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1. Introduction

Fractional calculus is as old as ordinary calculus, i. e. at three centuries; however, it is not widely
used in research and engineering. In a letter to Leibniz dated September 30, 1695, L’Hopital introduced
the concept of fractional-order derivatives. In Lacroix’s writings, P. S. Laplace defined a fractional
derivative of arbitrary order in 1812. Several researchers have developed excellent literature on
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fractional differentiation and integration operators for the purposes of extending scientific and technical
areas, including Caputo [1], Oldham and Spanier [2], Carpinteri and Mainardi [3], Samko et al. [4],
Ahmed et al. [5], Podlubny [6], Atangana and Alabaraoye [7], Kumar et al. [8], Yin et al. [9] and
Arife et al. [10]. The beauty of fractional derivatives is that they are not local point properties. The
genetic and nonlocal dispersed effects are taken into account in fractional calculus. This property
makes it more accurate than the integer-order derivative description.

Due to their proven applications in science and engineering, fractional differential equations
have grown in prominence and popularity. These equations, for example, are increasingly being
utilized to simulate problems in signal processing, biology, fluid mechanics, acoustics, diffusion,
electromagnetism and a wide range of other physical phenomena. The nonlocal quality of fractional
differential equations is the most essential advantage of utilizing them in these and other applications.
The integer order differential operator is well-known to be a local operator, whereas the fractional order
differential operator is not. This indicates that a system’s next state is determined not just by its current
state, but also by all of its previous states. The theory of fractional differential equations better and
more systematically describes natural occurrences [11–19].

Fractional coupled systems are commonly used to investigate the complex behavior of plasma that
contains several components such as atoms, free electrons and ions. Many scholars have tried to assess
this behavior. Recently, Paul Kersten and Joseph Krasil’shchik investigated the Korteweg-de Vries
(KdV) equation and modified KdV (mKdV) equation, proposing absolute complexity between coupled
KdV-mKdV nonlinear systems for the investigation of nonlinear system behavior [20–23]. Many
scholars have proposed numerous variants of this Kersten-Krasil’shchik coupled KdV-mKdV nonlinear
system [24–28]. Among these variants, the nonlinear fractional Kersten-Krasil’shchik linked KdV-
mKdV system provides a mathematical model for understanding the behavior of multi-component
plasma for waves travelling along the positive zeta axis:

DαχF + F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ = 0, χ > 0, ϑ ∈ R, 0 < α ≤ 1,

DαχG + G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG = 0, χ > 0, ϑ ∈ R, 0 < α ≤ 1,
(1.1)

where ϑ is a spatial coordinate and χ is a time coordinate. The fractional operator’s order is represented
by the factor α. The Caputo form is used to study this operator. When α = 1, the fractional coupled
system becomes a classical system, as follows:

Fχ + F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ = 0, χ > 0, ϑ ∈ R,

Gχ + G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG = 0, χ > 0, ϑ ∈ R.
(1.2)

If G = 0, the Kersten-Krasil’shchik linked KdV-mKdV system is converted to the well-known KdV
system as follows:

Fχ + F3ϑ − 6FFϑ = 0, χ > 0, ϑ ∈ R. (1.3)

When F = 0, the Kersten-Krasil’shchik coupled KdV-mKdV system becomes the well-known mKdV
system as follows:

Gχ + G3ϑ − 3G2Gϑ = 0, χ > 0, ϑ ∈ R. (1.4)

As a result, the Kersten-Krasil’shchik linked KdV-mKdV system can be considered of as a combination
of the KdV system and the mKdV system, which are represented by (1.2) to (1.4). We also investigate
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the following fractional nonlinear two component homogeneous time fractional coupled third order
KdV system in this work as follows:

DαχF − F3ϑ − FFϑ − GGϑ = 0, χ > 0, ϑ ∈ R, 0 < α ≤ 1,

DαχG + 2G3ϑ − FGϑ = 0, χ > 0, ϑ ∈ R, 0 < α ≤ 1,
(1.5)

where χ is the temporal coordinate, ϑ is the spatial coordinate and α is the fractional operator’s order
factor. The Caputo form is used to study this operator. When α = 1, the fractional coupled system
becomes a classical system, as follows:

Fχ − F3ϑ − FFϑ − GGϑ = 0, χ > 0, ϑ ∈ R,

Gχ + 2G3ϑ − FGϑ = 0, χ > 0, ϑ ∈ R.
(1.6)

To solve the differential equations, we employ the natural decomposition method (NDM), which
combines the natural transform (NT) and Adomian decomposition method and offers the approximate
solution in series form. The proposed method has been implemented with the aid of two different
fractional derivatives to solve two nonlinear systems. Many researchers have employed the NDM to
obtain approximate analytical solutions, and it has provided reliable and closely convergent results.
The calculations were done in Maple. The convergence of the proposed technique was also achieved
by extending the concept discussed in [29, 30].

The organization of the present paper is as follows: Section 2 gives some basic definitions and the
properties of the natural transform that is used in our present work. Section 3 handles the methodology
of the proposed technique. In Section 4, we presented the convergence analysis of the suggested
technique. Section 5 gives the implementation of the suggested approach to approximate the solution
of the above systems. Finally, we discuss the obtained results and conclusion.

2. Preleminaries

In this section, we recall some basic definitions and results from fractional calculus.

Definition 2.1. The Riemann-Liouville integral of a function j ∈ Cµ, µ ≥ −1, having fractional-order
is defined as [31]

Iα j(ρ) =
1
Γ(α)

∫ ρ

0
(ρ − µ)α−1 j(µ)dµ, α > 0, ρ > 0,

and I0 j(ρ) = j(ρ).
(2.1)

Definition 2.2. The derivative of j(ρ) with fractional-order in the Caputo sense is given as [31]

Dαρ j(ρ) = Im−αDm j(ρ) =
1

Γ(m − α)

∫ ρ

0
(ρ − µ)m−α−1D( j(µ))dµ, (2.2)

for m − 1 < α ≤ m, m ∈ N, ρ > 0, j ∈ Cm
µ , µ ≥ −1.

Definition 2.3. The derivative of j(ρ) with fractional-order in the Caputo-Fabrizio (CF) manner is
given as [31]

Dαρ j(ρ) =
F(α)
1 − α

∫ ρ

0
exp

(
−α(ρ − µ)

1 − α

)
D( j(µ))dµ, (2.3)

where 0 < α < 1 and F(α) is a normalization function with F(0) = F(1) = 1.
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Definition 2.4. The derivative of j(ρ) with fractional-order in the Atangana-Baleanu-Caputo operator
(ABC) manner is given as [31]

Dαρ j(ρ) =
B(α)
1 − α

∫ ρ

0
Eα

(
−α(ρ − µ)α

1 − α

)
D( j(µ))dµ, (2.4)

where 0 < α < 1, B(α) is normalization function and Eα(z) =
∑∞

m=0
zm

Γ(αm+1) is the Mittag-Leffler
function.

