m) can be written in

where «,B,y > 0 and €,1;,n, are real parameters. The integral (,3
summation form as

+00 +00

(awzzlynzv)(m) _ Z Z (€ )k+l771772 (RLIak+Bl+y )(m) (2.10)

LS
If € = 0, then the integral in Eq (2.10) is coincide with R-L integral as

(35 Pv)m) = §Hv)(m). (2.11)

Definition 2.9. Let v : . — R, v € (7). The fractional integral [60] in terms of trivariate
Mittag-Leffler function is defined as

Sepye VM) = f (=)’ Eg 5 s(m(m = @), (i = g (= ) )u(g)dg, u>a, (2.12)

€N1,1125113

where a,8,,6 > 0 and €,1;,1,, 03 are real parameters. The integral (,J, By

summation form as

v)(m) can be written in

+00 400 +00
5 (e )k+z+m77 77 s ak+Bl+ym+6
(Spn " v)m) = ;;;ZJ @ ). (2.13)

If € = 0, then the integral in Eq (2.13) is coincide with R-L integral as

IEM ) (m) = (L1 v)(m) 2.14)
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Fuzzy fractional calculus

In this subsection, we present some fundamental concepts related to the R-L and Caputo fuzzy
fractional derivative and integral. Let C R(ﬂ Yand LF R(ﬂ ) be the space of all continuous and Lebesgue
integrable fuzzy number-valued functions on .7, respectively. We understand these definitions from
the following perspective:

Definition 2.10. Let v : 7 — R, v € CF(F) N LF (7). Then the R-L integral [16] for fuzzy
number-valued function v (in the form of x<-cut representation) of fractional order 7 > 0 is defined as:

Iu(m, ) = % f m(m ~q)"'v(g, <)dg.
Moreover, v(m, <) is called the R-L fractional differentiable of first form, if
Jrou(m, <) = [ v (m, <), 3 vp(m, x)] x € [0,1], m > a, (2.15)
and, v(m, x) is called the R-L fractional differentiable of second form, if
Jreu(m, <) = [ e (m, <), 3 v (m, x)] < € [0,1], m > a, (2.16)

where the lower and upper fuzzy number-valued functions defined as following

1 m 1 1114
Sgevi(m,x) = o) f (m =) (g, <)dg, I.vy(m,x) = e f (m—q)" 'va(g, <)dg.

On the based of above definition, the fuzzy R-L derivative of fractional order is defined as:

Definition 2.11. Letv : .7 — R, v € CF(F) N L (7). Suppose v is fuzzy fractional differentiable
of first form. Then the fuzzy R-L derivative [16] of fractional order 7 > 0 is

T d* dk
RLDT (i, o) = [ T, ), ST, x)] for m > a. 2.17)
Suppose v is fuzzy fractional differentiable of the second form. Then the fuzzy R-L derivative of
fractional order 7 > 0 is

k k

d d
[ﬁsﬁzwz(m, <), 7 — 35T (m, x)] for m > a, (2.18)
where, the entire integral is defined in Definition 2.10 and k € N such that k— 1 < 7 < k. In particular, if
7 € (0, 1) and a = 0 then the definition takes the following form for the first and second differentiability

Rl u(m, =) =

T 1
RL®a+U(m,><)_[r(1_ )dmf (m—¢q) "vi(g,®)dq, =——— T f(m q)” Uz(q,x)dq] form >0
and
RL©Z+U(m,"<)=[r(1 T)dmf (m —q) "va(q,=)dq, 1= )dmf (m—-g)” Ul(q,X)dq] for m > 0.
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Definition 2.12. Letv : .7 — R, v € CF(F)NLF (7). Suppose v is fuzzy fractional differentiable.
Then the fuzzy Caputo-derivative [57] of fractional order 7 > 0 is

d* dx
CDpum, ) = [ ST (m ), ST (i), for > a. (2.19)
Suppose v is fuzzy fractional differentiable of second form. Then the fuzzy Caputo-derivative of
fractional order 7 > 0 is

k k

d d
C©a+v(m ) = [mk Tﬂvz(m ), \5 Fvl(m l><):| form > q, (2.20)

where, the integral is defined in Definition 2.10 and k € N such that k — 1 < 7 < k. In particular, if

7 € (0, 1) and a = 0 then the definition takes the following form for the first and second differentiability
as

CD; v(m,x) =

f(m q)” U(Cl, =<)dq, f(m q) vz(q,><)dq] for m > 0,

r(1 F(l

and

Cb;v(m, ) = for m > 0.

1 111 , 1 m ’
[F(l e f (M = q)"v,(g,=)dg, -9 f (m - q)"v,(¢g,=)dq|,

The following characterization theorem explains how to convert the FFDEs into a system of
ordinary FFDE:s.

Theorem 2.1. [18] Consider the following FFDEs
CDgiu(m) = Z(m, v(m)), (2.21)
subject to the initial-condition
vo(0) = v(0, ), (2.22)
where 2 : [a, b] X F* — F® such that

@) [Zm,vm)]" = [Z5(m, va(m, %), v, (M, %)), 2500, v, (m, <), v,.(m, x))].
(i1) For any € > 0, there exist a 6 > 0 such that

| Zi(m,r,s) — Zi(my, 1y, 81) < € and | Z5(m, 1, 5) — 25(my, 1y, 51) [< €,

whenever (m, 7, s), (my, 7y, 51) € [a,B] X R X R, || (m, 7, 5) = (my, 71, 51) |lrxexe< 6 and 27, Z; are
uniformly bounded on some bounded set.
(i11) There is a real number ¢ > 0 (say) such that

| Z1(a, 12, 82) — Z4(my, 1y, s1) <K ccmax{ [ ra—ry || s2— 51|} (2.23)
and
| Z5(my, 12, 52) — Z5(my, ry, s1) IS ccmax{ | —ry || s2— 511}, (2.24)

for < € [0,1]. As a result, two systems of ordinary FFDEs are equivalent to FFDEs (2.21)
and (2.22) as follows:
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(iv) If v is fuzzy Caputo-fractional differentiable of first form, then

D vi(m, =) = Z5(m, v.(m, x), v,.(m, x)) (2.25)
and

D va(m, <) = Zo(m, v, (m, ), v, (m, x)) (2.26)
with v(0, <) = (v(1),(0, ), v2), (0, )).

(v) If v is fuzzy Caputo-fractional differentiable of second form, then

“Doivi(m, <) = Z5(m, v(m, ), v, (m, x)) (2.27)
and

CDgiva(m, =) = Z(M, v.(m, %), v, (m, <)) (2.28)

with v(0, ) = (v(1),(0, ), U2, (0, )).

