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1. Introduction

Fixed point theory is an extremely active research area because of its multifaceted applications.
The typical situation is that a self-map on a set admits a fixed point under certain conditions. In a
complete metric space, Banach [1] proved the existence of unique fixed point for contractions. The
Banach contraction principle has been generalized and extended in several ways due to its applications
in mathematics and other related disciplines. The most recent version of the theorem was proved in
Banach spaces endowed with a graph G, where G = (V(G), E(G)) is a directed graph such that the set
V(G) of its vertices of a graph and the set E(G) of its edges contains all loops.

In order to extend the Banach contraction principle, by combination of the concepts in fixed point
theory and graph theory, Banach G-contractions were introduced by Jachymaski [2] in complete metric
spaces accompanied with a graph G which has a convex subset of the underlying metric space as its
set of vertices, see e.g., [3–10].

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022081


1367

In the last few decades finding of fixed points by some iterative schemes for G-contraction,
G-nonexpansive and G-monotone nonexpansive mappings have been studied extensively by various
authors In 2012, Aleomraninejad et al. [11] presented some iterative scheme for G-contraction and
G-nonexpansive mappings in a metric space with a directed graph and stated the convergence for such
mappings. In 2015, Alfuraidan and Khamsi [12] defined the concept of G-monotone nonexpansive
multivalued mappings defined on a hyperbolic metric space with a graph. Alfuraidan [13] studied the
existence of fixed points of monotone nonexpansive mappings on a Banach space endowed with a
directed graph. Tiammee et al. [14] proved the Browder convergence theorem for G-nonexpansive
mappings and studied the convergence of the Halpern iteration process to the projection of initial
point where the projection is onto the set of fixed points of the G-nonexpansive mapping in Hilbert
space with the directed graph. Tripak [15] defined the Ishikawa type iteration process for two
G-nonexpansive mappings and gave some weak and strong convergence theorems of such iterations in
a Banach space endowed with a graph.

The three-step iterative scheme, usually called the Noor iteration method, [16] is used to
approximate common fixed point of three G-nonexpansive mappings via

zn = (1 − γn)xn + γnT3xn,

yn = (1 − βn)xn + βnT2zn,

xn+1 = (1 − αn)xn + αnT1yn, n ≥ 0,
(1.1)

where {αn}, {βn} and {γn} are sequences in [0, 1].
Glowinski and Le Tallec [17] employed three-step iterative approach in elastoviscoplasticity,

eigenvalue computation and theory of liquid crystals. In [17], it was shown that the three-step iterative
process yields better numerical results than the estimated iterations in two and one steps. In 1998,
Haubruge, Nguyen and Strodiot [18] investigated the convergence analysis of three-step methods of
Glowinski and Le Tallec [17] and applied these methods to obtain new splitting-type algorithms for
solving variation inequalities, separable convex programming and minimization of a sum of convex
functions. They also proved that three-step iterations lead to highly parallelized algorithms under
certain conditions.

Recently, Sridarat et al. [19] modified the SP-iteration process for three G-nonexpansive mappings
T1,T2 and T3 as follows:

zn = (1 − γn)xn + γnT3xn,

yn = (1 − βn)zn + βnT2zn,

xn+1 = (1 − αn)yn + αnT1yn, n ≥ 0,
(1.2)

where {αn}, {βn} and {γn} are appropriate real sequences in [0, 1]. They studied the weak and strong
convergence of the iterative scheme (1.2) under proper conditions in a uniformly convex Banach space
endowed with a graph.

The main purpose of this paper is to construct an efficient modified three-step iteration algorithm for
approximating common fixed points of three G-nonexpansive mappings in a uniformly convex Banach
space endowed with a graph. This paper is organized as follows.
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The notations, basic definitions, and some lemmas for proving our main result are given in
Section 2. Our main result is presented in Section 3. In this section, we also prove weak and strong
convergence results of the proposed method under mild conditions in a uniformly convex Banach
space endowed with a graph. In Section 4, we study the convergence behavior of our method, and
compare its efficiency with competing methods. In Section 5, we apply our proposed method to solve
certain image deblurring and signal recovering problems.

2. Graph basic definitions

In this section, we recall a few basic notions concerning the connectivity of graphs. All of these
notions can be found, e.g., in [20].

Let C be a nonempty subset of a real Banach space X. We identify the graph G with the pair
(V(G), E(G)), where the set V(G) of its vertices coincide with set C and the set of edges E(G) contains
{(x, x) : x ∈ C}. Also, G is such that no two edges are parallel. A mapping T : C → C is said to be
G-contraction if T preserves edges of G (or T is edge-preserving), i.e.,

(x, y) ∈ E(G)⇒ (T x,T y) ∈ E(G),

and T decreases weights of edges of G in the following way: there exists α ∈ (0, 1) such that

(x, y) ∈ E(G)⇒ ‖T x − T y‖ ≤ α‖x − y‖.

A mapping T : C → C is said to be G-nonexpansive (see [12], Definition 2.3 (iii)) if T preserves
edges of G, i.e.,

(x, y) ∈ E(G)⇒ (T x,T y) ∈ E(G),

and T non-increases weights of edges of G in the following way:

(x, y) ∈ E(G)⇒ ‖T x − T y‖ ≤ ‖x − y‖.

If x and y are vertices in a graph G, then a path in G from x to y of length N (N ∈ N ∪ {0}) is a
sequence {xi}

N
i=0 of N + 1 vertices such that x0 = x, xN = y and (xi, xi+1) ∈ E(G) for i = 0, 1, . . .N − 1. A

graph G is connected if there is a path between any two vertices. A directed graph G = (V(G), E(G)) is
said to be transitive if, for any x, y, z ∈ V(G) such that (x, y) and (y, z) are in E(G), we have (x, z) ∈ E(G).
We denote G−1 the conversion of a graph G and

E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}.

Let x0 ∈ V(G) and A a subset of V(G). We say that A is dominated by x0 if (x0, x) ∈ E(G) for all
x ∈ A. A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).

In this paper, we use → and ⇀ to denote the strong convergence and weak convergence,
respectively.

A mapping T : C → C is said to be G-demiclosed at 0 if, for any sequence {xn} in C such that
(xn, xn+1) ∈ E(G), xn ⇀ x and T xn → 0 imply T x = 0.

Let X be a Banach space with dimension X ≥ 2. The modulus of X is the function δX : (0, 2] →
[0, 1] defined by

δX = in f
{

1 −
∥∥∥∥∥1

2
(x + y)

∥∥∥∥∥ : ‖x‖ = 1, ε = ‖x − y‖
}
.
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Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2].
Recall that a Banach space X is said to satisfy Opial’s condition [21] if xn ⇀ x and x , y implying

that
lim sup

n→∞
‖xn − x‖ < lim sup

n→∞
‖xn − y‖.

Let C be a nonempty closed convex subset of a real uniformly convex Banach space X. Recall that
the mappings Ti(i = 1, 2, 3) on C are said to satisfy condition (C) [19] if there exists a nondecreasing
function f : [0,∞)→ [0,∞) with f (0) = 0 and f (r) > 0 for all r > 0 such that for all x ∈ C,

max{‖x − T1x‖, ‖x − T2x‖, ‖x − T3x‖} ≥ f (d(x,F )),

where F = F (T1) ∩ F (T2) ∩ F (T3), F (Ti)(i = 1, 2, 3) are the sets of fixed points of Ti and d(x,F ) =

inf{‖x − q‖ : q ∈ F }.
Let C be a subset of a metric space (X, d). A mapping T : C → C is semi-compact [22] if

for a sequence {xn} in C with lim
n→∞

d(xn,T xn) = 0, there exists a subsequence {xn j} of {xn} such that
xn j → p ∈ C.