Definition 2.5. For the function F(χ), the natural transformation is given as

N(F(χ)) = U(ζ, τ) =
∫ ∞

−∞

e−ζχF(τχ)dχ, ζ, τ ∈ (−∞,∞), (2.5)

and for χ ∈ (0,∞), the natural transformation of F(χ) is given as

N(F(χ)H(χ)) = N+F(χ) = U+(ζ, τ) =
∫ ∞

0
e−ζχF(τχ)dχ, ζ, τ ∈ (0,∞), (2.6)

where H(χ) is the Heaviside function.

Definition 2.6. For the function F(ζ, τ), the inverse natural transformation is given as

N−1[U(ζ, τ)] = F(χ), ∀χ ≥ 0. (2.7)

Lemma 2.1. Let the F1(χ) and F2(χ) natural transformations beU1(ζ, τ) andU2(ζ, τ); so,

N[c1F1(χ) + c2F2(χ)] = c1N[F1(χ)] + c2N[F2(χ)] = c1U1(ζ, τ) + c2U2(ζ, τ), (2.8)

where c1 and c2 constants.

Lemma 2.2. Let the F1(χ) and F2(χ) inverse natural transformations be F1(ζ, τ) and F2(ζ, τ); so,

{N}−1[c1U1(ζ, τ) + c2U2(ζ, τ)] = c1N−1[U1(ζ, τ)] + c2N−1[U2(ζ, τ)] = c1F1(χ) + c2F2(χ), (2.9)

where c1 and c2 constants.

Definition 2.7. The NT of DαχF(χ) in the Caputo sense is stated as [31]

N[DαχF(χ)] =
(
ζ

τ

)α (
N[F(χ)] −

(
1
ζ

)
F(0)

)
. (2.10)

Definition 2.8. The NT of DαχF(χ) in the CF sense is defined as [31]

N[DαχF(χ)] =
1

1 − α + α( τ
ζ
)

(
N[F(χ)] −

(
1
ζ

)
F(0)

)
. (2.11)

Definition 2.9. The NT of DαχF(χ) in the ABC manner is given as [31]

N[DαχF(χ)] =
M[α]

1 − α + α( τ
ζ
)α

(
N[F(χ)] −

(
1
ζ

)
F(0)

)
, (2.12)

with M[α] denoting a normalization function.
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3. Methodology

This section is concerned with the general procedure for numerical treatment of the below equation.

DαχF(ϑ, χ) = L(F(ϑ, χ)) + N(F(ϑ, χ)) + h(ϑ, χ) = M(ϑ, χ), (3.1)

where the initial condition

F(ϑ, 0) = ϕ(ϑ) (3.2)

has L and N linear and nonlinear terms, and where h(ϑ, χ) represents the source term.

3.1. Case I (NT DMCF)

By means of the NT and CF fractional derivative, Eq (3.1) can be stated as

1
p(α, τ, ζ)

(
N[F(ϑ, χ)] −

ϕ(ϑ)
ζ

)
= N[M(ϑ, χ)], (3.3)

with

p(α, τ, ζ) = 1 − α + α(
τ

ζ
). (3.4)

By taking the natural inverse transform, we get

F(ϑ, χ) = N−1
(
ϕ(ϑ)
ζ
+ p(α, τ, ζ)N[M(ϑ, χ)]

)
. (3.5)

Assume that for F(ϑ, χ), the series form solution is determined as

F(ϑ, χ) =
∞∑

i=0

Fi(ϑ, χ), (3.6)

and the N(F(ϑ, χ)) decomposition is given as

N(F(ϑ, χ)) =
∞∑

i=0

Ai(F0, ...,Fi), (3.7)

with Ai representing the Adomian polynomials, which is illustrated as

An =
1
n!

dn

dεn N(ε,Σn
k=0ε

kFk)|ε=0.

By putting Eqs (3.6) and (3.7) into Eq (3.5), we have

∞∑
i=0

Fi(ϑ, χ) = N−1
(
ϕ(ϑ)
ζ
+ p(α, τ, ζ)N[h(ϑ, χ)]

)
+ N−1

p(α, τ, ζ)N
 ∞∑

i=0

L(Fi(ϑ, χ)) + Ai

 . (3.8)
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From Eq (3.8), we obtain

FCF
0 (ϑ, χ) =N−1

(
ϕ(ϑ)
ζ
+ p(α, τ, ζ)N[h(ϑ, χ)]

)
,

FCF
1 (ϑ, χ) =N−1 (

p(α, τ, ζ)N
[
L(F0(ϑ, χ)) + A0

])
,

...

FCF
l+1(ϑ, χ) =N−1 (

p(α, τ, ζ)N
[
L(Fl(ϑ, χ)) + Al

])
, l = 1, 2, 3, · · · .

(3.9)

In this way, the solution of Eq (3.1) is obtained by putting Eq (3.9) into Eq (3.6) to solve for the
NT DMCF ,

FCF(ϑ, χ) = FCF
0 (ϑ, χ) + FCF

1 (ϑ, χ) + FCF
2 (ϑ, χ) + · · · . (3.10)

3.2. Case II (NT DMABC)

By means of the NT and ABC fractional derivative, Eq (3.1) can be stated as

1
q(α, τ, ζ)

(
N[F(ϑ, χ)] −

ϕ(ϑ)
ζ

)
= N[M(ϑ, χ)], (3.11)

with

q(α, τ, ζ) =
1 − α + α( τ

ζ
)α

B(α)
. (3.12)

By taking the natural inverse transform, we get

F(ϑ, χ) = N−1
(
ϕ(ϑ)
ζ
+ q(α, τ, ζ)N[M(ϑ, χ)]

)
. (3.13)

In terms of the Adomain decomposition, we have

∞∑
i=0

Fi(ϑ, χ) = N−1
(
ϕ(ϑ)
ζ
+ q(α, τ, ζ)N[h(ϑ, χ)]

)
+ N−1

q(α, τ, ζ)N
 ∞∑

i=0

L(Fi(ϑ, χ)) + Ai

 . (3.14)

From Eq (3.8), we have the following:

FABC
0 (ϑ, χ) =N−1

(
ϕ(ϑ)
ζ
+ q(α, τ, ζ)N[h(ϑ, χ)]

)
,

FABC
1 (ϑ, χ) =N−1 (

q(α, τ, ζ)N
[
L(F0(ϑ, χ)) + A0

])
,

...