Definition 2.13. Let v : F — F® v € CF(Z) N LF (7). Assume that e “v(m) is improper
fuzzy Riemann integrable on [0, +c0), then the integral fom e”"u(u)du is said to be the fuzzy Laplace
transformation [61] of function v and its symbolic representation

+00
ZLlu(m)] = f e Mu(m)ydm, g > 0. (2.29)
0
The Laplace transform can be written in <-cut representation as

+00 +00 +0oo
f e Mu(m, x)dm = [f e v (m, x)dm,f e" vy (m, $)dm|.
0 0 0

Or equivalently

Llv(m, )] =

Ly (n, =)), L(va(m, x))],

where, L(v(m,)) and L(v,(m, <)) are called the lower and upper fuzzy number-valued functions,
respectively.

In the section below, we present an analytical approach to solve multi-order fuzzy fractional
Langevin differential equations with two independent orders.

3. Fuzzy fractional Langevin differential equations

In this section, first we develop some categorial frame work for the closed form solution of fuzzy
fractional Langevin differential equations with two independent fractional orders. For this purpose,
we prove the following results, which are required to extract the Laplace transform of fuzzy fractional
derivative.

AIMS Mathematics Volume 7, Issue 10, 18467-18496.
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Theorem 3.1. Let v : Z — F® v € CF(F) N LF(Z). If v(m) is fuzzy Caputo-fractional
differentiable of first form. Then the Laplace transform of fuzzy Caputo-fractional derivative of order
k—1 < 1 < kis defined as

k=1

=|a6w|e| Y a )] (3.1)

i=0

X[CD;G(m)

If v(m) is fuzzy Caputo-fractional differentiable of second form. Then the Laplace transform of fuzzy
Caputo-fractional derivative of order k — 1 < 7 < k is defined as

k—

2|2L6m0| = -] Y a " wo)|e | - (46| (32)

i=0

—

Proof. On the base of [57]. We prove the following result as:
Suppose v(m) is fuzzy Caputo-fractional differentiable of first form. Then, by using the status first of
Definition 2.12, we have

D .G(m, =) = [€D,Gi(m, %), D], Gy(m, =)]
=[2G, =), DTG (m, w9,

where, k — 1 < 7 < k. Using Laplace transform on both sides
z[%;G(m, x)] [(33“ DGO m, <)), (DTGP (m, <)) |.

Since the operator .Z is linear. So, we have

f[%;G(m, x)] = [L(@GP (m, <)), L(DI OGP (m, x))]

= [¢"PGP(q, =), ¢TGP (g, x)]
_ k—1

— q(T k)( kG (q, ><) qu i IU(I)k(O l><)) (T— k)( sz(q’ l><) _ qu i lv(l)k(o ><)):|
B =0 i=0
_ -1 k—1

= |a7G1@ 9= Y ¢ 00,09, 4G9 = . g v 0,9)
- i=0 i=0
, k-1 k=1

= ¢"G (g, %), q"G2(q, K)] © [ qT_l_lv(l)k (0, ), Z CIH_IU(z)k O, K)]
- i=0 i=0
_ k-1

= lqGaq. x)] e[ 700, x)].
- i=0

Now for the second-differentiability. Suppose v(m) is fuzzy Caputo-fractional differentiable of second
form. Then, by using second status of Definition 2.12, we have

(“DG)(m, %) = [y, Gay(m, <), “Dy. G (m, )]
= [D4PGP (m, =), DEVGO (m, )],
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where, k — 1 < 7 < k. Using Laplace transform on both sides, we have
Z[%;G(m, x)] = f[(iv;i‘%;")(m, =)), (DTGP (m, %)) |.

Since the operator .Z is linear. So, we have

$[C©Z+G(m, x)] = |L(®T PGP (m, <)), L(DTVGP (m, ><>)]
= |46, %9.4" 06 (g, )|
- k-1 k—1
= |a (a0 = Y6 w020} P (¢ Gatg. 0 = Y ¢ w0,
N i=0 i=0
- k=1 k-1
= 076209 = Y ¢ 100,09, 4°Gi(a.29 - . a7 v (0,9)
B i=0 i=0
- k-1 k-1
= |- 2 0.9~ ) a 0.9 0| - 7 Gatg, ). -4 Gita, )|
B i=0 i=0
k-1 k—1
= —[ Z g ), (0, ), Z g v, 0, X)] S] [ - (qTGl(q, <), q"Ga(q, x))]
i=0 i=0
k—1
S]] (o)
i=0
This completes the proof. O

General procedure to solve fuzzy fractional Langevin differential equations

In this subsection, we study an initial-value problem of inhomogeneous fuzzy linear Langevin
fractional differential equations involving general orders as

(3.3)

CDgv(m) — ADiv(m) — pw(m) = g(m),
Ui(O) = Ui(07 K)s O < l < q - 19

whereg -2 <1, <g-1,9g—-1<71 <gand g > 2 with y, > 1.
Theorem 3.2. Letv : .7 — F* v e CF (Z)NLF (7). If v is fuzzy Caputo-fractional differentiable
of first form. Then the system (3.3) have the following solution

u(m) = vp(0) + vo(O)UM™ Eqy 1y 721 (um™, Am¥2) + v (0)m + vy (Oum™ M E, ) o o(um™, Am?)
k=2

T - T m — T
o U (O™ E ) e (um™, Amt?) + U(k—2>(0)r(k—_1) + Uy (O™ Er, 4 (um™, Am?)

+ fm(m - u)”_lET1 o @O =)™, A(m — u)?)g(u)du.
0
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If v is fuzzy Caputo-fractional differentiable of second form. Then the system (3.3) have the following
solution

v(m) = = WO Ey, v, p50041(%, ¥, 2) = AP E, v va1(X, 3, 2)
g 1
—Av ()M E X1 )(2/\,/3)(2+2(x’ y,2) = Am* Eyi o3 )m+2(x’ y,z) =

— Wy O E ket (%,7,2) = AMCHTE, (5, 2)
111
—/lv(k—l)(o)m)(ﬁk_lE){],sz,xﬁk(x’ v, z) — /l\[0 (m— ﬁ)zXz_]E)(lyX%X%ZXz(x*,y*’ Z*)g(ﬁ)dﬁ

V() Ey, 23,1 (X, 9, 2) = A Ey s 10041 (%, 75 2) + V1(OME), , 452(x, ¥, 2)
1 k=2). k=2
— At EXlJ(z,)(s,X2+2(X, V,2)+ e+ v m E)(l,)(z,/\f.%k—l(x’ ¥:2)

- /lmX2+k_2EX|,)(z7X3,Xz+k—l (x,y,2) + U(k—l)(o)mk_lE)m,xzm,k(x’ ¥,2)
1111
fo M=) Eyy s (8535 2)8)d8 © (= prvig(O)m™ Ey, 4y s o1 (%, 3, 2)