Let C be a nonempty subset of a normed space X and let G = (V(G), E(G)) be a directed graph such
that V(G) = C. Then, C is said to have Property G (see [19]) if for each sequence in C converging
weakly to x ∈ C and (xn, xn+1) ∈ E(G), there is a subsequence {xn j} of {xn} such that (xn j , x) ∈ E(G) for
all j ∈ N.
Remark 1. If G is transitive, then Property G is equivalent to the property: if {xn} is a sequence in C
with (xn, xn+1) ∈ E(G) such that for any subsequence {xn j} of the sequence {xn} converging weakly to x
in X, then (xn, x) ∈ E(G) for all n ∈ N.
Definition 1. ( [23], Definition 3.1) Let X be a vector space and D be a nonempty subset of X × X.
ThenD is said to be coordinate-convex if for all (p, u), (p, v), (u, p), (v, p) ∈ D and for all t ∈ [0, 1], we
have

t(p, u) + (1 − t)(p, v) ∈ D and t(u, p) + (1 − t)(v, p) ∈ D.

Remark 2. IfD is convex in X × X, thenD is coordinate-convex in X × X.
In the sequel, the following lemmas are needed to prove our main results.

Lemma 1. ( [24]) LetX be a uniformly convex Banach space, and {αn} a sequence in [δ, 1−δ] for some
δ ∈ (0, 1). Suppose that sequences {xn} and {yn} in X are such that lim sup

n→∞
||xn|| ≤ c, lim sup

n→∞
||yn|| ≤ c

and lim sup
n→∞

||αnxn + (1 − αn)yn|| = c for some c ≥ 0. Then lim
n→∞
||xn − yn|| = 0.

Lemma 2. ( [25]) Let X be a Banach space that satisfies Opial’s condition and let {xn} be a sequence
in X. Let u, v ∈ X be such that lim

n→∞
||xn − u|| and lim

n→∞
||xn − v|| exist. If {xn j} and {xnk} are subsequences

of {xn} that converge weakly to u and v, respectively, then u = v.
The following lemmas show some useful Property G of C on a uniformly convex Banach space.

Lemma 3. ( [19]) Suppose that X is a Banach space having Opial’s condition, C has Property G and
let T : C → C be a G-nonexpansive mapping. Then, I − T is G-demiclosed at 0, i.e., if xn ⇀ x and
xn − T xn → 0, then x ∈ F (T ), where F (T ) is the set of fixed points of T .
Lemma 4. ( [26]) Let C be a nonempty closed convex subset of a uniformly convex Banach space
X and suppose that C has Property G. Let T be a G-nonexpansive mapping on C. Then I − T is
G-demiclosed at 0.

The following useful result is due to [27].
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Lemma 5. ( [27]) Let {xn} be a bounded sequence in a reflexive Banach space X. If for any weakly
convergent subsequence {xn j} of {xn}, both {xn j} and {xn j+1} converge weakly to the same point in X,
then the sequence {xn} is weakly convergent.

3. Main results

Throughout the section, we let C be a nonempty closed convex subset of a Banach spaceX endowed
with a directed graph G such that V(G) = C and E(G) is coordinate-convex. We also suppose that the
graph G is transitive. The mappings Ti (i = 1, 2, 3) are G-nonexpansive from C to C with F =

F (T1) ∩ F (T2 ∩ F (T3) nonempty. For an arbitrary x0 ∈ C, defined the sequence {xn} by

zn = (1 − γn)xn + γnT3xn,

yn = (1 − βn)T3xn + βnT2zn,

xn+1 = (1 − αn)T1yn + αnT2zn, n ≥ 0,
(3.1)

where {αn}, {βn} and {γn} are appropriate real sequences in [0, 1].
Proposition 1. Let q0 ∈ F be such that (x0, q0), (q0, x0) are in E(G). Then (xn, q0), (zn, q0), (yn, q0),
(q0, xn), (q0, zn), (q0, yn), (xn, yn), (xn, zn) and (xn, xn+1) are in E(G).

Proof. We proceed by induction. Since T3 is edge-preserving and (x0, q0) ∈ E(G), we have (T3x0, q0) ∈
E(G). Note that

(z0, q0) = ((1 − γ0)x0 + γ0T3x0, q0) = (1 − γ0)(x0, q0) + γ0(T3x0, q0).

Using (x0, q0), (T3x0, q0) ∈ E(G) and the coordinate-convexity of E(G), we have (z0, q0) ∈ E(G).
Again, by edge-preserving of T2 and (z0, q0) ∈ E(G), we have (T2z0, q0) ∈ E(G). We also have

(y0, q0) = ((1 − β0)T3x0 + β0T2z0, q0) = (1 − β0)(T3x0, q0) + β0(T2z0, q0).

Since (T3x0, q0), (T2z0, q0) ∈ E(G) by the coordinate-convexity of E(G), we have (y0, q0) ∈ E(G).
Then, since T1 is edge-preserving, we get (T1y0, q0) ∈ E(G). Note that

(x1, q0) = ((1 − α0)T1y0 + α0T2z0, q0) = (1 − α0)(T1y0, q0) + α0(T2z0, q0).

By the coordinate-convexity of E(G) and (T2z0, q0), (T1y0, q0) ∈ E(G), we get (x1, q0) ∈ E(G).
Thus, by edge-preserving of T3, (T3x1, q0) ∈ E(G). Again, by the coordinate-convexity of E(G) and
(T3x1, q0), (x1, q0) ∈ E(G), we have

(z1, q0) = ((1 − γ1)x1 + γ1T3x1, q0) = (1 − γ1)(x1, q0) + γ1(T3x1, q0) ∈ E(G).

Then, since T2 is edge-preserving, (T2z1, q0) ∈ E(G). By the coordinate-convexity of E(G) and
(T2z1, q0), (T3x1, q0) ∈ E(G), we get

(y1, q0) = ((1 − β1)T3x1 + β1T2z1, q0) = (1 − β1)(T3x1, q0) + β1(T2z1, q0) ∈ E(G),

and hence, (T1y1, q0) ∈ E(G).
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Next, we assume that (xk, q0) ∈ E(G). Since T3 is edge-preserving, we get (T3xk, q0) ∈ E(G). Thus

(zk, q0) = ((1 − γk)xk + γkT3xk, q0) = (1 − γk)(xk, q0) + γk(T3xk, q0) ∈ E(G),

since E(G) is coordinate-convex. Hence, by edge-preserving of T2 and (zk, q0) ∈ E(G), we have
(T2zk, q0) ∈ E(G). By the coordinate-convexity of E(G) and (T3x1, q0), (T2zk, q0) ∈ E(G), we get

(yk, q0) = ((1 − βk)T3xk + βkT2zk, q0) = (1 − βk)(T3xk, q0) + βk(T2zk, q0) ∈ E(G).