FABC
l+1 (ϑ, χ) =N−1 (

q(α, τ, ζ)N
[
L(Fl(ϑ, χ)) + Al

])
, l = 1, 2, 3, · · · .

(3.15)

In this way, the solution of Eq (3.1) is obtained to solve for the NT DMABC:

FABC(ϑ, χ) = FABC
0 (ϑ, χ) + FABC

1 (ϑ, χ) + FABC
2 (ϑ, χ) + · · · . (3.16)
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4. Convergence analysis

This section is concerned with the NT DMABC and NT DMCF convergence and uniqueness.

Theorem 4.1. Let |L(F) − L(F∗)| < γ1|F − F
∗| and |N(F) − N(F∗)| < γ2|F − F

∗|, where F := F(µ, χ) and
F∗ := F∗(µ, χ) are two variable functions values, and γ1, γ2 are Lipschitz constants.

The operators L and N are given in Eq (3.1). Thus, the solution for the NT DMCF is unique for
Eq (3.1) when 0 < (γ1 + γ2)(1 − α + αχ) < 1 for all χ.

Proof. Let K = (C[J], ||.||), where norm ||ϕ(χ)|| = maxχ∈J |ϕ(χ)| is the Banach space and ∀ continuous
on the J = [0,T ] interval. Let I : K → K be a nonlinear mapping with

FC
l+1 = F

C
0 + N−1[p(α, τ, ζ)N[L(Fl(µ, χ)) + N(Fl(µ, χ))]], l ≥ 0.

||I(F) − I(F∗)|| ≤ maxχ∈J |N−1
[
p(α, τ, ζ)N[L(F) − L(F∗)] + p(α, τ, ζ)N[N(F) − N(F∗)]|

]
≤ maxχ∈J

[
γ1N−1[p(α, τ, ζ)N[|F − F∗|]] + γ2N−1[p(α, τ, ζ)N[|F − F∗|]]

]
≤ maxχ∈J(γ1 + γ2)

[
N−1[p(α, τ, ζ)N|F − F∗|]

]
≤ (γ1 + γ2)

[
N−1[p(α, τ, ζ)N||F − F∗||]

]
= (γ1 + γ2)(1 − α + αχ)||F − F∗||.

(4.1)

So, I is a contraction as 0 < (γ1 + γ2)(1 − α + αχ) < 1. Thus, by means of the Banach fixed point
theorem, the solution of Eq (3.1) is unique. □

Theorem 4.2. According to the above theorem, the solution of Eq (3.1) is unique for the NT DMABC

when 0 < (γ1 + γ2)(1 − α + α χα

Γ(α+1) ) < 1 for all χ.

Proof. Now, from the theorem above, let K = (C[J], ||.||) be the Banach space that is ∀ continuous on
the J = [0,T ] interval. Let I : K → K be the nonlinear mapping with

FC
l+1 = F

C
0 + N−1[p(α, τ, ζ)N[L(Fl(µ, χ)) + N(Fl(µ, χ))]], l ≥ 0.

||I(F) − I(F∗)|| ≤ maxχ∈J |N−1
[
q(α, τ, ζ)N[L(F) − L(F∗)] + q(α, τ, ζ)N[N(F) − N(F∗)]|

]
≤ maxχ∈J

[
γ1N−1[q(α, τ, ζ)N[|F − F∗|]] + γ2N−1[q(α, τ, ζ)N[|F − F∗|]]

]
≤ maxχ∈J(γ1 + γ2)

[
N−1[q(α, τ, ζ)N|F − F∗|]

]
≤ (γ1 + γ2)

[
N−1[q(α, τ, ζ)N||F − F∗||]

]
= (γ1 + γ2)(1 − α + α

χα

Γ(α + 1)
)||F − F∗||.

(4.2)

So, I is a contraction as 0 < (γ1 + γ2)(1 − α + α χα

Γ(α+1) ) < 1. Thus, by means of the Banach fixed point
theorem, the solution of Eq (3.1) is unique. □

Theorem 4.3. Let L and N be Lipschitz functions as given in the above theorems; then, the solution
for the NT DMCF is convergent for Eq (3.1).
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Proof. Let us consider K to be the Banach space as stated above and let Fm =
∑m

r=0 Fr(µ, χ). To prove
that Fm is a Cauchy sequence in H, let

||Fm − Fn|| = maxχ∈J |

m∑
r=n+1

Fr|, n = 1, 2, 3, · · ·

≤ maxχ∈J

∣∣∣∣∣∣∣N−1

p(α, τ, ζ)N
 m∑

r=n+1

(L(Fr−1) + N(Fr−1))


∣∣∣∣∣∣∣

= maxχ∈J

∣∣∣∣∣∣∣N−1

p(α, τ, ζ)N
 m−1∑

r=n+1

(L(Fr) + N(Fr))


∣∣∣∣∣∣∣

≤ maxχ∈J |N−1[p(α, τ, ζ)N[(L(Fm−1) − L(Fn−1) + N(Fm−1) − N(Fn−1))]]|
≤ γ1maxχ∈J |N−1[p(α, τ, ζ)N[(L(Fm−1) − L(Fn−1))]]|
+ γ2maxχ∈J |N−1[p(α, τ, ζ)N[(N(Fm−1) − N(Fn−1))]]|
= (γ1 + γ2)(1 − α + αχ)||Fm−1 − Fn−1||.

(4.3)

Let m = n + 1; then,

||Fn+1 − Fn|| ≤ γ||Fn − Fn−1|| ≤ γ
2||Fn−1Fn−2|| ≤ · · · ≤ γ

n||F1 − F0||, (4.4)

where γ = (γ1 + γ2)(1 − α + αχ). Thus, we have that

||Fm − Fn|| ≤ ||Fn+1 − Fn|| + ||Fn+2Fn+1|| + · · · + ||Fm − Fm−1||,

(γn + γn+1 + · · · + γm−1)||F1 − F0|| ≤ γ
n

(
1 − γm−n

1 − γ

)
||F1||.

(4.5)

As 0 < γ < 1, we have that 1 − γm−n < 1. Thus,

||Fm − Fn|| ≤
γn

1 − γ
maxχ∈J ||F1||. (4.6)

Since ||F1|| < ∞, ||Fm − Fn|| → 0 when n → ∞. In this way, Fm is a Cauchy sequence in K and is
convergent. □

Theorem 4.4. Let L and N be Lipschitz functions as given in the above theorems; then, the solution
for the NT DMABC is convergent for Eq (3.1).