- /lmZX2E)(1 )cz,)(3,2)(2+1(x, y,2)e (- ﬂvl(O)mﬁ+1E)(1,X2.X3»T1+2(x’ ¥»2)
AmZMHE)n w2026y, 7))+ 0 (= po* P mn +k_2E)(1,sz,n+k—l(x’ ¥:2)
—Ameths 2E X1:X2:X3.2x2+k—1 (x’ Y, Z)) o ( - ﬂv(k_l)mTl+k_1E)(1,X2,/\(3,T1+k(x’ Y Z))

f M =D Ey oo (8,7, 2)a (D,

where x| = 271, x2 = T1 — T2, x3 = 271 — 215 and (x,y,2) = (u*m¥, 2Am2, —2>m¥) and (x*,y*,7%) =
(#z(m - 19))(1 > 2A(m - ﬁ)/\/za _AZ(m - ﬁ))@)

Proof. Applying fuzzy Laplace transform for Caputo derivative on both sides of the system (3.3), we
have

LDy v(m)] — L[A°Dgiv(m)] — L[uv(m)] = ZL[a(m)]. (3.4)
If v is fuzzy Caputo-fractional differentiable of first form, then by using status first of Theorem 3.1,
Eq (3.4) gives
k=1 _ k=2 _
| Zlvmle Y ¢ 1ui0,29] - 2lgm Ll Y g™ 0,2 - L[] = ZLatm)
i=0 i=0
(3.5)

The above expression in the form of lower and upper fuzzy number-valued functions can be written as

=~

—1

k-2
g"Llvi(m,>)] = > g™y, (0,%) = Ag”L[vy (m, <)] + A Z q" 1), 0, <) — plL[vy(m, =)] = G(q)
i=0

i

Il
[«

(3.6)

and

k—1 k-2
g" Llva(m, )] = > " v, (0,5) = Ag7L[va(m, )] + 2 3" 477, (0, ) = pLfwa(m, )] = G(q).
i=0 i=0

(3.7)
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We write the above Eqgs (3.6) and (3.7) in the given explicit form

(g = Ag™ — pL[v,(m,<)] = ("' - /UITZ_I)U(UO(O, <) + (g7 — /quz_z)U(l)l(O, )
+ o+ (@ = A7 Y1) (0, ) + g7 R vy, (0,%) + G(g)  (3.8)

and

(g — Ag™ — pL[va(m, )] = (g7 — /quz_l)U(z)O(O, <) + (g7 — /UIQ_Z)U(Z). (0, %)
+o 4 (@ = A7 Y (0,%) + ¢ R vy, (0,%) + G(g). (3.9)

The solution of Egs (3.8) and (3.9) in the form of L[v;(im, )] and L[v,(m, )]

T1-1 _ A To—1 T1-2 _ -2
L{vi(n, =] = Ty, 0,00 + T—"T 5 0,59
qr =g — q =g —p
q‘rl—k+1 _ /quz_kH q‘rl—k g(q)
Hoe . Uy (0,%) + —————v(1), (0, %) + —————
g —Aq7 — q" —Aq7 - g —Aq" —
(3.10)
and
T1—-1 -1 To—1 T1-2 -1 T2
Llvsm, e = "y 0,0+ T2y, (0,
qr = Ag™ —p qr = Aq™ —p
qu—k+1 _ /quz_k"'l qu—k g(q)
tooet T . V@) (0,5) + ——————v),,(0,) + —————.
qn —Aq" —p g =g —p g —Aq7 —
(3.11)
After simplification of Eqs (3.24) and (3.25), it gives
- H ) U
Lm0 =1+ o 0.5 o 0
[v1(m, )] = ¢ g =g =) 00t =gl 09
ok 6@
Gt | #] 0 9 0 _ g9
tootq [ g — g — Uty (0, ><)+qu - g™ _ﬂv(1)<k—1>( ’ ><)+qu — g7 —
(3.12)
and
Llva(m, )| = _1[1+—] 0, %) + _2[1+— 0,
[U2( K)] q C]T' _ /quz —u v(2)0( K) q qT' _ /1qu —u U(2)1( K)
ok G@)
ceixg ®D 1+#] 0 +q— 0 +—q.
+-+q [ g7 — /quz —u U(2)(k—2)( P l><) g — /quz _ﬂU(Z)(k—l)( 5 l><) g — ﬂq‘rz iy
(3.13)

The solution of aforementioned equations after taking inverse fuzzy Laplace transform and using
Definition 2.8, we have

1
U1, <) = (1, (0, ) + vy, (0, BOUM™ Ery o1 (™, AM2) + vy, (0, <) + vy, (0, 6<)um™ W Er o, oo (um™, Am??)
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k=2

m T - T
o e O, )F(k 1) + V(1) (0, )um B ket (T, A

k—1
+ U1y (0, QUM By, (™, Am?)
111

(M= )" Ep e (u(m = )™, A(m = u)?)g(u)du (3.14)
0

and

1
Uz(m7 ><) = v(2)0(0’ ><) + U(Z)O(O, D<)l'“TIT1E“I‘],,\/2,‘1'1+1(/'l‘n{r1 > /lmXZ) + U(Z)l (07 ><)1n + U(Z)] (0’ N)ﬂm‘rﬁ— ET],Xz,T]+2(/"nnTI ’ /lmXZ)
k=2

m - T
T Vo 2)( )F(k 1) + v(z)“"z)(o’ K)/“lmTl+k 2E71,)(2,71+k—1(,um L /lmXZ)
+ V(2)4-,) (0, s lEn,)(z,k(,umTl , Am?)
111
’ f (= 20)" ™ Ery g (0 = ), Am — )*)g ). (3.15)
0

Or

[v1(m, =), va(m, )| = (V(1), (0, ), V(2) (0, <)) + (V1) (0, <), U(2) (0, =) [um™ Epy y, 71 (um™, Am¥?) ]
+ (v(1), (0, %), vy, (0, 2))[M] + (v1), (0, %), vy, (0, 2™ Exy 2, (uum™, )]
+e (U(l)(k_z)(o’ l><)’ U(Z)(k_z) (O’ x))[/’lmTl+k_2ET|,)(2,T1+k—1(/'tm‘rl ’ ﬂmXZ)]

k=2
+ (U(l)(kfz)(o’ K)’ U(Z)(kfz)(oa x))[l“(k _ 1)]
+ (U(l)(k—l)(o’ <), U(z)(k—l)(o’ K))[/lmk_lETu(z,k(/lmTl > /lm)(z)]
+ f (M = )" 2 (= )™, A(m = 1)) g (), (3.16)
0

The above expression can be written in the form of x-level values as

[u(m)]" = [Ue(0)]" + [uO(O)um“Em,w(um“,ﬂm“)]x + [ (O)m]”

+ v1(O)Mm”“Erm,mz(um“,/lm“)] +

[ k=2 "
+ Vg2 (O)pm™* ET],,\/2,71+k—1(/1mT1’/1mX2)]

k=2

Lk—1)
+ f (M= )" Epy o ((m = )™, A(m — u))g(u)du. (3.17)
0

+ | v-2(0) ] +[U(k—l)(o)ﬂmk_lETI,Xz,k(ﬂm”,/lm“)]

Since x-values are arbitrary, so above expression can be written as

v(m) = vp(0) + ve(O)um™ Ey, ., 7,41 (um™, Am*?)
+ v (O)m + v QM ™  Eq, ) o (um™, Am) + - -

k-2
+ Uy (O™ Er ) 2kt (™, Ant?)
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mk—z

Tk—-1)

+ f (M= )" Ep oy a ((m = )™, A(m — u)?)g(u)du. (3.18)
0

+ v4-2)(0) + Ve O)um* Ep, , i(um™, Am?)