Also, since T1 is edge-preserving and (yk, q0) ∈ E(G), we get (T1yk, q0) ∈ E(G). By the coordinate-
convexity of E(G) and (T2zk, q0), (T1yk, q0) ∈ E(G), we obtain

(xk+1, q0) = (1 − αk)(T1yk + αkT2zk, q0) = (1 − αk)(T1yk, q0) + αk(T2zk, q0) ∈ E(G).

Hence, by edge-preserving of T3, we get (T3xk+1, q0) ∈ E(G), and so (zk+1, q0) = ((1 − γk+1)xk+1 +

γk+1T3xk+1, q0) = (1−γk+1)(xk+1, q0) +γk+1(T3xk+1, q0) ∈ E(G), since E(G) is coordinate-convex. Again,
by edge-preserving of T2, we obtain (T2zk+1, q0) ∈ E(G). By the coordinate-convexity of E(G) and
(T3xk+1, q0), (T2zk+1, q0) ∈ E(G), we obtain (yk+1, q0) = ((1 − βk+1)T3xk+1 + βk+1T2zk+1, q0) = (1 −
βk+1)(T3xk+1, q0) + βk+1(T2zk+1, q0) ∈ E(G). Therefore, (xn, q0), (zn, q0), (yn, q0) ∈ E(G) for all n ≥ 1.

Since T3 is edge-preserving and (q0, x0) ∈ E(G), we have (q0,T3x0) ∈ E(G), and so (q0, z0) =

(q0, (1−γ0)x0 +γ0T3x0) = (1−γ0)(q0, x0)+γ0(q0,T3x0) ∈ E(G).Again, since T2 is edge-preserving and
(q0, z0) ∈ E(G), we have (q0,T2z0) ∈ E(G). Bythecoordinate-convexityofE(G)and (q0,T3x0), (q0,T2z0)
∈ E(G), so (q0, y0) = (q0, (1 − β0)T3x0 + β0T2z0) = (1 − β0)(q0,T3x0) + β0(q0,T2z0) ∈ E(G).

Using a similar argument, we can show that (q0, xn), (q0, zn), (q0, yn) ∈ E(G) under the assumption
that (q0, x0), (q0, z0), (q0, y0) ∈ E(G). By transitivity of G, we get (xn, yn), (xn, zn), (xn, xn+1) ∈ E(G).
This completes the proof. �

Lemma 6. Let X be a uniformly convex Banach space. Suppose that {αn}, {βn} and {γn} are real
sequences in [δ, 1 − δ] for some δ ∈ (0, 1) and (x0, q0), (q0, x0) ∈ E(G) for arbitrary x0 ∈ C and q0 ∈ F .

Then
(i) lim

n→∞
‖xn − q0‖ exists;

(ii) lim
n→∞
‖xn − T1xn‖ = lim

n→∞
‖xn − T2xn‖ = lim

n→∞
‖xn − T3xn‖ = 0.

Proof. (i) Let q0 ∈ F . By Proposition 1, we have (xn, q0), (yn, q0) and (zn, q0) ∈ E(G). Then, by
G-nonexpansiveness of Ti(i = 1, 2, 3) and using (3.1), we have

‖zn − q0‖ = ‖(1 − γn)xn + γnT3xn − q0‖

= ‖(1 − γn)(xn − q0) + γn(T3xn − q0)‖
≤ (1 − γn)‖xn − q0‖ + γn‖T3xn − q0‖

≤ (1 − γn)‖xn − q0‖ + γn‖xn − q0‖

= ‖xn − q0‖, (3.2)

‖yn − q0‖ = ‖(1 − βn)T3xn + βnT2zn − q0‖
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= ‖(1 − βn)(T3xn − q0) + βn(T2zn − q0)‖
≤ (1 − βn)‖T3xn − q0‖ + βn‖T2zn − q0‖

≤ (1 − βn)‖xn − q0‖ + βn‖zn − q0‖

≤ (1 − βn)‖xn − q0‖ + βn‖xn − q0‖

= ‖xn − q0‖, (3.3)

and so

‖xn+1 − q0‖ = ‖(1 − αn)T1yn + αnT2zn − q0‖

= ‖(1 − αn)(T1yn − q0) + αn(T2zn − q0)‖
≤ (1 − αn)‖T1yn − q0‖ + αn‖T2yn − q0‖

≤ (1 − αn)‖yn − q0‖ + αn‖zn − q0‖

≤ (1 − αn)‖xn − q0‖ + αn‖xn − q0‖

≤ ‖xn − q0‖. (3.4)

As {‖xn − q0‖ : n ∈ N} is decreasing sequence which is obviously bounded below. Therefore
lim
n→∞
‖xn − q0‖ exists. In particular, the sequence {xn} is bounded.

(ii) Assume that lim
n→∞
‖xn − q0‖ = c. If c = 0, then by G-nonexpansiveness of Ti (i = 1, 2, 3), we get

‖xn − Tixn‖ ≤ ‖xn − q0‖ + ‖q0 − Tixn‖

≤ ‖xn − q0‖ + ‖q0 − xn‖.

Therefore, the result follows. Suppose that c > 0. Taking the lim sup on both sides in the
inequality (3.3), we obtain

lim sup
n→∞

‖yn − q0‖ ≤ lim sup
n→∞

‖xn − q0‖ = c. (3.5)

In addition, by G-nonexpansiveness of T1, we have ‖T1yn − q0‖ ≤ ‖yn − q0‖, taking the lim sup on
both sides in this inequality and using (3.5), we obtain

lim sup
n→∞

‖T1yn − q0‖ ≤ c. (3.6)

Taking the lim sup on both sides in the inequality (3.2), we obtain

lim sup
n→∞

‖zn − q0‖ ≤ lim sup
n→∞

‖xn − q0‖ = c. (3.7)

In addition, by G-nonexpansiveness of T2, we have ‖T2zn − q0‖ ≤ ‖zn − q0‖, taking the lim sup on
both sides in this inequality and using (3.7), we obtain

lim sup
n→∞

‖T2zn − q0‖ ≤ c. (3.8)
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Since lim
n→∞
‖xn+1 − q0‖ = c. Letting n→ ∞ in the inequality (3.4), we have

lim
n→∞
‖(1 − αn)(T1yn − q0) + αn(T2zn − q0)‖ = c. (3.9)

By using (3.6), (3.8) and (3.9) and Lemma 1, we have

lim
n→∞
‖T2zn − T1yn‖ = 0. (3.10)

Moreover, we see that

‖xn+1 − q0‖ = ‖(1 − αn)T1yn + αnT2zn − q0‖

≤ (1 − αn)‖T1yn − q0‖ + αn‖T2zn − q0‖

≤ (1 − αn)(‖T1yn − T2zn‖ + ‖T2zn − q0‖) + αn(‖T2zn − q0‖)
= (1 − αn)‖T1yn − T2zn‖ + (1 − αn)‖T2zn − q0‖ + αn(‖T2zn − q0‖)
= (1 − αn)‖T1yn − T2zn‖ + ‖T2zn − q0‖. (3.11)

Using (3.10) and (3.11), we have

lim inf
n→∞

‖T2zn − q0‖ ≥ c, (3.12)

and so by (3.8) and (3.12), we have

lim
n→∞
‖T2zn − q0‖ = c. (3.13)