Proof. Suppose Fm =
∑m

r=0 Fr(µ, χ). To prove that Fm is a Cauchy sequence in K, let

||Fm − Fn|| = maxχ∈J |

m∑
r=n+1

Fr|, n = 1, 2, 3, · · ·

≤ maxχ∈J

∣∣∣∣∣∣∣N−1

q(α, τ, ζ)N
 m∑

r=n+1

(L(Fr−1) + N(Fr−1))


∣∣∣∣∣∣∣

= maxχ∈J

∣∣∣∣∣∣∣N−1

q(α, τ, ζ)N
 m−1∑

r=n+1

(L(Fr) + N(ur))


∣∣∣∣∣∣∣

≤ maxχ∈J |N−1[q(α, τ, ζ)N[(L(Fm−1) − L(Fn−1) + N(Fm−1) − N(Fn−1))]]|
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≤ γ1maxχ∈J |N−1[q(α, τ, ζ)N[(L(Fm−1) − L(Fn−1))]]|
+ γ2maxχ∈J |N−1[p(α, τ, ζ)N[(N(Fm−1) − N(Fn−1))]]|

= (γ1 + γ2)(1 − α + α
χα

Γ(α + 1)
)||Fm−1 − Fn−1||.

(4.7)

Suppose m = n + 1; thus,

||Fn+1 − Fn|| ≤ γ||Fn − Fn−1|| ≤ γ
2||Fn−1 − Fn−2|| ≤ · · · ≤ γ

n||F1 − F0||, (4.8)

where γ = (γ1 + γ2)(1 − α + α χα

Γ(α+1) ). Thus, we have that

||Fm − Fn|| ≤ ||Fn+1 − Fn|| + ||Fn+2 − Fn+1|| + · · · + ||Fm − Fm−1||,

≤ (γn + γn+1 + · · · + γm−1)||F1 − F0||

≤ γn

(
1 − γm−n

1 − γ

)
||F1||.

(4.9)

As 0 < γ < 1, we have that 1 − γm−n < 1. Thus,

||Fm − Fn|| ≤
γn

1 − γ
maxχ∈J ||F1||. (4.10)

Since ||F1|| < ∞, ||Fm − Fn|| → 0 when n → ∞. In this way, Fm is a Cauchy sequence in K and
convergent. □

5. Applications

Example 5.1. Let us consider the fractional Kersten-Krasil’shchik coupled KdV-mKdV nonlinear
system as

DαχF + F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ = 0, χ > 0, ϑ ∈ R, 0 < α ≤ 1,

DαχG + G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG = 0,
(5.1)

where the initial conditions are as follows:

F(ϑ, 0) =c − 2c sech2(
√

cϑ), c > 0,

G(ϑ, 0) =2
√

c sech(
√

cϑ).
(5.2)

By taking the NT, we get

N[DαχF(ϑ, χ)] = −N
[
F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ

]
,

N[DαχG(ϑ, χ)] = −N
[
G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG

]
.

(5.3)

Thus, we have that

1
ζα

N[F(ϑ, χ)] − ζ2−αF(ϑ, 0) = −N
[
F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ

]
,

1
ζα

N[G(ϑ, χ)] − ζ2−αF(ϑ, 0) = −N
[
G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG

]
.

(5.4)
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By simplification, we get

N[F(ϑ, χ)]

=ζ2
[
c − 2c sech2(

√
cϑ)

]
−
α(ζ − α(ζ − α))

ζ2 N
[
F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ

]
,

N[G(ϑ, χ)] = ζ2
[
2
√

c sech(
√

cϑ)
]
−
α(ζ − α(ζ − α))

ζ2 N
[
G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG

]
.

(5.5)

By taking the inverse NT, we have that

F(ϑ, χ)

=

[
c − 2c sech2(

√
cϑ)

]
− N−1

[
α(ζ − α(ζ − α))

ζ2 N
{
F3ϑ − 6FFϑ + 3GG3ϑ + 3GϑG2ϑ − 3FϑG2 + 6FGGϑ

}]
,

G(ϑ, χ) =
[
2
√

c sech(
√

cϑ)
]
− N−1

[
α(ζ − α(ζ − α))

ζ2 N
{
G3ϑ − 3G2Gϑ − 3FGϑ + 3FϑG

}]
.

(5.6)

Solution for the NDMCF:
Assume that for the unknown functions F(ϑ, χ) and G(ϑ, χ), the series form solutions are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ) and G(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ). (5.7)

The nonlinear components in terms of the Adomian polynomials are given as −6FFϑ + 3GG3ϑ =∑∞
m=0Am, 3GϑG2ϑ − 3FϑG2 =

∑∞
m=0Bm, 6FGGϑ =

∑∞
m=0 Cm and −3G2Gϑ − 3FGϑ + 3FϑG =

∑∞
m=0Dm.

With the help of these terms, Eq (5.6) can be stated as
∞∑

l=0

Fl+1(ϑ, χ) = c − 2c sech2(
√

cϑ) − N−1
[
α(ζ − α(ζ − α))

ζ2 N
{
F3ϑ +

∞∑
l=0

Al +

∞∑
l=0

Bl +

∞∑
l=0

Cl

}]
,

∞∑
l=0

Gl+1(ϑ, χ) = 2
√

c sech(
√

cϑ) − N−1
[
α(ζ − α(ζ − α))

ζ2 N
{
F3ϑ +

∞∑
l=0

Dl

}]
.

(5.8)

By comparing both sides of Eq (5.8), we have that

F0(ϑ, χ) = c − 2c sech2(
√

cϑ),

G0(ϑ, χ) = 2
√

c sech(
√

cϑ),

F1(ϑ, χ) = 8c
5
2 sinh(

√
cϑ) sech3(

√
cϑ) (α(χ − 1) + 1) ,

G1(ϑ, χ) = −4c2 sinh(
√

cϑ) sech2(
√

cϑ) (α(χ − 1) + 1) ,
(5.9)

F2(ϑ, χ) = −16c4[2 cosh2(
√

cϑ) − 3] sech4(
√

cϑ)
(
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
,

G2(ϑ, χ) = 8c
7
2 [cosh2(

√
cϑ) − 2] sech3(

√
cϑ)

(
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
.

