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1. Introduction and preliminaries

Metric fixed point theory is one of the chief branch in the field of nonlinear analysis. The Banach
contraction principle (BCP) is an important and celebrated result of this branch, which was initiated
by Banach in 1922. In 1974, Ćirić [1] investigated a quasi-contraction mapping and showed that his
main result implies the BCP. Varies researchers, as Ekland [2], Hegedus [3], Ghosh [4] and others
generalized the BCP in different directions, either by changing the underlaying spaces, or the
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contractive condition. In the fixed point theory, one of the most unusual and interesting easily
formulated and useful results is due to caristi [5]. Khojasteh et al. [6] introduced the idea that many
known fixed point theorems can easily be derived from the Caristi theorem. Karapınar et al. [7]
proposed a new fixed point theorem inspired from both Caristi and Banach. Du and Karapinar [8]
introduced the concept of Caristi-type cyclic mappings and presented new convergence and best
proximity point theorems. Karapinar [9] used lower semi-continuous mappings to generalise
Caristi-Kirk’s fixed point theorem on partial metric spaces. In [10], Kada et al. studied Caristi result
and provided a new generalization by using the ω-distance (for more details, see [11–14]).
Gil et al. [15] established a proof for Bianchini and Grandolfi Theorem in the context of quasi-metric
spaces via a modified ω-distance. Suzuki [16] initiated the idea of the τ-distance and studied the
generalized distance with an existence theorem in metric spaces. On the basis of the τ-distance,
Suzuki proved the Caristi result for single-value mappings. In 2003, by generalizing Caristi work,
Bae et al. [17] investigated fixed point results in case of weakly contractive multi-valued mappings.
By studying the result of Bae et al., Suzuki [18] gave a new generalization of Caristi result. In 2008,
Khamsi [19] presented some remarks on Caristi result.

On the other hand, in 2015, Suzuki et al. [20] worked on Caristi result by utilizing the completeness
of an υ-generalized metric space in the sense of Branciari. In 2016, Du [21] initiated the idea of an
essential distance that generalized the notion of a T -function and provided an upgrade form of Caristi
fixed point result. Kozlowski [22] studied Caristi result and provided its proof by applying a pure
metric technique. In 2018, Suzuki [23] initiated the idea of

∑
-completeness in semi-metric spaces

and extended Caristi result to
∑

-complete semi-metric spaces. Also, Isik et al. [24] studied a new
generalization of Caristi and Banach fixed point theorems.

Now, we recall Caristi fixed point result as follows:

Theorem 1.1. [5] Assume that (H , d) is a complete metric space and T : H → H is a self-mapping.
Suppose that

Ψ : H → [0,+∞)

is a lower semi-continuous mapping such as, for all v ∈ H ,

d(v,T (v)) + Ψ(T (v)) ≤ Ψ(v).

Then there exists a fixed point of T inH .

Using a new approach, Bae et al. [17] upgraded Caristi result as follows:

Theorem 1.2. Let (H , d) represent a complete metric space and A : H → [0,+∞) be a lower semi-
continuous mapping. Let T : H → H represent a self-mapping such that, for all v ∈ H ,

d(v,T (v)) ≤ α(A(v) − A(T (v))),

where
α = max{b(A(v)), b(A(T (v)))}

and b : [0,+∞)→ (0,+∞) is a right upper semi-continuous function. Then T has a fixed point inH .

Initially, Kada et al. [7] launched the idea of the ω-distance as follows:
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Definition 1.3. Assume that (H , d) is a metric space and ω : H × H → [0,+∞) is a function. ω is
called the ω-distance if, for all p, q, r ∈ H , the following conditions hold:

(i) ω(p, r) ≤ ω(p, q) + ω(q, r);

(ii) ω(p, ·) : H → [0,+∞) is lower semi-continuous;

(iii) If there is β > 0 such that ω(r, p) ≤ β and ω(r, q) ≤ β for any ϵ > 0, then d(p, q) ≤ ϵ.

In [7], Kada et al. upgraded Caristi results by the ω-distance as in the following.

Theorem 1.4. Let (H , d) represent a complete metric space and ω be the ω-distance on H . If T :
H → H is a mapping onH such that, for any v ∈ H ,

A(v) − A(T (v)) ≥ ω(v, A(v)),

where A : H → [0,+∞) is a lower semi-continuous function, then there is s ∈ H so that T (s) = s
and ω(s, s) = 0.