If v is a fuzzy Caputo-fractional differentiable of the second form, then by using status second of
Theorem 3.1 to the Eq (3.4), we have

k-1 -2

[ - g0, t><)9( - qﬁ.z[v(m)])] - /l[ -y q" (0, x)e( - q’zg[v(m)])] - pZv(m] = ZL[g(m)].

i=0 i

=~

Il
(=}

(3.19)

Above expression in the form of upper and lower fuzzy valued function is follows as

=~

-1 k=2
g"Llva(m,»)] = > ¢ ve),(0,x) = Ag"L[va(m, <)] + 2 Z g " v@),(0, <) — pLvi(m, x)] = G(q)
i=0

i

Il
[«

(3.20)
and
k=1 _ k=2 .
g ' L{v(m, )] — Z g vy, (0, ) — A7 L[ (m, <)] + A Z q" "), (0, <) — pll[va(m, =)] = G(g).
i=0 i=0
(3.21)

We write the Eqgs (3.20) and (3.21) in explicit form

—puL[v1(m, <)] + (" = Ag™)L[va(m, )] = (¢ = 2g™ ), (0,=) + (g7 7> = 44" v, (0, )
+ .-+ (q‘rl—k+1 _ /lq‘rz—k+1)v(2)(k72)(0, l><)
+¢" V), (0,%) + G(g) (3.22)

and

(qu - /quZ)L[Ul(ma l><)] - /lL[UQ(TTI, l><)] = (qu_l - /quz_l)U(l)O(O, "<) + (qu_2 - /quz_z)U(l)l(O, l><)
- (qT]—k+1 _ /lC[TQ_kH)U(])(k_z)(O’ )
+ ¢ V), (0, %) + G(g). (3.23)

The solution of Egs (3.22) and (3.23) in the form of L[v;(m, =)] and L{v,(m, )] is follows as

T1+12—1 _ 2151 T1+12-2 _ 2152
q Aq q Ag

L[Ul(m, l><)] =-4 /12 _ q)(l _ ﬁzqz.rz + 2/qul+T2 U(])O(O’ l><) + /Jz _ q)(l _ /12q2.1.2 + Z/quH—TZ U(l)l(oa l><)
qTI+T2—k+1 _ /qu‘rz—k+1 q‘r1+7'2—k
+et Py P Uty (0, ) + 12— g0 — gt 1 2AgT+T U(1)ery (05 )
N q"G() ]_[ ¢ gt 0. %)
/12 _ q)m _ /l2q2'rz + 2/1q7|+72 /12 _ q/\(l _ /12q27'2 + 2/lq‘rl+‘r2 (Do\Ys
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1—2 _ ﬂ T1+T2—2 1—k+1 _ /1 T1+T2—k+1
T T 2 zci V(00 e 4 z 2 Zq"r i Vg (0,9
'u_q)(l_/lq 2+2/1q| 2 Iu—q/\/l_/lq 2+2/1q1 2
g q"Gq)
+ _ 2 27 TI+T (1)(k 1)(0’ l><) + 2 _ — 227 TI+T
,U g — ,1 2+2/1q1 2 u qr /lq 2+2/lq1 2
q _ /l(]T2 1 q'r]—Z _ /qu2_2
B ,Ll Cf\/l /12 27y + z/lqﬂﬂ'z (2)0(0’ K) + qu _ q){l — /quZTz + 2/1qT1+T2 U(z)l(o’ l><)
qu —k+1 _ /1qu —k+1 qTI_k
+ e+ /12 e /12q272 n 2/1qu+72 V()42 0,») + ’uz — g — /12q272 + 2/1q71+72 U(2)(k—l)(0’ >)
G(9) (3.24)

’uz _ q/\q _ /quZTZ + z/qu|+T2

and

qT1+72—1 _ /lCIZTz—l q-rl+‘rz—2 _ /qu‘rz—Z

L[Uz(m, l><)] = _/l q/\/l /12 271y + 2/1q7'1+‘r2 (2)0(0’ K) + lu2 _ le — /12q2‘r2 + 2/1qu+7'2 U(Z)I(O’ K)
q7'1+7'2 —k+1 _ ﬂqZ‘rz —k+1 qu+7'2—k
+ e+ luz v /1qu72 n 2/1qu+72 V22 0,>) + 'uz — g — /12q2‘r2 + 2/1q71+‘rz U(Z)(k-l)(o’ )
7°G(q) ]_[ ¢ A g
#2 _ le _ /12q2T2 + ZAqT1+T2 MZ _ le _ /12q2‘1'2 + 2AqT1+T2 ) ?
1—2 _ 1 T1+T2—2 1—k+1 _ /1 T1+T2—k+1
+ /12 _ ;: /12 Zc‘lrz + Z/qu|+T2 U(2)I(O’ K) oot /12 _q;(l/\/l — /12q2q‘r2 + 2/1qu+T2 U(z)(k*Z)(O’ l><)
A 9" G(q)
— 2 27 T1+T (2)(k—1)(0’ l><) + 2 _ — 227 TI+T
,U g — ,1 2+2/1q1 2 u qr /lq 2+2/lq1 2
q /16]72 1 q'rl -2 _ /qu2_2
- ,u — g0 — g+ 2gT U (0, %) + 12— gt — g 4 2Agn+ v, (0,
qu —k+1 _ Aq‘rz—k+1 qu_k
+ .+ U(l)(k—Z)(O’ P() + U(l)(kfl)(o’ [><)

lu2 _ q,\(l _ /12q272 + 2/1q'r|+7'2 #2 _ C[X] _ /12q2‘r2 + 2/1q7'1+‘r2

5@ . (3.25)
’uz _ q/\q _ /quZTZ + 2/qu|+T2

The explicit form of the solution after taking inverse fuzzy Laplace transform on the Eqs (3.24)
and (3.25) and applying the Definition 2.8, we have

v (m, ) =—/l[(mX2EX1M,X3,X2+1(x» ¥:2) = A Ey s n+1 (XY Z))U(l)o(o’ )
+(m“”EX1,X2,X3,X2+2(x, ¥:2) = AETE (39, Z))U(”l(o’ =)
Foeot (m)mk‘2 Eysomsmatit (6, 9,2) = AMCHZE (3, Z))U(l)(k—Z) (0, )
VTR k(6 Y, DU, (0, ) + fo (M =N TE, o (X Y, 2)s(Ddd
+ [(ml_lEXMZ,X},l(x, ¥,2) = AMPE, e (XY, Z))U(l)o(o» <) + (mEX1J(2s)(3a2(x’ %9