(5.10)
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In this way, given (l ≥ 3), the remaining terms for Fl and Gl are easy to get. Thus, the series form
solutions are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ) = F0(ϑ, χ) + F1(ϑ, χ) + F2(ϑ, χ) + · · · ,

F(ϑ, χ) = c − 2c sech2(
√

cϑ) + 8c
5
2 sinh(

√
cϑ) sech3(

√
cϑ) (α(χ − 1) + 1)

− 16c4[2 cosh2(
√

cϑ) − 3] sech4(
√

cϑ)
(
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
+ · · · ,

G(ϑ, χ) =
∞∑

l=0

Gl(ϑ, χ) = G0(ϑ, χ) + G1(ϑ, χ) + G2(ϑ, χ) + · · · ,

G(ϑ, χ) = 2
√

c sech(
√

cϑ) − 4c2 sinh(
√

cϑ) sech2(
√

cϑ) (α(χ − 1) + 1)

+ 8c
7
2 [cosh2(

√
cϑ) − 2] sech3(

√
cϑ)

(
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
+ · · · .

(5.11)

Solution for the NDMABC:
Assume that for the unknown functions F(ϑ, χ) and G(ϑ, χ), the series form solutions respectively

are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ),

G(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ).

(5.12)

The nonlinear components in terms of the Adomian polynomials are given as −6FFϑ + 3GG3ϑ =∑∞
m=0Am, 3GϑG2ϑ − 3FϑG2 =

∑∞
m=0Bm, 6FGGϑ =

∑∞
m=0 Cm and −3G2Gϑ − 3FGϑ + 3FϑG =

∑∞
m=0Dm.

With the help of these terms, Eq (5.6) can be stated as

∞∑
l=0

Fl+1(ϑ, χ) = c − 2c sech2(
√

cϑ) − N−1
[
τα(ζα + α(τα − ζα))

ζ2α N
{
F3ϑ +

∞∑
l=0

Al +

∞∑
l=0

Bl +

∞∑
l=0

Cl

}]
,

∞∑
l=0

Gl+1(ϑ, χ) = 2
√

c sech(
√

cϑ) − N−1
[
τα(ζα + α(τα − ζα))

ζ2α N
{
F3ϑ +

∞∑
l=0

Dl

}]
.

(5.13)

By comparing both sides of Eq (5.13), we have that

F0(ϑ, χ) = c − 2c sech2(
√

cϑ),

G0(ϑ, χ) = 2
√

c sech(
√

cϑ),

F1(ϑ, χ) = 8c
5
2 sinh(

√
cϑ) sech3(

√
cϑ)

(
1 − α +

αχα

Γ(α + 1)

)
,

G1(ϑ, χ) = −4c2 sinh(
√

cϑ) sech2(
√

cϑ)
(
1 − α +

αχα

Γ(α + 1)

)
,

(5.14)
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F2(ϑ, χ) = −16c4[2 cosh2(
√

cϑ) − 3] sech4(
√

cϑ)
[
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
,

G2(ϑ, χ) = 8c
7
2 [cosh2(

√
cϑ) − 2] sech3(

√
cϑ)

[
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
.

(5.15)

In this way, given (l ≥ 3), the remaining terms for Fl and Gl are easy to get. Thus, the series form
solutions are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ) = F0(ϑ, χ) + F1(ϑ, χ) + F2(ϑ, χ) + · · · ,

F(ϑ, χ) = c − 2c sech2(
√

cϑ) + 8c
5
2 sinh(

√
cϑ) sech3(

√
cϑ)

(
1 − α +

αχα

Γ(α + 1)

)
− 16c4[2 cosh2(

√
cϑ) − 3] sech4(

√
cϑ)

[
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
+ · · · ,

G(ϑ, χ) =
∞∑

l=0

Gl(ϑ, χ) = G0(ϑ, χ) + G1(ϑ, χ) + G2(ϑ, χ) + · · · ,

G(ϑ, χ) = 2
√

c sech(
√

cϑ) − 4c2 sinh(
√

cϑ) sech2(
√

cϑ)
(
1 − α +

αχα

Γ(α + 1)

)
+ 8c

7
2 [cosh2(

√
cϑ) − 2] sech3(

√
cϑ)

[
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
+ · · · .

(5.16)

When α = 1, we get the exact solution as

F(ϑ, χ) = c − 2c sech2(
√

c(ϑ + 2cχ)),

G(ϑ, χ) = 2
√

c sech(
√

c(ϑ + 2cχ)).
(5.17)

Example 5.2. Let us consider the time-fractional homogeneous two component coupled third order
KdV system as

DαχF − F3ϑ − FFϑ − GGϑ = 0, χ > 0, ϑ ∈ R, 0 < α ≤ 1,

DαχG + 2G3ϑ − FGϑ = 0,
(5.18)

where the initial conditions are as follows:

F(ϑ, 0) = 3 − 6 tanh2
(
ϑ

2

)
,

G(ϑ, 0) = −3c
√

2 tanh
(
ϑ

2

)
.

(5.19)

By taking the NT, we get

N[DαχF(ϑ, χ)] = −N [−F3ϑ − FFϑ − GGϑ] ,

N[DαχG(ϑ, χ)] = −N [2G3ϑ − FGϑ] .
(5.20)
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Thus, we have

1
ζα

N[F(ϑ, χ)] − ζ2−αF(ϑ, 0) = −N
[
− F3ϑ − FFϑ − GGϑ

]
,

1
ζα

N[G(ϑ, χ)] − ζ2−αF(ϑ, 0) = −N
[
2G3ϑ − FGϑ

]
.

(5.21)

By simplification, we get

N[F(ϑ, χ)] = ζ2
[
3 − 6 tanh2

(
ϑ

2

) ]
−
α(ζ − α(ζ − α))

ζ2 N
[
− F3ϑ − FFϑ − GGϑ

]
,

N[G(ϑ, χ)] = ζ2
[
− 3c
√

2 tanh
(
ϑ

2

) ]
−
α(ζ − α(ζ − α))

ζ2 N
[
2G3ϑ − FGϑ

]
.

(5.22)

By taking the inverse NT, we have that

F(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
− N−1

[
α(ζ − α(ζ − α))

ζ2 N
{
− F3ϑ − FFϑ − GGϑ

}]
,

G(ϑ, χ) =
[
− 3c
√

2 tanh
(
ϑ

2

) ]
− N−1

[
α(ζ − α(ζ − α))

ζ2 N
{

2G3ϑ − FGϑ

}]
.

(5.23)

Solution for the NT DMCF:
Assume that for the unknown functions F(ϑ, χ) and G(ϑ, χ), the series form solution are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ)andG(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ). (5.24)

The nonlinear components in terms of the Adomian polynomials are given as −FFϑ −GGϑ =
∑∞

m=0Am

and FGϑ =
∑∞

m=0Bm. With the help of these terms, Eq (5.23) can be stated as

∞∑
l=0

Fl+1(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
− N−1

[
α(ζ − α(ζ − α))

ζ2 N
{
− F3ϑ +

∞∑
l=0

Al

}]
,

∞∑
l=0

Gl+1(ϑ, χ) = −3c
√

2 tanh
(
ϑ

2

)
− N−1

[
α(ζ − α(ζ − α))

ζ2 N
{

2G3ϑ −

∞∑
l=0

Bl

}]
.