In 2001, Suzuki [16] provided the idea of the τ-distance, which is an upgrade form of theω-distance.

Definition 1.5. Let H be a metric space endowed with a metric d. A τ-distance on H is a function
Q : H ×H → [0,+∞) ensuring that for all p, q, r ∈ H ,

(Q1) Q(p, r) ≤ Q(p, q) + Q(q, r);

(Q2) ξ(p, 0) = 0 and ξ(p, v) ≥ v for all p ∈ H and v ≥ 0, where ξ is continuous, concave and non-
decreasing in its second variable;

(Q3) If lim sup{ξ(rn,Q(rn, pm)) : m ≥ n} = 0 and lim
n→+∞

pn = p, then

Q(v, p) ≤ lim infn→+∞ Q(v, pn) for all v ∈ H ;

(Q4) If lim
n→+∞

ξ(pn, vn) = 0 and lim sup{Q(pn, qm) : m ≥ n} = 0, then lim
n→+∞

ξ(qn, vn) = 0;

(Q5) If lim
n→+∞

ξ(rn,Q(rn, qn)) = 0 and lim
n→+∞

ξ(rn,Q(rn, pn)) = 0, then lim
n→+∞

d(pn, qn) = 0.

Suzuki [16] used the idea of the τ-distance. He upgraded the result of Kada et al. [7] and generalized
the BCP.

Theorem 1.6. [16] Assume that (H , d) is a complete metric space and Q represents a τ-distance on
H . Let T : H → H be a self-mapping onH such that for each v ∈ H ,

Q(v, A(v)) ≤ A(v) − A(T (v)),

where A : H → [0,+∞) is a lower semi-continuous function. Then there is s ∈ H so that T (s) = s
and Q(s, s) = 0.

Theorem 1.7. [16] Let H be a complete metric space and T : H → H represent a self-mapping.
Suppose that Q is the τ-distance onH and t ∈ [0, 1) such that q(T g,T 2g) ≤ t.q(g,T g) for all g ∈ H .
Suppose that following conditions hold:
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(c1) If lim supn{Q(gn, gm) : m > n} = 0, lim
n

Q(gn,T gn) = 0 and lim
n

Q(gn, h) = 0, then T h = h;

(c2) If {gn} and {T gn} converge to h, then T h = h;

(c3) T is continuous.

Then there is g0 ∈ H that ensures T g0 = g0 and Q(g0 , g0) = 0.

In 2005, Suzuki [18] generalized the results of Bae et al. [17] as follows:

Theorem 1.8. Suppose (H , d) represents a complete metric space and h : H → (0,+∞) is a mapping
so that for some q > 0, sup{h(v) : v ∈ H , A(v) ≤ infz∈H A(z) + q} < +∞, where A : H → [0,+∞) is a
lower semi-continuous function. Assume T : H → H is a self-mapping such that for all v ∈ H ,

d(v,T (v)) ≤ h(v)(A(v) − A(T (v))).

Then there is a fixed point of T inH .

By using the concept of the τ-distance, Suzuki [16] generalized Theorem 1.6 and Theorem 1.8.

Theorem 1.9. Let (H , d) be a complete metric space, Q denote the τ-distance and h : H → (0,+∞)
be a map so that for some q > 0,

sup{h(v) : v ∈ H , A(v) ≤ inf
z∈H

A(z) + q} < +∞,

where A : H → (0,+∞) is a lower semi-continuous function. Let T : H → H be a self-mapping so
that for all v ∈ H ,

Q(v,T (v)) ≤ h(v)(A(v) − A(T (v))).

Then there is a0 ∈ H such that T (a0) = a0 and Q(a0 , a0) = 0.

Recently, Isik et al. [24] proposed the following novel extension of Banach and Caristi’s results.

Theorem 1.10. Assume that (H , d) is a complete metric space and T : H → H is a self-mapping.
Let W represent the set of functions Ψ : R→ (0, +∞) fulfilling the following properties:

(i) Ψ is increasing strictly and continuous;

(ii) For every sequence an ⊆ R
+, lim

n→+∞
an = 0 if and only if lim

n→+∞
Ψ(an) = 1;

(iii) For all a, b ∈ R, Ψ(a+b) ≤ Ψ(a)Ψ(b), where R and R+ represent the sets of real and non-negative
real numbers respectively.