1 k-2
— Am©” EXI’)(Zs)(SaXZ‘*'Z('x’ Vs Z))U(l)l(o’ <)+ (m E)m,xzm,k—l(x’ ¥,2)
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—AMCHE ko1 (5, Z))U(l)(k_z) (0,0) + M Ey k(56 7, 215, (0, )
¥ f = 9 Ey, e (20m — B, 20(m — ), — 19)"3)9(19)4119]
0
+ ﬂ[(mTlEX1,)(2,)(3,‘r]+l(xv ¥.2) =AM E, e (%), Z))U(z)o(O, <)
+ (mT]HEX.,Xz,X;,T.Jrz(Xa ¥.2) = APCHE (XY, Z))U(z). (0,»)
Tt (mT]+k_2EX1,Xz,)(3,71+k—1(xa ¥,2) — /lmZX2+k_2EX1»/\,’2»\’332X2+k—1(x’ Y Z))U(2)<k-z> (0, )

+m™ +k_]E)(1,)(2,X3,T|+k(X, Y, Z)U(Z)(k—l)(o’ <)+ f (m -~ ﬂym_]EXWm%&m (x*,y*, Z*)g(ﬁ)dﬁ]
0
(3.26)

and
vy (M, ) =—/1[(m“EX1,X2,X3,X2+1(X, ¥,2) = AMBE, e (X5, Z))U(Z)O(O, ><)
+(m““EX1MM,X2+2(x, y,2) = AMSTE (X, z))v(z)l(O, )
ot (mXHk_ZEXI,Xz,Xaerk—l(x’ ¥,2) = /lmXSJrk_zE)m,sz%ﬁk“(x’ Y Z))U(2)<k—2) (0,)
+mX2+k_1EX1,X2,X3,X2+k(X, Y, Z)U(z)(k,l)(o’ <) + Lm(m - ﬂ)ZXZ_IEXI,Xz,Xg,ZXZ(X*’y*, 7")a(dd
(01 B (302) = A0 B0 (53,2 oo 0,59 + (M 025342)
—ACTE, (Y, z))v@l(o, <) 4 -+ (m"‘zExmm,k_l(x, ¥,2)
—AMCHE i1 (5,9, Z))U(z)(H) (0,%) + M Ey, k(X 7, 2V, (0,%)
+ f m(m — DTE, s (P (M= 9, 22(m — )2, =A% (m — )Y )g(ﬁ)dﬁ]
0
+ ﬂ[(m“ Eysrisms1(69:2) = AMPCEy o a(x, Y, Z))va)o(O, <)
(M B 2(63,2) = A0 By 25,9 (0,59
+-e 4 (mT”k_zEXl,sz,Tﬁk—l(X, Y, Z) - /lmZX2+k_2EX17)(2,/\(3,2)(2+k_1(x’ Y Z))U(l)ac—z) (0, <)

+mT1+k_1E)(l,)(z,)(s,‘rwk(x’ Y, Z)U(l)(k—l)(o’ <)+ f (m = ﬂ)Xl_lEXl’)(z’XS’XI (x*,y*, Z*)g(ﬁ)dﬁ],
0
(3.27)

where, (x,y,z) = (u2mX1, 2Am2, —°m¥3) and (x*, y*, z*) = (u?(m — P, 2A(m — P2, =22 (m — 9)©).
In the form of x-level values, we have

v(m) = [ = Awe(OMPEy, 1, 50001 (6,9,2) = AMCE, 4o vs 1 (X, Y, )|
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_[/lvl (O)mX2+] E,\(l,)(z,,\(3,/\/2+2(x’ Ys Z) - /lm/mﬂ EXI’/\,/2:X3»/\,’3+2(X’ Ys Z)]b<

- [/lv(k—2)(0)m)(2+k_2EX17/\,/2,)(3,)(2+k—1(x’ Ys Z) - ﬂmX3+k_2EX1,/\/2,)(3,X3+k—1(x’ ys Z)]b<

111
_[/lv(k—l)(o)mXZJrk_lEXl,/\,/z,Xa,/\’2+k(x’ Ys Z)]b< - /lf (m - ﬁ)zxz_lEXh)(z,Xa,Z)(z(X*’y*a Z*)g(ﬁ)dﬁ
0

+[U0(0)E)(1»)(2,)(3,1(x, ¥,2) = ﬂmXZE)m,Xz,Xz,)(zH(X, ys Z)]l>< + [UI(O)mE)(h,\{zM,Z(x’ ¥:2)
- /lmX2+1EX1,X2x3,)(2+2(X, ») e+ [U(k_Z)mk_zEXu)(z,Xz»k—l(x’ Y;2)

- /lmX2+k_2EX1,)(z,)(3,)(z+k—l(x’ y.2)] + [U(k—l)(O)mk_lE)n,)(zm,k(x’ .2
101
+ f (m-— ﬁ)Tl_lEXI,,\/z,/\q,‘r] ()C*, y*, Z*)g(ﬂ)dﬂ © [ - IUUO(O)n{rl EX1V\/2,)(3,11+1(x7 Y, Z)
0

— /lmZXZEleXZsX3,2X2+1(xa Vs Z)]l>< o[- /lvl(O)mTIHE/\{lV\(zM,THZ(X’y’ 2)
—lm2X2+1E,\(1,)(2,)L’3,2)(2+2(X, Vs Z)]b< +---0 [ - ﬂv(k_Z)mTlJrk_zEXl,)(zy\/}aTl+k—1(x’ Ys Z)

_AmZXz‘Fk—ZEXI%2’X3’2X2+k_1 (x, y, Z)]l>< o [ _ ,UU(k_l)mTl+k_1EX1,X2,X3,Tl+k(x, y, Z)]x

11t
-1 £ k%
+f (m — EXl,/\./z,Xs,)(l(x »Y 5 < )g(ﬂ)dﬁ.
0
Since x-level values are arbitrary, so above expression can be written as

v(m) = _/lUO(O)mXZE)m,XMMHI(x’ ¥,2) = /lmXSE)a,)(z,)(s,)(ﬁl(x»Ya z)
1 1
—A (O Ey s 2(63,2) = AMOTE (3,9, 2)

k=2 k=2
== Wy O IE skt (6,9, 2) = AMTTTE, k1 (X5, 2)