(5.25)

By comparing both sides of Eq (5.25), we have that

F0(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
,

G0(ϑ, χ) = −3c
√

2 tanh
(
ϑ

2

)
,

F1(ϑ, χ) = 6 sech2
(
ϑ

2

)
tanh

(
ϑ

2

)
(α(χ − 1) + 1) ,

G1(ϑ, χ) = 3c
√

2 sech2
(
ϑ

2

)
tanh

(
ϑ

2

)
(α(χ − 1) + 1) ,

(5.26)
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F2(ϑ, χ) = 3[2 + 7 sech2
(
ϑ

2

)
− 15 sech4

(
ϑ

2

)
] sech2

(
ϑ

2

) (
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
,

G2(ϑ, χ) =
3c
√

2
2

[
2 + 21 sech2

(
ϑ

2

)
− 24 sech4

(
ϑ

2

)]
sech2

(
ϑ

2

) (
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
.

(5.27)
In this way, given (l ≥ 3), the remaining terms for Fl and Gl are easy to get. Thus, the series form
solutions are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ) = F0(ϑ, χ) + F1(ϑ, χ) + F2(ϑ, χ) + · · · ,

F(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
+ 6 sech2

(
ϑ

2

)
tanh

(
ϑ

2

)
(α(χ − 1) + 1)

+ 3[2 + 7 sech2
(
ϑ

2

)
− 15 sech4

(
ϑ

2

)
] sech2

(
ϑ

2

) (
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
+ · · · ,

G(ϑ, χ) =
∞∑

l=0

Gl(ϑ, χ) = G0(ϑ, χ) + G1(ϑ, χ) + G2(ϑ, χ) + · · · ,

G(ϑ, χ) = −3c
√

2 tanh
(
ϑ

2

)
+ 3c
√

2 sech2
(
ϑ

2

)
tanh

(
ϑ

2

)
(α(χ − 1) + 1)

+
3c
√

2
2

[
2 + 21 sech2

(
ϑ

2

)
− 24 sech4

(
ϑ

2

)]
sech2

(
ϑ

2

) (
(1 − α)2 + 2α(1 − α)χ +

α2χ2

2

)
+ · · · .

(5.28)

Solution for the NT DMABC:
Assume that for the unknown functions F(ϑ, χ) and G(ϑ, χ), the series form solutions are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ),

G(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ).

(5.29)

The nonlinear components in terms of the Adomian polynomials are given as −FFϑ −GGϑ =
∑∞

m=0Am

and FGϑ =
∑∞

m=0Bm. Given these terms, Eq (5.23) can be stated as
∞∑

l=0

Fl+1(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
+ N−1

[
τα(ζα + α(τα − ζα))

ζ2α N
{
− F3ϑ +

∞∑
l=0

Al

}]
,

∞∑
l=0

Gl+1(ϑ, χ) = −3c
√

2 tanh
(
ϑ

2

)
+ N−1

[
τα(ζα + α(τα − ζα))

ζ2α N
{

2G3ϑ −

∞∑
l=0

Bl

}]
.

(5.30)

By comparing both sides of Eq (5.30), we have that

F0(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
,

G0(ϑ, χ) = −3c
√

2 tanh
(
ϑ

2

)
,

AIMS Mathematics Volume 7, Issue 10, 18334–18359.



18348

F1(ϑ, χ) = 6 sech2
(
ϑ

2

)
tanh

(
ϑ

2

) (
1 − α +

αχα

Γ(α + 1)

)
,

G1(ϑ, χ) = 3c
√

2 sech2
(
ϑ

2

)
tanh

(
ϑ

2

) (
1 − α +

αχα

Γ(α + 1)

)
,

(5.31)

F2(ϑ, χ) = 3[2 + 7 sech2
(
ϑ

2

)
− 15 sech4

(
ϑ

2

)
] sech2

(
ϑ

2

) [
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
,

G2(ϑ, χ)

=
3c
√

2
2

[
2 + 21 sech2

(
ϑ

2

)
− 24 sech4

(
ϑ

2

)]
sech2

(
ϑ

2

) [
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
.

(5.32)

In this way, given (l ≥ 3), the remaining terms for Fl and Gl are easy to get. Thus, the series form
solutions are given as

F(ϑ, χ) =
∞∑

l=0

Fl(ϑ, χ) = F0(ϑ, χ) + F1(ϑ, χ) + F2(ϑ, χ) + · · · ,

F(ϑ, χ) = 3 − 6 tanh2
(
ϑ

2

)
+ 6 sech2

(
ϑ

2

)
tanh

(
ϑ

2

) (
1 − α +

αχα

Γ(α + 1)

)
+ 3[2 + 7

sech2
(
ϑ

2

)
− 15 sech4

(
ϑ

2

)
] sech2

(
ϑ

2

) [
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
+ · · · ,

G(ϑ, χ) =
∞∑

l=0

Gl(ϑ, χ) = G0(ϑ, χ) + G1(ϑ, χ) + G2(ϑ, χ) + · · · ,

G(ϑ, χ) = −3c
√

2 tanh
(
ϑ

2

)
+ 3c
√

2 sech2
(
ϑ

2

)
tanh

(
ϑ

2

) (
1 − α +

αχα

Γ(α + 1)

)
+

3c
√

2
2

[2 + 21

sech2
(
ϑ

2

)
− 24 sech4

(
ϑ

2

)]
sech2

(
ϑ

2

) [
α2χ2α

Γ(2α + 1)
+ 2α(1 − α)

χα

Γ(α + 1)
+ (1 − α)2

]
+ · · · .

(5.33)

When α = 1, we get the exact solution as

F(ϑ, χ) = 3 − 6 tanh2
(ϑ + χ

2

)
,

G(ϑ, χ) = −3c
√

2 tanh
(ϑ + χ

2

)
.