If there is a bounded-below and lower semi-continuous map β : H → R so that

Ψ(d(µ,Tµ)) ≤
Ψ(β(µ))
Ψ(β(Tµ))

f or allµ ∈ H ,

then T has a fixed point.
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Theorem 1.11. [24] Let (H , d) be a complete metric and T : H → H be a continuous self-mapping.
If 𭟋 : [0,+∞)→ [0,+∞) exists so that lim

x→0
𭟋(x) = 0, 𭟋(0) = 0 and

d(T (a),T (b)) ≤ 𭟋(d(a, b)) − 𭟋(d(T (a),T (b))) f or alla, b ∈ H ,

then there is a fixed point of T .

Karapinar [25] investigated the existence and uniqueness of fixed points of Jaggi type contractions
by using a simulation function in the framework of partial metric spaces. Gupta et al. [26] established
the following fixed point result in partially ordered metric spaces by applying generalized (φ, α, β)-
contractive mappings.

Theorem 1.12. Let (H , d,⪯) be a partially ordered complete metric space and T be a non-decreasing
self-mapping such that for all x, y ∈ X,

φ(d(T x,T y)) ≤ α(λ(x, y)) − β(λ(x, y)),

with x ⪯ y, x , y with

λ(x, y) = max
{d(x,T x).d(y,T y)

d(x, y)
, d(x, y)

}
, (1.1)

where φ is an alternating distance function and α, β : [0, +∞) → [0, +∞) verifying α(t) ≥ β(t) for
each t ≥ 0, are continuous functions satisfying the condition: Ψ(t) > α(t) − β(t) for each t > 0. Also,
suppose

(C1) either T is continuous, or ({xn} ∈ H is non-decreasing so that xn → x, then x = sup{xn});

(C2) if there exists x0 ∈ H so that x0 ⪯ T x0.

Then T has a fixed point.
Furthermore, if for all x, y ∈ H , there is z ∈ H comparable to x and y, then there exists a unique

fixed point of T .

In this manuscript, we give some fixed point theorems in partially ordered complete metric spaces
and derive some extended forms of Suzuki and Banach fixed point theorems via a τ-distance by
applying some new control functions. The presented work upgrades some popular results from
literature, particularly Theorems 1.9–1.12 in the context of usual and partially ordered metric spaces.
For the authenticity of the established results, some remarks, examples and applications are also
discussed.

2. Fixed point results

Let W represent family of mappings Ψ : R→ (0,+∞) fulfilling properties (i)-(iii) of Theorem 1.10.
The first result of this section is as follows:

Theorem 2.1. Let (H , d,⪯) be a partially ordered complete metric space and T : H → H be non-
decreasing such that for all x, y ∈ H ,

Ψ
(
φ(d(T (x),T (y)))

)
≤
Ψ
(
α(λ(x, y))

)
Ψ
(
β(λ(x, y))

) with x ⪰ y, x , y, (2.1)
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where

λ(x, y) = max
{d(x,T (x))d(y,T (y))

d(x, y)
, d(x, y)

}
,

where φ is an altering distance function and α, β : [0,+∞) → [0,+∞) are continuous satisfying
α(t) ≥ β(t) for each t ≥ 0 such that

Ψ
(
φ(t)
)
>
Ψ
(
α(t)
)

Ψ
(
β(t)
) , for each t > 0.

Further, assume that

(i) either T is continuous, or (if {xn} ∈ X is non-decreasing such that xn → x ,then x = sup{xn});

(ii) there is x0 ∈ X such that x0 ⪯ T x0.

Then there is a fixed point of T . Moreover, if for all x, y ∈ H , there is z ∈ H comparable to x and y,
then the fixed point of T is unique.

Proof. Let {xn} be a sequence given as xn+1 = T xn for n ≥ 0. If there is n0 such that xn0
= xn0+1 = T x0,

so xn0 is a fixed point of T . Otherwise, assume that xn , xn+1 for all n ≥ 0 then d(xn, xn+1) , 0 for each
n ≥ 0. Since xn−1 and xn are comparable for all n ≥ 1, we have from (2.1),

Ψ
(
φ(d(xn+1, xn))

)
= Ψ

(
φ(d(T xn,T xn−1))

)
Ψ
(
φ(d(xn+1, xn))

)
≤
Ψ
(
α(λ(xn, xn−1))

)
Ψ
(
β(λ(xn, xn−1))

) (2.2)

where,

λ(xn, xn−1) = max
{d(xn,T xn)d(xn−1,T xn−1)

d(xn, xn−1)
, d(xn, xn−1)

}
= max

{d(xn, xn+1)d(xn−1, xn)
d(xn, xn−1)

, d(xn, xn−1)
}
.