On the other hand,

‖T2zn − q0‖ ≤ ‖T2zn − T1yn‖ + ‖T1yn − q0‖

≤ ‖T2zn − T1yn‖ + ‖yn − q0‖,

and this yields to

lim inf
n→∞

‖yn − q0‖ ≥ c. (3.14)

From (3.5) and (3.14),

lim
n→∞
‖yn − q0‖ = c. (3.15)

In addition, by G-noneapansives of T3 we have ‖T3xn − q0‖ ≤ ‖xn − q0‖, taking the lim sup on both
sides in this inequality, we obtain
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lim sup
n→∞

‖T3xn − q0‖ ≤ c. (3.16)

By (3.3) and (3.15), we have

lim
n→∞
‖(1 − βn)(T3xn − q0) + βn(T2zn − q0)‖ = c. (3.17)

Using (3.8), (3.16) and (3.17) and Lemma 1,

lim
n→∞
‖T2zn − T3xn‖ = 0. (3.18)

Moreover,

‖xn+1 − q0‖ = ‖(1 − αn)T1yn + αnT2zn − q0‖

≤ (1 − αn)‖T1yn − q0‖ + αn‖T2zn − q0‖

≤ (1 − αn)‖T1yn − q0‖ + αn(‖T2zn − T1yn‖ + ‖T1yn − q0‖)
= (1 − αn)‖T1yn − q0‖ + αn‖T2zn − T1yn‖ + αn‖T1yn − q0‖

= ‖T1yn − q0‖ + αn‖T2zn − T1yn‖. (3.19)

Using (3.10) and (3.19), we have

lim inf
n→∞

‖T1yn − q0‖ ≥ c. (3.20)

and so by (3.6) and (3.20), we get

lim
n→∞
‖T1yn − q0‖ = c. (3.21)

On the other hand,

‖T1yn − q0‖ ≤ ‖T1yn − T2zn‖ + ‖T2zn − q0‖

≤ ‖T1yn − T2zn‖ + ‖zn − q0‖,

and this yields to

lim inf
n→∞

‖zn − q0‖ ≥ c. (3.22)

From (3.7) and (3.22), we get
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lim
n→∞
‖zn − q0‖ = c. (3.23)

From (3.2) and (3.23), we have

lim
n→∞
‖(1 − γn)(xn − q0) + γn(T3xn − q0)‖ = c. (3.24)

By using (3.16), (3.24) and Lemma 1,

lim
n→∞
‖T3xn − xn‖ = 0. (3.25)

Thus, it follows from (3.25) that

‖zn − xn‖ = ‖(1 − γn)xn + γnT3xn − xn‖

≤ γn‖T3xn − xn‖

→ 0 (as n→ ∞). (3.26)

Using (3.18), (3.25) and (3.26) together with G-nonexpansiveness of T2,

‖T2xn − xn‖ = ‖T2xn − T2zn + T2zn − xn‖

≤ ‖xn − zn‖ + ‖T2zn − T3xn‖ + ‖T3xn − xn‖

→ 0 (as n→ ∞). (3.27)

From (3.18) and (3.25), we have

‖yn − xn‖ = ‖(1 − βn)(T3xn − xn) + βn(T2zn − xn)‖
≤ (1 − βn)‖T3xn − xn‖ + βn‖T2zn − xn‖

≤ (1 − βn)‖T3xn − xn‖ + βn(‖T2zn − T3xn‖ + ‖T3xn − xn‖)
= (1 − βn)‖T3xn − xn‖ + βn‖T2zn − T3xn‖ + βn‖T3xn − xn‖

= ‖T3xn − xn‖ + βn‖T2zn − T3xn‖

→ 0 (as n→ ∞). (3.28)

Using (3.10), (3.18), (3.25) and (3.28) together with G-nonexpansiveness of T1, we have

‖T1xn − xn‖ ≤ ‖T1xn − T1yn‖ + ‖T1yn − xn‖

≤ ‖xn − yn‖ + ‖T1yn − T2zn‖ + ‖T2zn − T3xn‖ + ‖T3xn − xn‖

→ 0 (as n→ ∞).

Therefore, we conclude that lim
n→∞
‖xn −T1xn‖ = lim

n→∞
‖xn −T2xn‖ = lim

n→∞
‖xn −T3xn‖ = 0. This completes

the proof. �
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We now prove the weak convergence of the sequence generated by the new modified three-step
iteration method (3.1) for three G-nonexpansive mappings in a uniformly convex Banach space
satisfying Opial’s condition.
Theorem 1. Let X be a uniformly convex Banach space which satisfies Opial’s condition and C has
Property G. Suppose that {αn}, {βn} and {γn} are real sequences in [δ, 1 − δ] for some δ ∈ (0, 1). If
(x0, q0), (q0, x0) ∈ E(G) for arbitrary x0 ∈ C and q0 ∈ F , then {xn} converges weakly to a common fixed
point of T1,T2 and T3.

Proof. Let q0 ∈ F be such that (x0, q0), (q0, x0) ∈ E(G). From Lemma 6 (i), lim
n→∞
‖xn − q0‖ exists, thus

{xn} is bounded. It follows from Lemma 6 (ii) that lim
n→∞
‖xn − T1xn‖ = lim

n→∞
‖xn − T2xn‖ = lim

n→∞
‖xn −

T3xn‖ = 0. Since X is uniformly convex and {xn} is bounded, we may assume that xn ⇀ u as n → ∞,
without loss of generality. By Lemma 3, we have u ∈ F. Suppose that subsequences {xnk} and {xn j} of
{xn} converge weakly to u and v, respectively. By Lemma 6 (ii), we obtain that ‖xnk − Tixnk‖ → 0 and
‖xn j − Tixn j‖ → 0 as k, j → ∞. Using Lemma 3, we have u, v ∈ F . By Lemma 6 (i), lim

n→∞
‖xn − u‖ and

lim
n→∞
‖xn − v‖ exist. It follows from Lemma 3 that u = v. Therefore, {xn} converges weakly to a common

fixed point of T1, T2 and T3. �

It is worth noting that the Opial’s condition has remained crucial in proving weak convergence
theorems. However, each lp (1 ≤ p < ∞) satisfies the Opial’s condition, while Lp do not have the
property unless p = 2.

Next, we deal with the weak convergence of the sequence {xn} generated by (3.1) for two
G-nonexpansive mappings without assuming the Opial’s condition in a uniformly convex Banach
space with a directed graph.
Theorem 2. Let X be a uniformly convex Banach space. Suppose that C has Property G, {αn}, {βn} and
{γn} are real sequences in [δ, 1 − δ] for some δ ∈ (0, 1), F is dominated by x0 and F dominates x0. If
(x0, q0), (q0, x0) ∈ E(G) for arbitrary x0 ∈ C and q0 ∈ F , then {xn} converges weakly to a common fixed
point of T1, T2 and T3.