(5.34)

6. Results and discussion

In Figure 1, the actual and suggested methods solutions of F(ϑ, χ) are calculated at α = 1. Figure 2
gives the graphical layouts of F(ϑ, χ) when α = 0.8 and 0.6. In Figure 3, the 2D and 3D behaviors
of F(ϑ, χ) for different fractional orders are respectively given. In Figure 4, the actual and suggested
methods solutions of G(ϑ, χ) are calculated at α = 1. Figure 5 gives the graphical layouts of G(ϑ, χ)
when α = 0.8 and 0.6. In Figure 6, the 2D and 3D behaviors of G(ϑ, χ) for different fractional orders
are respectively given. The graphical layout of Example 5.1 confirms that our solutions are in a strong
agreement with the exact solution. Similarly, in Figures 7, the actual and suggested methods solutions
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of F(ϑ, χ) are respectively presented for α = 1. Figures 8 gives the graphical layouts of F(ϑ, χ) when
α = 0.8 and 0.6, while Figures 9 shows the 2D and 3D behaviors of F(ϑ, χ) for different fractional
orders, respectively. Also, in Figures 10, the actual and suggested methods solutions of G(ϑ, χ) are
respectively presented for α = 1. Figures 11 gives the graphical layouts of G(ϑ, χ) when α = 0.8
and 0.6, while Figures 12 shows the 2D and 3D behaviors of G(ϑ, χ) for different fractional orders,
respectively. In the same way, the graphical layout of Example 5.2 confirms that our solutions are in
a strong agreement with the exact solution. All the figures have been drawn at c=0.1 and χ = 0.01
within the domain −5 ≤ ϑ ≥ 5. Furthermore, Tables 1 and 2 shows the approximate solution of
Example 5.1 at different values of ϑ and χ. Tables 3 and 4 show a numerical comparison of the reduced
differential transform method and proposed method in terms of the absolute error for Example 5.1.
Finally, Tables 5 and 6 show the approximate solution of Example 5.2 at different values of ϑ and χ.
From the figures and tables, it can be observed that our methods solution and the exact solution are
very close to each other and possess a higher degree of accuracy.

Figure 1. Exact and proposed method solution at α = 1 for Example 5.1.

Figure 2. Proposed method solution at α = 0.8, 0.6 for Example 5.1.

AIMS Mathematics Volume 7, Issue 10, 18334–18359.



18350

Figure 3. Proposed method solution at different values of α for Example 5.1.

Figure 4. Exact and proposed method solution at α = 1 for Example 5.1.

Figure 5. Proposed method solution at α = 0.8, 0.6 for Example 5.1.
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Figure 6. Proposed method solution at different values of α for Example 5.1.

Figure 7. Exact and proposed method solution at α = 1 for Example 5.2.

Figure 8. Proposed method solution at α = 0.8, 0.6 for Example 5.2.
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Figure 9. Proposed method solution at different values of α for Example 5.2.

Figure 10. Exact and proposed method solution at α = 1 for Example 5.2.

Figure 11. Proposed method solution at α = 0.8, 0.6 for Example 5.2.
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Figure 12. Proposed method solution at different values of α for Example 5.2.

Table 1. For Example 5.1, the suggested technique solution for F(ϑ, χ) given c=0.1 at various
fractional orders.

(ϑ, χ) (NT DMABC) at α = 0.5 (NT DMCF) at α = 0.75 (NT DMABC) at α = 1 (NT DMCF) at α = 1 Exact result
(0.2,0.01) -0.099152 -0.099184 -0.099200 -0.099200 -0.099200
(0.4,0.02) -0.096736 -0.096799 -0.096830 -0.096830 -0.096830
(0.6,0.03) -0.092826 -0.092918 -0.092964 -0.092964 -0.092964
(0.2,0.01) -0.099150 -0.099182 -0.099198 -0.099198 -0.099198
(0.4,0.02) -0.096732 -0.096795 -0.096827 -0.096827 -0.096827
(0.6,0.03) -0.092821 -0.092913 -0.092960 -0.092960 -0.092960
(0.2,0.01) -0.099148 -0.099181 -0.099197 -0.099197 -0.099197
(0.4,0.02) -0.096728 -0.096792 -0.096824 -0.096824 -0.096824
(0.6,0.03) -0.092815 -0.092909 -0.092955 -0.092955 -0.092955
(0.2,0.01) -0.099147 -0.099179 -0.099195 -0.099195 -0.099195
(0.4,0.02) -0.096725 -0.096789 -0.096821 -0.096821 -0.096821
(0.6,0.03) -0.092810 -0.092904 -0.092951 -0.092951 -0.092951
(0.2,0.01) -0.099145 -0.099177 -0.099194 -0.099194 -0.099194
(0.4,0.02) -0.096721 -0.096786 -0.096818 -0.096818 -0.096818
(0.6,0.03) -0.092805 -0.092899 -0.092946 -0.092946 -0.092946
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Table 2. For Example 5.1, the suggested technique solution forG(ϑ, χ) given c=0.1 at various
fractional orders.

(ϑ, χ) (NT DMABC) at α =0.5 (NT DMCF) at α =0.75 (NT DMABC) at α = 1 (NT DMCF) at α = 1 Exact result
(0.2,0.01) 0.631114 0.631164 0.631190 0.631190 0.631190
(0.4,0.02) 0.627273 0.627374 0.627424 0.627424 0.627424
(0.6,0.03) 0.621009 0.621158 0.621232 0.621232 0.621232
(0.2,0.01) 0.631111 0.631162 0.631187 0.631187 0.631187
(0.4,0.02) 0.627267 0.627368 0.627419 0.627419 0.627419
(0.6,0.03) 0.621001 0.621150 0.621224 0.621224 0.621224
(0.2,0.01) 0.631108 0.631159 0.631185 0.631185 0.631185
(0.4,0.02) 0.627262 0.627363 0.627414 0.627414 0.627414
(0.6,0.03) 0.620992 0.621142 0.621217 0.621217 0.621217
(0.2,0.01) 0.631105 0.631156 0.631182 0.631182 0.631182
(0.4,0.02) 0.627256 0.627358 0.627409 0.627409 0.627409
(0.6,0.03) 0.620984 0.621135 0.621210 0.621210 0.621210
(0.2,0.01) 0.631102 0.631154 0.631180 0.631180 0.631180
(0.4,0.02) 0.627250 0.627353 0.627404 0.627404 0.627404
(0.6,0.03) 0.620976 0.621127 0.621202 0.621202 0.621202

Table 3. For Example 5.1, the suggested technique absolute error comparison with a reduced
differential transform method (RDTM) for F(ϑ, χ) at c=1.