Thus, from (2.2),

Ψ
(
φ(d(xn+1, xn))

)
≤

Ψ

(
α
(
max{d(xn, xn+1), d(xn, xn−1)}

))
Ψ

(
β
(
max{d(xn, xn+1), d(xn, xn−1)}

)) . (2.3)

If for some n, d(xn, xn+1) ≥ d(xn, xn−1), then by (2.3)

Ψ
(
φ(d(xn+1, xn))

)
≤

Ψ

(
α
(
d(xn, xn+1)

))
Ψ

(
β
(
d(xn, xn+1)

)) . (2.4)
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By assumptions, we find

Ψ
(
φ(d(xn+1, xn))

)
< Ψ

(
φ(d(xn+1, xn))

)
,

which is a contradiction. Thus, for all n ≥ 1, we have

d(xn, xn+1) < d(xn, xn−1).

That is, {d(xn, xn+1)} is a non negative real, decreasing sequence, so there exists δ ≥ 0 such that

lim
n→+∞

d(xn, xn+1) = δ.

Assume that δ > 0. Since d(xn, xn+1) < d(xn, xn−1), by 2.3 we have

Ψ
(
φ(d(xn+1, xn))

)
≤

Ψ

(
α
(
d(xn, xn−1)

))
Ψ

(
β
(
d(xn, xn−1)

)) .
Taking limit on both sides, we get

Ψ
(
φ(δ)
)
≤
Ψ
(
α
(
δ)
)

Ψ
(
β
(
δ)
) < Ψ(φ(δ)

)
.

It is a contradiction, i.e., δ = 0. That is,

lim
n→+∞

d(xn, xn+1) = 0. (2.5)

Further, to prove that {xn} is Cauchy, suppose the contrary there are ε > 0 and subsequences {xnk} and
{xmk} of {xn} with nk > mk > k, k ≥ 1 satisfying

d(xmk , xnk) ≥ ε (2.6)

and

d(xmk , xnk−1) < ε. (2.7)

For all k ≥ 0, we have

ε ≤ d(xmk , xnk) ≤ d(xmk , xnk−1) + d(xnk−1 , xnk) < ε + d(xnk−1 , xnk). (2.8)

Taking lim
k→+∞

and using Eqs (2.8) and (2.7),

lim
k→+∞

d(xmk , xnk) = ε. (2.9)

Using triangle inequality, we get

Ψ
(
d(xmk , xnk)

)
≤ Ψ

(
d(xmk , xmk−1

)
.Ψ
(
d(xmk−1 , xmk−2

)
.Ψ
(
d(xmk−2 , xnk

)
Ψ
(
d(xmk−1 , xnk−1

)
≤ Ψ

(
d(xmk−1 , xmk

)
.Ψ
(
d(xmk , xnk

)
.Ψ
(
d(xnk , xnk−1

)
.
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Taking k → +∞ in above inequalities and using Eqs (2.5) and (2.9), we have

lim
k→+∞

d(xmk−1 , xnk−1) = ε. (2.10)

As nk > mk, and xnk−1 and xmk−1 are comparable, then from Eq (2.1),

Ψ

(
φ
(
d(xnk , xmk)

))
= Ψ

(
φ
(
d(T xnk−1 ,T xmk−1)

))
≤

Ψ

(
α
(
λ(xnk−1 , xmk−1)

))
Ψ

(
β
(
λ(xnk−1 , xmk−1)

)) , (2.11)

where

λ(xnk−1 , xmk−1) = max
{d(xnk−1 ,T xnk−1).d(xmk−1 ,T xmk−1)

d(xnk−1 , xmk−1)
, d(xnk−1 , xmk−1)

}
= max

{d(xnk−1 , xnk).d(xmk−1 , xmk)
d(xnk , xmk−1)

, d(xnk−1 , xmk−1)
}
.

Taking k → +∞ in the above inequality and using (2.5), (2.9) and (2.10), we have

lim
k→+∞

λ(xnk−1 , xmk−1) = max{0, ε} = ε. (2.12)

Taking k → +∞ in (2.11) and using (2.12), we have

Ψ
(
φ(ε)
)
≤
Ψ
(
α
(
ε)
)

Ψ
(
β
(
ε)
) < Ψ(φ(ε)

)
.