Proof. Let q0 ∈ F be such that (x0, q0), (q0, x0) are in E(G). From Lemma 6 (i), lim
n→∞
‖xn − q0‖ exists, so

{xn} is bounded in C. Since C is nonempty closed convex subset of a uniformly convex Banach space
X, it is weakly compact and hence there exists a subsequence {xn j} of the sequence {xn} such that {xn j}

converges weakly to some point p ∈ C. By Lemma 6 (ii) we obtain that

lim
j→∞
‖xn j − T1xn j‖ = lim

j→∞
‖xn j − T2xn j‖ = lim

j→∞
‖xn j − T3xn j‖ = 0. (3.29)

In addition, ‖yn − zn‖ ≤ ‖yn − xn‖ + ‖xn − zn‖. Using (3.26) and (3.28), we have

lim
n→∞
‖yn − zn‖ = 0. (3.30)

From (3.26) and G-nonexpansiveness of T2,

‖T2zn − zn‖ ≤ ‖T2zn − T2xn‖ + ‖T2xn − xn‖ + ‖xn − zn‖
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≤ ‖zn − xn‖ + ‖T2xn − xn‖ + ‖xn − zn‖

→ 0 (as n→ ∞). (3.31)

Thus, it follows from (3.10), (3.30) and (3.31) that

‖T1yn − yn‖ ≤ ‖T1yn − T2zn‖ + ‖T2zn − zn‖ + ‖yn − zn‖

→ 0 (as n→ ∞). (3.32)

Using Lemma 4, we have I−T1, I−T2 and I−T3 are G-demiclosed at 0 so that p ∈ F . To complete
the proof it suffices to show that {xn} converges weakly to p. To this end we need to show that {xn}

satisfies the hypothesis of Lemma 5. Let {xn j} be a subsequence of {xn} which converges weakly to
some q ∈ C. By similar arguments as above q is in F . Now for each j ≥ 1, using (3.1), we have

xn j+1 = (1 − αn j)T1yn j + αn jT2zn j . (3.33)

It follows from (3.29) that

T3xn j = (T3xn j − xn j) + xn j ⇀ q. (3.34)

Now from (3.1) and (3.34),

zn j = (1 − γn j)xn j + γn jT3xn j ⇀ q. (3.35)

Using (3.31) and (3.35), we have

T2zn j = (T2zn j − zn j) + zn j ⇀ q. (3.36)

Now from (3.1), (3.34) and (3.36),

yn j = (1 − βn j)T3xn j + βn jT2zn j ⇀ q. (3.37)

Also from (3.32) and (3.37),

T1yn j = (T1yn j − yn j) + yn j ⇀ q. (3.38)

It follows from (3.33), (3.36) and (3.38) that

xn j+1 ⇀ q.

Therefore, the sequence {xn} satisfies the hypothesis of Lemma 5 which in turn implies that {xn}

weakly converges to q so that p = q. This completes the proof. �
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The strong convergence of the sequence generated by the new modified three-step iteration
method (3.1) for three G-nonexpansive mappings in a uniformly convex Banach space with a directed
graph is discussed in the rest of this section.
Theorem 3. Let X be a uniformly convex Banach space. Suppose that {αn}, {βn} and {γn} are real
sequences in [δ, 1 − δ] for some δ ∈ (0, 1), Ti(i = 1, 2, 3) satisfy condition (C), F is dominated by x0

and F dominates x0. Then {xn} converges strongly to a common fixed point of T1,T2 and T3.

Proof. By Lemma 6 (i), lim
n→∞
‖xn − q‖ exists and so lim

n→∞
d(xn,F ) exists for any q ∈ F . Also by

Lemma 6 (ii), lim
n→∞
‖xn −T1xn‖ = lim

n→∞
‖xn −T2xn‖ = lim

n→∞
‖xn −T3xn‖ = 0. It follows from condition (C)

that lim
n→∞

f (d(xn, F )) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function satisfying f (0) = 0,
f (r) > 0 for all r ∈ (0,∞), we obtain that lim

n→∞
d(xn,F ) = 0. Hence, we can find a subsequence {xn j} of

{xn} and a sequence {u j} ⊂ F such that ‖xn j − u j‖ ≤
1
2 j . Put n j+1 = n j + k for some k ≥ 1. Then

‖xn j+1 − u j‖ ≤ ‖xn j+k−1 − u j‖ ≤ ‖xn j − u j‖ ≤
1
2 j .

We obtain that ‖u j+1 − u j‖ ≤
3

2 j+1 , thus {u j} is a Cauchy sequence. We assume that u j → q0 ∈ C

as j → ∞. Since F is closed, we get q0 ∈ F . Therefore, we have xn j → q0 ∈ C as j → ∞. Since
lim
n→∞
‖xn − q0‖ exists, we obtain xn → q0. This completes the proof. �

Theorem 4. Let X be a uniformly convex Banach space. Suppose that C has Property G, {αn}, {βn} and
{γn} are real sequences in [δ, 1 − δ] for some δ ∈ (0, 1), F is dominated by x0 and F dominates x0. If
one of Ti (i = 1, 2, 3) is semi-compact, then {xn} converges strongly to a common fixed point of T1, T2

and T3.

Proof. It follows from Lemma 6 that {xn} is bounded and lim
n→∞
‖xn−T1xn‖ = lim

n→∞
‖xn−T2xn‖ = lim

n→∞
‖xn−

T3xn‖ = 0. Since one of T1, T2 and T3 is semi-compact, then there exists a subsequence {xn j} of {xn}

such that xn j → q ∈ C as j → ∞. Since C has Property G and transitivity of graph G, we obtain
(xn j , q) ∈ E(G). Notice that, for each i ∈ {1, 2, 3}, lim

j→∞
‖xn j − Tixn j‖ = 0. Then

‖q − Tiq‖ ≤ ‖q − xn j‖ + ‖xn j − Tixn j‖ + ‖Tixn j − Tiq‖

≤ ‖q − xn j‖ + ‖xn j − Tixn j‖ + ‖xn j − q‖

→ 0 (as j→ ∞).

Hence q ∈ F . Thus lim
n→∞

d(xn,F ) exists by Theorem 3. We note that d(xn j ,F ) ≤ d(xn j , q) → 0 as
j → ∞, hence lim

n→∞
d(xn,F ) = 0. It follows, as in the proof of Theorem 3, that {xn} converges strongly

to a common fixed point of T1, T2 and T3. This completes the proof. �

4. Numerical examples

For supporting our main theorem, the approximate solutions of common fixed-point problems for
a class of G-nonexpansive mapping on the closed interval are discussed. The following definition will
be useful in this context.
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Definition 2. [28] Suppose {ζn} is a sequence that converges to ζ, with ζn , ζ for all n. If positive
constants ν and ψ exist with

lim
n→∞

|ζn+1 − ζ |

|ζn − ζ |ψ
= ν,

then {ζn} converges to ζ of order ψ, with asymptotic error constant ν. If ψ = 1 (and ν < 1), the sequence
is linearly convergent.