χ ϑ |RDT M| |NT DMCF | |NT DMCF |

-2 9.00000000E-09 8.5920000000E-09 8.5920000000E-09
-1 2.22440000E-06 1.3071200000E-08 1.3071200000E-08

0.05 0 7.51000000E-07 2.0000000000E-08 2.0000000000E-08
1 2.29510000E-06 1.2990800000E-07 1.2990800000E-07
2 2.77000000E-08 7.9080000000E-08 7.9080000000E-08
-2 7.14000000E-08 3.5763000000E-09 3.5763000000E-09
-1 6.89230000E-05 5.2446300000E-08 5.2446300000E-08

0.1 0 4.73670000E-05 7.9998000000E-07 7.9998000000E-07
1 7.35887000E-05 5.1802700000E-08 5.1802700000E-08
2 1.11602000E-06 3.0257000000E-07 3.0257000000E-07
-2 3.75120000E-06 8.3575000000E-08 8.3575000000E-08
-1 4.99186000E-04 1.1836350000E-07 1.1836350000E-07

0.15 0 5.26076000E-04 1.7998900000E-07 1.7998900000E-07
1 5.56398000E-04 1.1619250000E-06 1.1619250000E-06
2 9.98978000E-06 6.5015000000E-08 6.5015000000E-08
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Table 4. For Example 5.1, the suggested technique absolute error comparison for G(ϑ, χ) at
c=1.

χ ϑ |RDT M| |NT DMCF | |NT DMCF |

-2 1.1860000E-07 9.8320000000E-09 9.8320000000E-09
-1 2.1200000E-07 2.4506000000E-08 2.4506000000E-08

0.05 0 1.6800000E-07 3.1623000000E-08 3.1623000000E-08
1 2.8200000E-07 2.4420000000E-09 2.4420000000E-09
2 1.0710000E-07 9.7370000000E-08 9.7370000000E-08
-2 4.0069000E-06 3.9524000000E-08 3.9524000000E-08
-1 5.3900000E-06 9.8199000000E-07 9.8199000000E-07

0.1 0 1.0671000E-05 1.2648900000E-08 1.2648900000E-08
1 9.8860000E-06 9.7508000000E-08 9.7508000000E-08
2 3.2565000E-06 3.8752000000E-07 3.8752000000E-07
-2 3.2082600E-05 8.9365000000E-08 8.9365000000E-08
-1 2.8970000E-05 2.2133100000E-07 2.2133100000E-07

0.15 0 1.1917600E-04 2.8459400000E-07 2.8459400000E-07
1 8.0549000E-05 2.1900500000E-07 2.1900500000E-07
2 2.3525200E-05 8.6759000000E-06 8.6759000000E-06

Table 5. For Example 5.2, the suggested technique solution for F(ϑ, χ) given c=0.1 at various
fractional orders.

(ϑ, χ) (NT DMABC) at α =0.5 (NT DMCF) at α =0.75 (NT DMABC) at α = 1 (NT DMCF) at α = 1 Exact result
(0.2,0.01) 2.952239 2.946318 2.940397 2.940397 2.940397
(0.4,0.01) 2.789020 2.777639 2.766257 2.766257 2.766257
(0.6,0.01) 2.522812 2.506817 2.490821 2.490821 2.490821
(0.2,0.02) 2.952239 2.946318 2.940397 2.940397 2.940397
(0.4,0.02) 2.789020 2.777639 2.766257 2.766257 2.766257
(0.6,0.02) 2.522812 2.506817 2.490821 2.490821 2.490821
(0.2,0.03) 2.952239 2.946318 2.940397 2.940397 2.940397
(0.4,0.03) 2.789020 2.777639 2.766257 2.766257 2.766257
(0.6,0.03) 2.522812 2.506817 2.490821 2.490821 2.490821
(0.2,0.04) 2.952239 2.946318 2.940397 2.940397 2.940397
(0.4,0.04) 2.789020 2.777639 2.766257 2.766257 2.766257
(0.6,0.04) 2.522812 2.506817 2.490821 2.490821 2.490821
(0.2,0.05) 2.952239 2.946318 2.940397 2.940397 2.940397
(0.4,0.05) 2.789020 2.777639 2.766257 2.766257 2.766257
(0.6,0.05) 2.522812 2.506817 2.490821 2.490821 2.490821
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Table 6. For Example 5.2, the suggested technique solution forG(ϑ, χ) given c=0.1 at various
fractional orders.

(ϑ, χ) (NT DMABC) at α =0.5 (NT DMCF) at α =0.75 (NT DMABC) at α = 1 (NT DMCF) at α = 1 Exact result
(0.2,0.01) -0.000410 -0.000418 -0.000422 -0.000422 -0.000422
(0.4,0.01) -0.000813 -0.000829 -0.000837 -0.000837 -0.000837
(0.6,0.01) -0.001202 -0.001224 -0.001235 -0.001235 -0.001235
(0.2,0.02) -0.000410 -0.000418 -0.000422 -0.000422 -0.000422
(0.4,0.02) -0.000813 -0.000829 -0.000837 -0.000837 -0.000837
(0.6,0.02) -0.001201 -0.001224 -0.001235 -0.001235 -0.001235
(0.2,0.03) -0.000410 -0.000418 -0.000422 -0.000422 -0.000422
(0.4,0.03) -0.000813 -0.000829 -0.000837 -0.000837 -0.000837
(0.6,0.03) -0.001201 -0.001224 -0.001235 -0.001235 -0.001235
(0.2,0.04) -0.000410 -0.000418 -0.000422 -0.000422 -0.000422
(0.4,0.04) -0.000813 -0.000829 -0.000837 -0.000837 -0.000837
(0.6,0.04) -0.001201 -0.001224 -0.001235 -0.001235 -0.001235
(0.2,0.05) -0.000410 -0.000418 -0.000422 -0.000422 -0.000422
(0.4,0.05) -0.000813 -0.000829 -0.000837 -0.000837 -0.000837
(0.6,0.05) -0.001201 -0.001224 -0.001235 -0.001235 -0.001235

7. Conclusions

The main goal of this work as to develop a fractional-order Kersten-Krasil’ shchik coupled KdV-
mKdV nonlinear system approximate analytical solution. Using the NDM, we were able to achieve
this goal. The numerical solutions can be achieved in two steps. The targeted problems were first
simplified using the NT; then, the decomposition approach was employed to get the solutions. The
method’s fundamental benefit is that it gives the user an analytical approximation, and in many cases
an exact solution, in a quickly converging sequence with elegantly computed terms. The suggested
method has been applied to obtain the solution of the given two problems. The method’s small
computational size in comparison to the computational size required by other numerical methods, as
well as its rapid convergence, demonstrate that it is reliable and a significant improvement on existing
methods in terms of solving the generalized Kersten-Krasil’ shchik coupled KdV-mKdV equation. The
results we obtained have been illustrated with the help of plots and tables which confirm the validity
of the proposed method. Furthermore, the proposed method is simple, straightforward, and requires
minimal computational time; it may also be extended to solve other fractional-order partial differential
equations.
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