It is a contradiction. Therefore, {xn} is Cauchy. So, there exists z ∈ H such that

lim
n→+∞

xn = z. (2.13)

Next, we prove that T (z) = z.
Case:1 T is continuous. We have

z = lim
n→+∞

xn+1

= lim
n→+∞

T xn

= T
(

lim
n→+∞

xn
)

= T z.

Case:2 Let {xn} ∈ H be a non-decreasing sequence such that xn → z, then z = sup{xn}. In particular,
xn ⪯ z for all n. Since T is non-decreasing, we have T xn ⪯ T z for all n, that is, xn+1 ⪯ T z for all
n. Moreover, as xn ⪯ xn+1 ⪯ T z for all n and z = sup{xn}, hence z ≤ T z. Now, define {yn} by y0 = z
, yn+1 = T yn, n = 0, 1, 2, · · · . Since y0 ≤ T y0 , therefore {yn} is non-decreasing and thus z = sup{xn}.
Hence for all n, we have

xn < z = y0 ≤ T z ≤ yn ≤ y.
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Assume that z , y, hence from (2.2),

Ψ
(
φ(d(yn+1, xn+1))

)
= Ψ
(
φ(d(T yn,T xn))

)
≤
Ψ
(
α(λ(yn, xn))

)
Ψ
(
β(λ(yn, xn))

) , (2.14)

where,

λ(yn, xn) = max
{d(yn,T yn).d(xn,T xn)

d(yn, xn)
, d(yn, xn)

}
= max

{d(yn, yn+1).d(xn, xn+1)
d(yn, xn)

, d(yn, xn)
}
.

Taking n→ +∞, in the above inequality, we obtain

lim
n→+∞

λ(yn, xn) = max
{
0, d(y, z)

}
= d(y, z). (2.15)

Applying limn→∞ in (2.14) and using (2.15), we get

Ψ
(
φ(d(y, z))

)
≤
Ψ
(
α(d(y, z))

)
Ψ
(
β(d(y, z))

) .
Thus, d(y, z) = 0, therefore y = z. Thus, we have z ≤ T z ≤ z. Hence, T z = z.

Let us assume that x, y ∈ H are two fixed points of T , so there exists u ∈ H which is comparable to
x and y. Define the sequence {un} as u0 = u, un+1 = T un for all n = 0, 1, 2, 3, . . .. Since u is comparable
with x, we can assume that u ≤ x. Continuing in this way, we can show that un ≤ x for all n. Suppose
that there exists n0 ≥ 1 such that un0

= x, then un = T un−1 = T x = x for all n ≥ n0 − 1. This implies
that un → ∞. If un , x for all n, then from (2.2) we have

Ψ(φ(d(x, un))) = Ψ(φ(d(T x,T un−1))) ≤
Ψ(α(λ(x, un−1)))
Ψ(β(λ(x, un−1)))

, (2.16)

where,

λ(x, un) = max
{

d(x,T x).d(un−1,T un−1)
d(x, un−1)

, d(x, un−1)
}
= d(x, un−1).

Thus, from (2.16), we obtain

Ψ(φ(d(x, un))) ≤
Ψ(α(d(x, un−1)))
Ψ(β(d(x, un−1)))

≤ Ψ(φ(d(x, un−1))) (2.17)

Ψ(φ(d(x, un))) ≤ Ψ(φ(d(x, un−1)) (2.18)
φ(d(x, un)) ≤ φ(d(x, un−1). (2.19)

Since φ as an altering distance functions, one has d(x, un) ≤ d(x, un−1) for all n ≥ 1 that is, {d(x, un)}
is a decreasing sequence of positive real numbers, therefore there exists v ≥ 0 such that d(x, un) → v.
Assume that v > 0. By taking limn→∞ of both side of (2.15), we get a contradiction and hence v = 0.
Thus, in both cases we have un → x. Similarly, un → y. The limit is unique, therefore x = y and so T
has a unique fixed point. □
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The following lemma is useful in the sequel.