In 2011, Phuengrattana and Suantai [29] showed that the Ishikawa iteration converges faster than
the Mann iteration for a class of continuous functions on the closed interval in a real line. In order to
study the order of convergence of a real sequence {ζn} converging to ζ, we usually use the well-known
terminology in numerical analysis, see [28], for example.
Example 1. Let X = R, C = [0, 2] and G = (V(G), E(G)) be a directed graph defined by V(G) = C and
(x, y) ∈ E(G) if and only if 0.50 ≤ x , y ≤ 1.70 or x = y ∈ C. Then E(G) is coordinate-convex and
{(x, x) : x ∈ V(G)} ⊂ E(G). Define mappings T1,T2,T3 : C → C where

T1x =
2
3

arcsin(x − 1) + 1, T2x =
1
3

tan(x − 1) + 1, T3x =
√

x,

for any x ∈ C. It is easy to show that T1,T2,T3 are G-nonexpansive but T1,T2,T3 are not nonexpansive
because

|T1x − T1y| > 0.50 = |x − y|,

|T2u − T2v| > 0.07 = |u − v|,

and
|T3 p − T3q| > 0.45 = |p − q|,

when x = 1.95, y = 1.45, u = 0.08, v = 0.01, p = 0.5 and q = 0.05.
Let

αn =
n + 1

5n + 3
, βn =

n + 2
√

8n + 5
and γn =

n + 4
10n + 7

. (4.1)

Let {xn} be a sequence generated by (3.1) and {yn}, {zn} be sequences generated by the three-step
Noor iteration (1.1) and SP-iteration, respectively. Example 1 shows the convergence behavior of
these three comparative methods and x = 1 is a common fixed point of T1,T2 and T3. We choose
z1 = y1 = w1 = x1 = 1.65 and set the relative error |ζn − x|/|x| < 1.00e − 08 as stopping criterion where
{ζn} be all of comparative sequences. The results of three comparative algorithms with the permutation
of the operators T1,T2 and T3 are presented. However, the permutation of the group of these three
operators gives 27 case studies that we need to consider. But we are interested in the absence of
duplicate operator being applied to the proposed algorithm (3.1). That is the following 6 cases of
three comparative algorithms consists of the proposed algorithm, three-step Noor iteration (1.1) and
SP-iteration (1.2) are demonstrated and discussed.

Case I. Three comparative algorithms with the operator order T1−T2−T3.

Case II. Three comparative algorithms with the operator order T1−T3−T2.

Case III. Three comparative algorithms with the operator order T2−T1−T3.

Case IV. Three comparative algorithms with the operator order T2−T3−T1.
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Case V. Three comparative algorithms with the operator order T3−T1−T2.

Case VI. Three comparative algorithms with the operator order T3−T2−T1.

All numerical experiments for common fixed point solution by using three comparative methods
with the permutation of the operators T1,T2 and T3 are shown in Figures 1–6. Each figure contains
three graphs showing the behavior of numerical solution sequences, relative error sequences and
asymptotic error sequences for three comparative methods, respectively. The first two graphs of each
figure shows that all sequences generated by these three comparative methods converge to a common
fixed point solution x = 1 and the relative errors of these three comparative methods are also
decreased to zero when the number of iteration increased. The remainning graph of each figure shows
the tendency of the asymptotic error constant σ for sequence {ζn} results from the formula
|ζn+1 − 1| / |ζn − 1| of three-step Noor, SP and proposed methods.

It can bee seen from the remainning graph of each figure that all methods are linearly convergent.
This message is being made more confident by using Definition 2. Since, the smaller of asymptotic
error constant gives us the faster convergence of the considering sequence then it can be concluded
from the remainning graph that the proposed method converge faster than three-step Noor and SP
methods.
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Figure 1. Numerical solution, relative error and aymtotic error constant of three comparative
methods for case I.
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Figure 2. Numerical solution, relative error and aymtotic error constant of three comparative
methods for case II.
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Figure 3. Numerical solution, relative error and aymtotic error constant of three comparative
methods for case III.
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Figure 4. Numerical solution, relative error and aymtotic error constant of three comparative
methods for case IV.
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Figure 5. Numerical solution, relative error and aymtotic error constant of three comparative
methods for case V.
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Figure 6. Numerical solution, relative error and aymtotic error constant of three comparative
methods for case VI.

Thus, it can be concluded from Figures 1–6 that the proposed method with the absence of duplicate
operator being applied to the proposed algorithm give us faster convergence compare with three-step
Noor and SP methods. And the fastest case occurs when the proposed method with the operator order
T3−T1−T2 is used.

5. Simulated results for image deblurring and signal recovering problems

Now, we apply our proposed algorithms to solve certain image deblurring and signal recovering
problems where all codes were written in Matlab and run on laptop Intel core i7, 16.00 GB RAM,
windows 10 (64-bit).

The minimization problem of the sum of two functions is to find a solution of

min
x∈Rn
{F(x) := f (x) + h(x)}, (5.1)

where h : Rn → R∪{∞} is proper convex and lower semicontinuous function, and f : Rn → R is convex
differentiable function with gradient ∇ f being L-Lipschitz constant for some L > 0. The solution
of (5.1) can be characterized by using Fermats rule, Theorem 16.3 of Bauschke and Combettes [30] as
follows:

x∗ is a minimizer of ( f + h) if and only if 0 ∈ ∂h(x∗) + ∇ f (x∗),

where ∂h is the subdifferential of h and ∇ f is the gradient of f . The subdifferential of h at x∗, denoted
by ∂h(x∗), is defined by

∂h(x∗) := {u : h(x) − h(x∗) ≥ 〈u, x − x∗〉 for all x}.

It is also well-known that the solution of (5.1) is characterized by the following fixed point problem:

x∗ is a minimizer of ( f + h) if and only if x∗ = proxµh(I − µ∇ f )(x∗),

where c > 0, proxh is the proximity operator of h defined by proxh := argmin{h(y) + 1
2 ‖x − y‖22},

see [31] for more details. It is also known that proxµh(I − µ∇ f ) is a nonexpansive mapping when
µ ∈ (0, 2

L ).
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5.1. Application to image deblurring problems

Let B is the degraded image of the true image X in the matrix form of m̃ rows and ñ columns
(B,X ∈ Rm̃×ñ). The key to obtaining the image restoration model is to rearrange the elements of the
images B and X into the column vectors by stacking the columns of these images into two long vectors
b and x where b = vec(B) and x = vec(X), both of length n = m̃ñ. The image restoration problem can
be modelled in one dimensional vector by the following linear equation system:

b = Mx, (5.2)

where x ∈ Rn is an original image, b ∈ Rn is the observed image, M ∈ Rn×n is the blurring matrix and
n = m̃ñ. In order to solve problem (5.2), we aim to approximate the original image, vector b, which is
known as the following least squares (LS) problem:

min
x

1
2
‖b − Mx‖22, (5.3)

where ‖.‖2 is defined by ‖x‖2 =
√∑n

i=1 |xi|
2. We can apply the minimization problem of the sum

of two functions (5.1) to the LS-problem (5.3) by setting h(x) = 0 and f (x) = 1
2‖b − Mx‖22 where

∇ f (x) = MT (Mx − y). Thus, LS-problem can be solved with our method (3.1) by setting

T x = x − µMT (Mx − b), µ ⊂

(
0,

2
||MT M||2

)
.

And, the following proposed method is obtained in finding the solution of the image deblurring
problem:

zn = (1 − γn)xn + γn

(
xn − µMT (Mxn − b)

)
,

yn = (1 − βn)
(
xn − µMT (Mxn − b)

)
+ βn

(
zn − µMT (Mzn − b)

)
, (5.4)

xn+1 = (1 − αn)
(
yn − µMT (Myn − b)

)
+ αn

(
zn − µMT (Mzn − b)

)
,

where µ ∈
(
0, 2
‖MT M‖2

)
and {αn}, {βn} and {γn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ

in (0, 1). The algorithm (5.4) is used in solving the image deblurring problem (5.2) with the default
parameter (4.1) and µ = 1/‖MT M‖2.