111
_/lv(k—l)(o)mXZJrk_lE)(l,/\(2,)(3,/\/2+k(x’ Y, Z) - /lf (m B ﬁ)ZXZ_IE)(l,Xz»/\(s,ZXz (X*’y*’ Z*)g(ﬁ)dﬁ
0

+U0(0)EX1,)(2,)(3,1()C, ¥,2) = ﬂmXZE)(l,Xz,Xz,)(zﬂ (x,y,2) + UI(O)mE)(l,)(z,Xs,Z(x’ 259
1 k=2).. . k=2
— Amt EXl,)(z,XLXHZ(X, Y Z) +o+ 0 Pm EXl,Xzy\fa,k—l(x’ Y, Z)

- /1mX2+k_2E/\/1,/\/2,/\/3,)(2+kf1(x’ y’ Z) + U(k*l)(o)mk_lE/\/l,,\/z,,\/3,k(x’ y9 Z)
m
+ f (m — ﬂ)ﬂilExl,,\(z,)m,n (", ¥, 2)8@)d8 © —uvo(O)M™ Ey, 1, yy 741(%, ¥, 2)
0

2 +1
—Am XzEle\(z,)(a,Z)(ZH(x’ Vs Z) © —uv; (O)mTl EXI’)(Z;X3,T1+2(‘X’ Ys Z)
2x+1 k-2 +k-2
—Am™ EX1,X2%3,2X2+2(X, Ys Z) +---0 _luv( )mTI EX|%2,X37T|+/<—1(X’ Y, Z)

2yr+k—2 k- k-
_/lm X2t EX1,)(2,X3,2)(2+1{—1(X’ y’ Z) e _,uv( l)mTl+ 1E)(1,)(2,X3,T1+k(x9 y, Z)
n
+ f (m— ﬁ)XI_lE)m,Xz,Xsm (x*,y", 2")a()dv.
0
This completes the proof.

Now we consider the homogeneous FFLDEs with uncertain initial-conditions

CDgrv(m) — ADgiv(m) — pv(m) = 0,
vi(0) = v;(0, ),

whereg—-2<1,<g-1,9g—1<71 <gand g > 2 with y, > 1.

(3.28)

(3.29)
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Theorem 3.3. Letv : 7 — F® v e CF(F)NLF (7). If v is fuzzy Caputo-fractional differentiable
of the first form. Then the system (3.29) have the following solution

v(m) = v(0) + vo(O)UM™ Ex, 2y o1 (um™, Ant¥?) + v (0)ym + v (QO)um™ M E, ) o o (um™, Am®?)
k=2

m * v(k_l)(o)ﬂmk_lEﬂ,Xz,k(ﬂmﬂ, /lm“),

k-2
+ o UGy (Om™ T TE L e (um™, AY?) + v 2)(0)

If v is the fuzzy Caputo-fractional differentiable of second form. Then the system (3.3) have the
following solution

v(m) = — AWwe(OMPE,, 1, vsins1(6,3,2) = AMCE, (X, 9, 2)
- /lvl(O)mXZHEXl,)(z,)m,XﬁZ(x’ ¥,2) — /lmX3+lE)(|,X2,X3,)(3+2(x’ ¥,2)
T /lv(k—Z)(O)mX2+k_2EX1,Xz,xz,xﬂk—l(x’ ¥,2) = /lmXﬁk_zExmz,xa,xﬁk—l(x’ ¥, 2)
= Wy O E sk (6,7,2) + U0(0)Ey, .1 (X, 9, 2)
— AME, | ) vspar1 (6,9, 2) + 1 (O)YMEy, 4, 152(%, 9, 2)
- /lmX2+1EX1,)(2,/\/3,X2+2(x’ Y, Z) +eot U(k_Z)mk_zE)(l,sz,k—l(x’ Ys Z)
- ﬂmXZJrk_zEXlaXZ’XS’)(erk—l(x’ y,.2) + U(k—l)(o)mk_lE)(l,)(z,xs,k(x’ ¥, 2)
O (— pvoOM " Ey o1 (6,3,2) = AMPCE oo (x, Y, 2))
o (- uv, (O)mTIHE)(],sz,TﬁZ(x’ ¥,2) = /lsz2+]EX1y\(2,)(3,2X2+2(x’ ¥,2))
o---o(- luv(k_Z)mTl+k_2EX1,X2,X3,T1+k—1(x»yv 7) — /lm2X2+k_2EX1a)(z,/\./372)(z+k—1(x’ ¥,2))

o (= I g, (6y.2)).

Proof. We can proof the Theorem 3.3 easily by using the above general approach, so we omit it here.
m|

As a spacial case, when 0 < 7, < 1, 1 < 7; < 2. We consider the following inhomogeneous fuzzy
fractional Langevin differential equations

CDgiv(m) — A“Dgiv(m) — pv(m) = g(m), (3.30)
v0(0) = (W), (0, ), v(2),(0, <)), v1(0) = (v(1y, (0, =), v2), (0, %)), |

as well as homogeneous fuzzy fractional Langevin differential equations
CDg.v(m) — A°Dgiv(m) — pu(m) = 0, (3.31)
10(0) = (W1, (0, ), 12y, (0, ), v1(0) = W1y, (0, %), 12, (0, ).

Theorem 3.4. Letv : .7 — F* v e CF (Z)NLF (7). If v is fuzzy Caputo-fractional differentiable
of first form. Then the system (4.3) have the following analytic solution

v(m) = vp(0) + vo(O)um™ E;, ,, 7,41 (um™, Am*?)
£ (O + v (O™ Ey o™, )

+ fm(m - u)”_lET1 o (@O —w)™, A(m — u)?)g(u)du.
0
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If v is fuzzy Caputo-fractional differentiable of second form. Then the system (4.3) have the following
solution

v(m) = — /lvo(o)mXZEX1%2J(3,X2+1 (x’ Vs Z) - /lmXSE)(l,XzMMH (x’ Vs Z)

— W (O E o 0(X,3,2) = ATE, (%), 2)

- fo (M =P E, 20 (Y, 2)8@dd + vo(0)E,, 4pps1 (X9, 2)
—AME, 0 i+1(6, 9, 2) + U1 (0YME,, 1, s 2(%, 1, 2)

—ACTE (XY, 2) + fo (M =" Ey opam (5 Y5 2)a(@)d0

O (— oM™ Ey, 4, y3m+1(X,9,2) = ﬂmZXZEXqu,Xs,ZXﬁl(x’ ¥,2))

o(- fwl(O)mTlHEXl,Xz,Xs,THZ(x’ ¥,2) = /lmZXZHEXl,Xz,)(3,2)(z+2(xs ¥,2))