Lemma 2.2. Let H be a metric space equipped with a τ-distance Q and Φ : H → (−∞,+∞] be a
bounded below and proper lower semi-continuous map. Define a set

Mg = {h ∈ H : Ψ(Φ(h)) · Ψ(Q(g, h)) ≤ Ψ(Φ(g))},

where Ψ ∈ W. Let v ∈ H and c ∈ R+ so that

Φ(v) < +∞, Mv , ∅, c ≥ Φ(v) − infΦ(Mv).

Then p : H ×H → R+ defined by

p(g, h) =
{
Φ(g) − infΦ(Mg) if g ∈ Mv ∧ h ∈ Mg,
c + Q(g, h) if g < Mv ∨ h < Mg

is a τ-distance.

Proof. Suppose that ξ : H×R+ → R+ is a function fulfilling the properties (Q2)–(Q5) of Definition 1.5.
If h ∈ Mg and i ∈ Mh, then i ∈ Mg is such that

Ψ(Φ(i)) · Ψ(Q(g, i)) ≤ Ψ(Φ(i)) · Ψ(Q(g, h) + Q(h, i))
≤ Ψ(Φ(i)) · Ψ(Q(h, i)) · Ψ(Q(g, h))
≤ Ψ(Φ(h)) · Ψ(Q(g, h))
≤ Ψ(Φ(g)).

If g ∈ Mv and h ∈ Mg, then we have

Ψ(Φ(h) · Ψ(Q(g, h)) ≤ Ψ(Φ(g)),

Ψ(Φ(h) + Q(g, h)) ≤ Ψ(Φ(g)),

Φ(h) + Q(g, h) ≤ Φ(g),

Q(g, h) ≤ Φ(g) − Φ(h)
≤ p(g, h)
= Φ(g) − infΦ(Mg)
≤ Φ(v) − infΦ(Mv)
≤ c

and hence

Q(g, h) ≤ p(g, h) ≤ c + Q(g, h),

for all g, h ∈ H .

AIMS Mathematics Volume 7, Issue 1, 1346–1365.



1356

To show that p is a τ-distance, we need to show that the properties (Q1) and (Q3) are satisfied for a
function p. Fix g, h, i ∈ H . If g ∈ Mv, h ∈ Mv and h ∈ Mg, i ∈ Mh, then i ∈ Mg. Thus, we have

p(g, i) = p(g, h) ≤ p(g, h) + p(h, i).

Also, we have

p(g, i) ≤ c + Q(g, i)
≤ c + Q(g, h) + Q(h, i)
≤ p(g, h) + p(h, i)

and hence (Q1) is proved.
Now, for the proof of (Q3), suppose lim

n→+∞
gn = g and

lim sup{ξ(in, p(in, gm)) : m ≥ n} = 0.

Fix t ∈ H . From
lim sup{ξ(in,Q(in, gm)) : m ≥ n} = 0,

we have
Q(t, g) ≤ lim inf

n→+∞
Q(t, gn).

If t ∈ Mv, then there exists {gnk} ⊂ {gn} such that gnk ∈ Mt for all k ∈ N. Then we have g ∈ Mt. In
fact, we have

Ψ(Φ(g)) · Ψ(Q(t, g)) ≤ Ψ(lim infΦ(gn)) · Ψ(lim inf(Q(t, gn)))
≤ lim inf(Ψ(Φ(gn)) · Ψ(Q(t, gn)))
≤ lim inf(Ψ(Φ(gnk)) · Ψ(Q(t, gnk)))
≤ Ψ(Φ(t)).

Thus,

p(t, g) = Φ(t) − infΦ(Mt)
= lim

k→+∞
p(t, gnk)

≤ lim inf
n→+∞

p(t, gn).

Also, one has

p(t, g) ≤ c + Q(t, g)
≤ lim inf

n→+∞
(c + Q(t, gn))

= lim inf
n→+∞

p(t, gn).

Hence, p is a τ-distance. □
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Proposition 2.3. Let H represent a complete metric space having a τ-distance Q. Assume that Φ :
H → (−∞,+∞] is a bounded-below and proper lower semi-continuous map. Define a set Mg by

Mg = {h ∈ H : Ψ(Φ(h)) · Ψ(Q(g, h)) ≤ Ψ(Φ(g))},

where Ψ ∈ W. Then, for all v ∈ H with Mv , ∅, there exists g0 ∈ Mv such that Mg0 ⊂ {g0}.