The goal on image deblurring problem is to find the original image from the observed image without
knowing which one is the blurring matrix. However, the blurring matrix M must be known in applying
algorithm (5.4). Now, we present the new idea in solving the image deblurring problem when the
observed image b1, b2, ..., bN can be restored by using the blurring matrices M1,M2, ...,MN , repectively
in which

bi = Mix, i = 1, 2, . . . ,N. (5.5)

That is, the original image x is a common solution of the N-determinated linear Eq (5.5). Now, Let
us consider the following LS-problems:

min
x∈Rn

1
2
‖M1x − b1‖

2
2,min

x∈Rn

1
2
‖M2x − b2‖

2
2, ...,min

x∈Rn

1
2
‖MN x − bN‖

2
2, (5.6)
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where x is the common solution of problem (5.6). In applying the proposed algorithm (5.4) in finding
the original image x, Only a group of the chosen three blurring matrices M j,Mk,Ml from known
blurring matrices M1,M2, ...,MN . And, we can apply the minimization problem of the sum of two
functions with our method (3.1) for solving the LS-problems by setting

Tix = x − µi∇ fi(x)c

with hi(x) = 0 and fi(x) = 1
2‖bi−Mix‖22 where ∇ fi(x) = MT

i (Mix−bi). Now, we presented the proposed
algorithm with M j−Mk−Ml:

zn = (1 − γn)xn + γn

(
xn − µ jMT

j (M jxn − b j)
)
,

yn = (1 − βn)
(
xn − µ jMT

j (M jxn − b j)
)

+ βn

(
zn − µkMT

k (Mkzn − bk)
)
, (5.7)

xn+1 = (1 − αn)
(
yn − µlMT

l (Mlyn − bl)
)

+ αn

(
zn − µkMT

k (Mkzn − bk)
)
,

with the default parameter (4.1), µ j = 1/‖MT
j M j‖2, µk = 1/‖MT

k Mk‖2, µl = 1/‖MT
l Ml‖2 and called it

as the proposed algorithm with M j−Mk−Ml. The implemented algorithm (5.7) is proposed in solving
the image deblurring problem by using every three blurring matrices from N known blurring matrices
with the default parameter (4.1). The original RGB format for color image shown in Figure 7 is used to
demonstrate the practicability of the proposed algorithm. The relative errors with the stopping criterion
of the proposed algorithms are defined as ‖xn − x‖∞/‖x‖∞ < 10−3. The performance of the comparing
algorithms at xn on image deblurring process is measured quantitatively by the means of the peak
signal-to-noise ratio (PSNR), which is defined by

PSNR(xn) = 20log10

(
2552

MS E

)
,

where MSE = ‖xn − x‖22. Three different types of the original RGB image degraded by the blurring
matrices M1,M2 and M3 are shown in Figure 8. These are used to test the implemented algorithm.

Figure 7. The original RGB image with matrix size 248 × 356 × 3.
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Figure 8. The original RGB image degraded by blurred matrices M1, M2 and M3

respectively.

Next, we present restoration of images that have been corrupted by the following blur types:

Type I. Gaussian blur of filter size 9 × 9 with standard deviation σ = 4 (The original image has been
degraded by the blurring matrix M1).

Type II. Out of focus blur (Disk) with radius r = 6 (The original image has been degraded by the
blurring matrix M2).

Type III. Motion blur specifying with motion length of 21 pixels (len = 21) and motion orientation
11◦ (θ = 11) (The original image has been degraded by the blurring matrix M3).

Since, the using image X and three different types of the blurring image B (See on Figure 8) are
represented in the red-green-blue component. Then, we denote Xr,Xg,Xb and Br,Bg,Bb as the gray-
scale images that constitute the red-green-blue channels of the using imageX and the blurring image B
respectively. Thus, we define the column vector x and b from color image X and B and both of length
n = 3m̃ñ. After that, we apply the proposed algorithms in getting the common solution of the image
deblurring problem with these three blurring matrices. And, we are also compare with three-step Noor
iteration (1.1) and SP-iteration (1.2).

The permutation of the group of these three blurring matrices gives 27 case studies that we need
to consider. First, we are interested in the simple three cases in which all three blurring matrices are
the same. Second, we are also interested in the case of the absence of duplicate blurring matrices.
That is the following 9 cases of three comparative algorithms consists of the proposed algorithm (5.7),
three-step Noor iteration (1.1) and SP-iteration (1.2) are demonstrated and discussed.

Case I. Three comparative algorithms with M1−M1−M1.

Case II. Three comparative algorithms with M1−M2−M3.

Case III. Three comparative algorithms with M1−M3−M2.

Case IV. Three comparative algorithms with M2−M2−M2.

Case V. Three comparative algorithms with M2−M1−M3.

Case VI. Three comparative algorithms with M2−M3−M1.

Case VII. Three comparative algorithms with M3−M3−M3.

Case VIII. Three comparative algorithms with M3−M1−M2.

Case IX. Three comparative algorithms with M3−M2−M1.
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Figures 9–17 show the comparative plots behavior of Cauchy error, relative error and PSNR quality
of the reconstructed RGB image with 9 cases.
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Figure 9. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case I.
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Figure 10. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case II.
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Figure 11. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case III.
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Figure 12. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case IV.
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Figure 13. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case V.
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Figure 14. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case VI.
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Figure 15. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case VII.
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Figure 16. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case VIII.
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Figure 17. The Cauchy norm, relative norm and PSNR quality plots of three comparative
algorithms with case IX.

It is remarkable that, the Cauchy error and relative error plots on each case of three comparative
algorithms decrease as the iteration number increases. Since, the Cauchy and relative errors plot show
the validity and confirm the convergence of the presented methods then, it can guarantee that all
presented methods on Figures 9–17 converge to common solution of deblurring problem (5.7). Based
on the PSNR plots of each case, all restored image using these three comparative algorithms in
solving the deblurring problem get the quality improvements when the iteration number increases. It
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can be conclude from the comparative plots behavior on Figures 9–17 that the proposed method is
more efficiency than three-step Noor and SP methods. Moreover, the PSNR quality of the observed
image is much better when the proposed method with M j−Mk−Ml and j , k , l is used for solving
deblurring problem compare with the proposed methods with M1 −M1 −M1, M2 −M2 −M2 and
M3−M3−M3. And, the best case in recovering the observed image occurs when the proposed methods
with M2−M1−M3 and M3−M1−M2 are used. Figure 18 demonstrates the crop of reconstructed RGB
image presented in 10, 000th iteration by using the proposed algorithms in getting the common
solution of the deblurring problem with operators M1−M1−M1 and M2−M2−M2, M3−M3−M3 and
M3−M1−M2 respectively.

Figure 18. The reconstructed images being used the proposed algorithms with cases I, IV,
VI and VIII , respectively present in 10, 000th iterations.

It can be seen from these figures that the quality of restored image by using the proposed algorithms
with operators M3−M2−M1 get the smooth quality of the using degraded image.

Next, we give some numerical examples to the signal recovery.