+ f (M= E s (X555, 2)a(@3)d .
0

Theorem 3.5. Letv : 7 —> F® v e CF(7)NLF (7). If v is fuzzy Caputo-fractional differentiable
of first form. Then the system (3.31) have the following analytic solution

v(m) = v(0) + vo(O)UM™ Ex, 1y 2,01 (um™, Ant¥?) + v (0)m + v (O)um™ E, ) o o (um™, Am?),

If v is fuzzy Caputo-fractional differentiable of second form. Then the system (3.31) have the following
solution

v(m) = — AWe(OME,, 1, a1 (6, 9,2) = AMCE, (X, ), 2)
- /IUI(O)mXZHEXqu,Xs,XﬁZ(x’ ¥,2) — /lmX3+1EX1,)(2,X3’X3+2(x’ ¥,2)
+U0(0)Ey, yos1 (X, 9,2) = AMPPE, ) os1 (2,3, 2) + U1(OME,, ) 1.2(X, Y, 2)
— A Ey s i02(%752) © (= g0 Ey, g, 451,41 (%, 3, 2)
- /lmZXZEXan,Xs,ZXzH (x,,2))© (— pv, (O)mTIHEXl’XZ,)(LTH'Z(x’ ¥>2)

- /lmZXerlEXl ,/\/2,/\/3,2)(2+2(x’ Y, Z))

Proof. The proof of Theorems 3.4 and 3.5 are straightforward. O
4. Application of fuzzy fractional Langevin differential equations in RLC-electrical circuit

This section is concerned with the subject of real-world applications. Real-world applications such
as electrical circuits that have a mathematical description may lead to the linear fuzzy fractional
differential equations. Several parameters in these equations are determined via measurements,
observations, or experiments. Because measurements are not always exact, these parameters become
unclear. When such uncertainties are represented by fuzzy sets, fuzzy linear fractional differential
equations become more important. We solve an RLC-electrical circuit problem which is commonly
used in engineering science and physics. Many researchers [50-52] studied the existence and
uniqueness of solutions to fractional Langevin differential equations and anti-periodic fractional
Langevin differential equations. We consider a fuzzified version from classical circuit analysis [55].
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Suppose that 7 (m) represents the current in the RLC series circuit where the RLC circuit symbolized
resistor, inductor, and capacitor, respectively are connected in series with voltage. Consider the
fuzzified RLC-electrical circuit associated with the resistor, inductor, and capacitor shown in the
following Figure 1 such that the voltage:

C (Capacitor)

R (Resistor)

I I(m, a) (Fuzzy curren t)

L (Inductor)

E (Voltage)

Y

Figure 1. An RLC electrical network.

d
(1) Resistor: Vz(m) = RZ(m) where d_nQ1 = 7 and the charge Q.
dI(m)
dm ~

m

1
(ii1) Capacitor: Ve(m) = C o I (x)dx.

(i1) Inductor: V (m) = L

Using Kirchoff’s voltage law, sum of voltage on every loop in a circuit equivalent to the voltage E(im).
Therefore, we have

Vr(m) + Vi(m) + Ve(m) = E(m),
or
RI + LT + é f Tdm = E(m).
The second order non-homogeneous ODE is
RI (m) + LI (m) + éI(m) = E(m). 4.1)

Now we develop a fuzzified version of the Eq (4.1). The initial-value problem for fuzzy fractional
Langevin differential equations that represents the RLC series circuit in the following manner

T Ip) 1
{LC®0+I(m) +RCDgI(m) + Ef(m) = E(m), 42)

10(0) = (L 1),(0,%<), L 2),(0,%)), 11(0) = (L1),(0,%), 1 3,(0,x)),
with the uncertain and vagueness initial condition Z((0) and 7 (0) that represent the fuzzy numbers.
The above initial-value problem is a special case of the system (3.3) where the fractional orders should
be replaced withO <7, < land 1 <7 < 2.

Now we determine the value of the current 7 (m). If 7 is fuzzy Caputo-fractional differentiable of
first form. Using the first status of Theorem 3.2, we have the following solution
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I(l) (O, ><)mT' mr Rn¥2
-Z-l(m$ ><) :I(l)o(()’ K)_OT T1,)(2,T1+1(_ a’_ L )
I (1y,(0,<)m m’ Rn?
f T1,)(2,T1+1(_a’_ L )
1 rm o (m—uw)™  R(m—u)?
+7 fo M=) "Eq e (— LT I )E(u)du
and
7 2),(0, =)m™ m’ Rm
Ir(m, <) = 1 9),(0,<) — OT e +1( = reT AN )
I(z) (O, ><)m m Rmx2
+ lfl;‘rl,)(z,‘l'1+l( - 59 - L )

1111
e (m—w)™ R(m—u?
+7 ) (Mm=uw)"""Eq e (- oL

)E(u)du.

We assume the values for every parameter as 7, = 1.5, 7; = 0.5, 7(0) = (2,2 — @), 7V(0) = (0.5, 1 -

1
0.5@) with R, L and C are 20, 8 and 200° respectively.

In Figure 2, the fuzzy solution for different values of « is strong. Moreover, the plots are smooth
with different frequency (frequency taken as a fuzzy function).

As we can see from the Figures 2 and 3, the current has smoothness with the less frequency. The
smoothness of the plots decreases as the fuzzy function increases.

If 7 is fuzzy Caputo-fractional differentiable of second form. Then the second status of Theorem 3.2
gives the following solution

m —2RmY? — Rt
Ii(m,x) = [E/\,/l,)(z,)(s,l( )

T L I
2 m —2Rm¥? —R*n¥3
+ Em EXIJ(Z:X3’X3+1(C2L2’ L > L2 )
2R mY —2Rm¥? —R2m¥
+ TmXZEXI,XZvX.%XZ"'l(CQLZ’ L 4 L2 )]I(I)O(O’ l><)
mY —2Rm¥? —RPmX
+ [mEXl ,/\/2,)(3,2( C212 . [2 )
R . mr —2Rme —Rim
+ Em » EXI!XZV\/3,/\/3+2(C2L2’ L > L2 )
2R m —2RmY? —RPm¥s
+fm“HExmm,mﬂ(Csz, 7 2 )]f<1>1(0"’<)
- mY —2Rm¥* —R2m¥
_[Em EX‘M’“’””(CZLZ’ L )
R m¥t —2Rm¥? —RPm¥3
+@mZXZExl,mz,zml(CZLZ’ T 2 )]I(Z)O(O’ ><)
| mY —2Rm¥? —R2mX
_[Em EX"XZ’“*"”(C%Z’ L I )
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R mt —2Rm¥? —RPmx
+ @mz/\/z‘*'lEX] X2:X3 2)(2+2(C2L2’ I s 12 ):IZ(Z)I(O, l><)
L™ . (m =9 —2R(m — 9 —R*(m — P
+[Lf (m—-3"" ) )(1)(2)(371( C2 L2’ 2 ) 2 )E(ﬁ)dﬂ
. (m = —2R(m — 9> —R*(m — P
t5 f (m—9)*"E 1)(2,/\/3,2)(2( TR T — )E(ﬂ)dﬁ]
- (m =90 —2R(m — 9y —R2(m — 9
[Csz (m - 19))( EXI)(2X3)(I( c22 I s 12 )E(ﬁ)dﬁ ,
and
m o —2Rm? —R’m©
IZ(m l><) [ X1X2X31(C2L2, I 5 L2 )
2 mY —2Rm¥? —R*n¥3
+ Em E 1)(2,X3sX3+1(C2L2’ L 5 L2 )
m¥ —2Rm¥? —RPm©
+fm EX1X2X3X2+1(C2L2’ L > 12 )]1(2)0(0,'*)
mY —2Rm¥? —RZm
+ [mE)(l,Xz,XLz(CZLz’ L s L2 )
R . mY —2Rm¥? —R*m¥3
+ Em EXla)(z,)(s,)(3+2(C2L2’ . 2 )
2R m —2RmY? —RZm
+ TmXZHEX“XZ’“’XZ”(CZLZ’ L Iz )]f(z),((), <)
1 7] mY o —2Rm¥? —RZm
B [Em EX"“’“’””(CZLZ’ L I )
R mt —2Rm¥? —R2m©
+ @m CE 1xzx3,2xz+l(C2L2a . Iz )]I(l)o((), <)
| mY —2RmY? —RZm
[CL E 1X2,)(3,T1+2(C2L2’ 7 12 )
R m o —2Rm? —R’m
+ —m2X2+1E X1X2X3 2X2+2(C2L2» I s 12 )]1(1)1(0, l><)

. (m =9 —2R(m — 92 —R*(m — P
f (- 9)"E, . ( R e )E(ﬁ)dﬂ
] (m— 9y —2R(m - 9y —R:(m — B)©
+—2 f (m— ﬁ)z)ﬁ lE)(],Xz,)(LzXz( 2z I ’ 12 )E(ﬁ)dﬁ]

(m =9y 2R(m — 9> —R*(m — 9

ch (m = oyt *”‘”‘”‘( c2L? L ’ [2 )E(ﬂ)dﬂ]'

The underlying notes can be seen in the graphs: All plots are nearly identical in their behaviors. The
plots are in pretty close agreement with each other. Especially when considering the fuzzy Langevin
linear fractional differential equations. The solution is a fuzzy function at every point in the domain
and the fuzzy Langevin linear fractional differential equations have strong ties to the model profiles. To
overcome the complexity of bivariate and trivariate Mittag-Leffler function, we draw the graphs using
Definition 2.9 and taking € = 0 in Eq (2.13) with E(m, @) = (10 + 10a,30 — 10a@)m and E(m,a) =

(10 + 10a, 30 — 10a)m? as shown in Figures 25, respectively.
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Figure 2. a-cut solution representation for upper and lower fuzzy number-valued functions
for different values of « € [0, 1].

x10°®

Km) i(m)

Figure 3. Plots of 7 (m) with E(m,a) = (10+ 10a, 30 — 10a)m and E(m, @) = (10+ 10a, 30 —
10a)m?, respectively.

Figure 4. a-cut solution representation for upper and lower fuzzy number-valued functions
for different values of a € [0, 1].
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T A R R I A A M M|

[V I R N R

Figure 5. Graphical representation of the current 7 (m) involving with different functions
E(m,a) = (10 + 10a, 30 — 10a)m and E(m, a) = (10 + 10a, 30 — 10a)m?, respectively.

Example 4.1. Now we present the example as an application of Theorem 3.5 mentioned in Section 3.
Consider the following inhomogeneous fuzzy fractional Langevin differential equations

{CD(I);Sv(m) — 20D u(m) — [(1.5)u(m) = g(m), s

vo(0) = (< + 1,3 =), v1(0) = (x +4,6 — ),

For instance, let 7, = 1.5, 7, = 05, 4 = 2, u = I'(1.5) and g(m) = sin(m). If v is fuzzy Caputo-
fractional differentiable of first form. Then the system (4.3) have the following analytic solution

v(m) = (< + 1,3 =) + (< + 1,3 — )L (1.5)m' E| 5.1 5 5(T(1.5)m'>, 2m")
+ (< +4,6 — )M+ (< + 4,6 — )(1.5Ym>E, 5, 35(T(1.5)ym"3, 2m")

+ f m(m ~ N E 5115CL5)(m = ', 2(m — u)') sin(P)do.
0

If v is fuzzy Caputo-fractional differentiable of second form. Then the system (4.3) have the following
solution

v(m) = = 2(x + 1,3 = s)ym' E3 1 5.141(x,9,2) = 2m*E3 12241 (%, . 2)
—2(<+4,6 - "<)m1+1E3,1,2,1+2(X, Y, Z) - 2m2+1E3,1,2,2+2(X, Y, Z)

111
- Zf (m-— 19)21_1E3,1,2,21(x*,y*, Z7)sin()dd + (< + 1,3 = <)E512.1(x,¥,2)
0
—2m'E3 1 0.041(%,y,2) + (< + 4,6 — <)ME3 1 22(x, , 2)
—2m"™ Es 100, y,2) + f (m =N Ey 1 005(x", Y7, 2) sin(@)dd
0

o (=T(1.5) (< + 1,3 —=)m' E31525(x,y,2) = 2m* E3 1 22141(x, 7, 2))
© ( —T(1.5)(< +4,6 - ><)m2'5E3,1,2,3_5(x, y, Z) - 2m21+1E3,1,2,21+2(X,y, Z))

+ f (m — 3 Ey 1 05(x, ", 2) sin()d,
0

with (x,y,2) = (T(1.5))>m3, 2(2)m', —(2)*m?) and
(x*,y*,2°) = (C(1.5)*(m = 9)°,22)(m = D', =(2)*(m — 9)?).
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5. Conclusions

The fuzzy fractional Langevin differential equation is a significant topic with several applications in
science and engineering. Using the aforementioned technique, this paper shows how to extend and find
the solution of the fuzzy Langevin fractional differential equation analytically. The aim of this study is
to determine the explicit and analytical fuzzy solution of both fuzzy fractional Langevin homogeneous
differential equations and non-homogeneous fuzzy fractional Langevin differential equations. The
potential solution of fuzzy fractional Langevin differential equations is extracted using the Laplace
transformation technique. Furthermore, these solutions are defined in terms of bivariate and trivariate
Mittage-Leftler function both in general and special cases. To grasp the novelty of this work, we
connect fuzzy fractional Langevin differential equations with the RLC electrical circuit and analyze
their graphs to visualize and support the theoretical results. In future, we plan to solve the system of
fuzzy fractional differential equations using the proposed technique.
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