5.2. Application to signal recovering problems

In signal processing, compressed sensing can be modeled as the following undetermined linear
equation:

y = Ax + ν,

where x ∈ Rn is an original signal with n components to be recovered, ν, y ∈ Rm are noise and the
observed signal with noisy for m components respectively and A ∈ Rm×n is a degraded matrix. Finding
the solutions of previous undetermined linear equation can be seen as solving the LASSO problem:

min
x∈RN

1
2
‖y − Ax‖22 + λ‖x‖1, (5.8)

where λ > 0. The new idea in solving the signal recovering problem is presented when the observed
signal y1, y2, ..., yN can be recovered by using the known degraded matrices A1, A2, ..., AN in which

yi = Aix + νi, i = 1, 2, . . . ,N. (5.9)

where a true signal x is common solution of problem (5.9).
Let us consider the following LASSO problems:

min
x∈RN

1
2
‖A1x − y1‖

2
2 + λ1‖x‖1,
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min
x∈RN

1
2
‖A2x − y2‖

2
2 + λ2‖x‖1, (5.10)

...

min
x∈RN

1
2
‖AN x − yN‖

2
2 + λN‖x‖1,

where a true signal x is common solution of problem (5.10). We can apply the minimization problem
of the sum of two functions with our method (3.1) for solving the LASSO problems (5.10) by setting

Tix = proxµihi

(
x − µi∇ fi(x)

)
, µi ⊂

(
0,

2
||AT

i Ai||2

)
, i = 1, 2, . . . ,N,

with hi(x) = λi‖x‖1 and fi(x) = 1
2‖yi −Aix‖22 where ∇ fi(x) = AT

i (Aix− yi). Now, we obtain the following
proposed method to find the common solution of LASSO problems (5.10) for a group of three blurring
matrices A j, Ak, Al chosen from N blurring matrices A1, A2, ..., AN:

zn = (1 − γn)xn + γn proxλg

(
xn − µ jAT

j (A jxn − y j)
)
,

yn = (1 − βn)proxλg

(
xn − µ jAT

j (A jxn − y j)
)

+ βn proxλg

(
zn − µkAT

k (Akzn − yk)
)
, (5.11)

xn+1 = (1 − αn)proxλg

(
yn − µlAT

l (Alyn − yl)
)

+ αn proxλg

(
zn − µkAT

k (Akzn − yk)
)
,

with the default parameter (4.1), µ j = 1/‖AT
j A j‖2, µk = 1/‖AT

k Ak‖2, µl = 1/‖AT
l Al‖2 and called it as

the proposed algorithm with A j−Ak−Al. The implemented algorithm (5.11) is proposed in solving the
signal recovering problem by using every three blurring matrices from N blurring matrices on Eq (5.9)
with the default parameter (4.1). And, we are also compare the proposed algorithm (5.11) with three-
step Noor iteration (1.1) and SP-iteration (1.2). The following 9 cases of three comparative algorithms
consists of the proposed algorithm (5.11), three-step Noor iteration (1.1) and SP-iteration (1.2) are
demonstrated and discussed.

Case I. Three comparative algorithms with A1−A1−A1.

Case II. Three comparative algorithms with A1−A2−A3.

Case III. Three comparative algorithms with A1−A3−A2.

Case IV. Three comparative algorithms with A2−A2−A2.

Case V. Three comparative algorithms with A2−A1−A3.

Case VI. Three comparative algorithms with A2−A3−A1.

Case VII. Three comparative algorithms with A3−A3−A3.

Case VIII. Three comparative algorithms with A3−A1−A2.

Case IX. Three comparative algorithms with A3−A2−A1.
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Next, some experiments are provided to illustrate the convergence and the effectiveness of the
proposed algorithm (5.11). The original signal x with n = 1024 generated by the uniform distribution
in the interval [−2, 2] with 70 nonzero elements is used to create the observation signal
yi = Aix + νi, i = 1, 2, 3 with m = 512 (See on Figure 19).
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Figure 19. Original Signal (x) with m = 70.

The observation signal yi = Aix + ni shows on Figure 20.
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Figure 20. Degraded Signals y1, y2, and y3, respectively.

The process is started when the signal initial data x0 with n = 1024 is picked randomly (See on
Figure 21).
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Figure 21. Initial Signals x0.

The matrices Ai that generated by the normal distribution with mean zero and variance one and the
white Gaussian noise νi for all i = 1, 2, 3 (See on Figure 22).
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Figure 22. Noise Signals ν1, ν2, and ν3 respectively.

The Cauchy error and the relative signal error are measured by using max-norm ‖xn − xn−1‖∞ and
‖xn − x‖∞/‖x‖∞, respectively. The performance of the comparing method at nth iteration is measured
quantitatively by the means of the the signal-to-noise ratio (SNR), which is defined by

SNR(xn) = 20 log10

(
‖xn‖2

‖xn − x‖2

)
,

where xn is the recovered signal at nth iteration by using the proposed method. The Cauchy error plots
and relative error plots on each case of three comparative methods on Figures 23–31 guarantee that
all presented methods converge to common solution of signal recovering problem. Based on the SNR
plots on each case of three comparative methods, all recovering signal using the proposed method,
three-step Noor method and Sridarat method witness quality improvement when the iteration number
increases. It can be conclude from the comparative plots behavior on Figures 23–31 that the proposed
method is more efficiency than three-step Noor and SP methods.
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Figure 23. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case I.
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Figure 24. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case II.
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Figure 25. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case III.
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Figure 26. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case IV.
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Figure 27. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case V.
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Figure 28. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case VI.
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Figure 29. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case VII.
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Figure 30. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case VIII.
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Figure 31. The Cauchy norm, relative norm plots and SNR quality plots of three comparative
algorithms with case IX.
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Figure 32. Recovering signals being used the proposed algorithms with cases I, IV, VII and
VIII, respectively presented in 10, 000th iterations.
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Moreover, the SNR quality of the recovering signal is significantly improved when the proposed
method with A j−Ak−Al and j , k , l is used compare with the proposed methods with A1−A1−A1,
A2−A2−A2 and A3−A3−A3. And, the best case in recovering the observed signal occurred when the
proposed method with the operator order A2−A1−A3 and A3−A1−A2 are used. Figure 32 shows an
excellent quality of the restored signal using the proposed algorithm with A3−A1−A2.

6. Conclusions

In this article, the efficient modified three-step iteration algorithm is proposed for approximating
a common fixed point of three G-nonexpansive mappings on Banach spaces involving a graph. By
assuming coordinate-convexity in a uniformly convex Banach space endowed with a directed graph,
we have proved strong convergence theorem for above said algorithm and mappings by using condition
(C) which is a generalization of condition (A) [32] and a weak convergence theorem by using Opials
condition [21]. Also we have proved weak convergence theorem without using Opials condition. The
conditions for convergence of the method are established by systematic proof. Numerical example
illustrating the performance of the suggested algorithm was provided. All numerical experiments for
common fixed point solution by using the three-step Noor iteration, SP-iteration and the proposed
method with the permutation of three operators are shown in Figures 1–6. Our algorithm was found to
be faster than Noor and SP iterations. As applications, we applied our proposed algorithm to solve the
image restoration problems with the permutation of the three blurring operators (see Figures 9–17). We
also applied our algorithms for solving signal recovery in situations where the type of noise is unknown
(see Figures 23–31). We found that our proposed algorithm is flexible and has good quality for common
types of blur and noise effects in image deblurring and signal recovering problems. Moreover, we
found that when the proposed is used in solving the common solution of image and signal recovering
problems, it enhanced the quality range of the recovered image and signal.
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