Proof. Fix v ∈ H with Mv , ∅ and select v1 ∈ Mv with Φ(v1) < +∞. If Mv1 = ∅, then there is nothing
to prove. Let us suppose that Mv1 , ∅ and Mg ∩ (H \ {g}) , ∅ for all g ∈ Mv1. Fix v2 ∈ Mv1. From
Φ(h) ≤ Φ(g) for all g ∈ H and h ∈ Mg, we define the following function S : H → H as follows: For
all g ∈ Mv1, S g satisfies

S g ∈ Mg, S g , g, Φ(S g) ≤
S (g) + inf S (Mg)

2
.

For all g < Mv1, define S g = v2 , g. Also, we define a mapping p : H ×H → R+ by

p(g, h) =
{
Φ(g) − infΦ(Mg) if g ∈ Mv1 ∧ h ∈ Mg,
2(Φ(v1) − infΦ(Mv1)) + 1 + Q(g, h) if g < Mv1 ∨ h < Mg.

Thus, from Lemma 2.2, p is a τ-distance. h ∈ Mg together with i ∈ Mh imply that i ∈ Mg. Thus,
S g ∈ Mv1 and MS g ⊂ Mg for each g ∈ Mv1. If g ∈ Mv1, then we have

p(S g, S 2g) = Φ(S g) − infΦ(MS g) ≤ Φ(S g) − infΦ(Mg)

≤
Φ(g) − infΦ(Mg)

2
=

p(g, S g)
2

.

If g < Mv1, then we have

p(S g, S 2g) = p(v2, S v2) = Φ(v2) − infΦ(Mv2)
≤ Φ(v1) − infΦ(Mv1)

≤
p(g, v2)

2
=

p(g, S g)
2

.

Now, we use Theorem 1.7, that is, suppose that

lim
n→+∞

sup{p(gn, gm) : m > n} = 0, lim
n→+∞

p(gn, h) = 0.

By the definition of p, let us suppose gn ∈ Mv1 and h ∈ Mgn for all n ∈ N. Then h ∈ Mv1 and so
S h ∈ Mh ⊂ Mgn.We have lim

n→+∞
p(gn, S h) = lim

n→+∞
p(gn, h) = 0 and so S h = h, which is a contradiction

because by the definition of S , S h , h. Hence, there exists g0 ∈ Mv1 ⊂ Mv such that Mg0 ⊂ {g0}. □

Theorem 2.4. LetH represent a complete metric space endowed with a τ-distance Q. LetT : H → H
be a self-mapping and Φ : H → (−∞,+∞] be a bounded-below and proper lower semi-continuous
function. Assume that g0 ∈ H such that

Ψ(Φ(T (g))) · Ψ(Q(g,T (g))) ≤ Ψ(Φ(g)),

for all g ∈ H . Then T (g0) = g0 and Q(g0 , g0) = 0.
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Proof. Define a set Mg by

Mg = {h ∈ H : Ψ(Φ(T (g))) · Ψ(Q(g,T (g)) ≤ Ψ(Φ(g)))},

where Ψ ∈ W. By Proposition 2.3, there is g0 ∈ H so that Mg0 ⊂ {g0}. Since T (g0) ∈ Mg0 , we have
T (g0) = g0 and Φ(g0) < +∞. Indeed, if Φ(g0) = +∞, then H = Mg0 ⊂ {g0}, which is a contradiction.
So Φ(g0) < +∞ and

Ψ(Φ(g0)) · Ψ(Q(g0 , g0)) = Ψ(Φ(T (g0))) · Ψ(Q(g0 ,T (g0)))
≤ Ψ(Φ(g0))

Ψ(Φ(g0)) · Ψ(Q(g0 , g0)) ≤ Ψ(Φ(g0))
Φ(g0) + Q(g0 , g0) ≤ Φ(g0)

Q(g0 , g0) = 0.

Hence, the conclusion follows. □

Here, we provide a new form of the Banach type fixed point result using a τ-distance.

Theorem 2.5. LetH represent a complete metric space with a metric d, T : H → H be a continuous
self-mapping and Q be a τ-distance. Suppose there exists a function 𭟋 : [0,+∞) → [0,+∞) so that
lim
x→0
𭟋(x) = 0, 𭟋(0) = 0. Also, if the following conditions hold:

lim sup
n→+∞

{Q(an, am) : m > n} = 0, lim
n→+∞

Q(an,T (an)) = 0, lim
n→+∞

Q(an, b) = 0,

then T (b) = b and

Q(T (a),T (b)) ≤ 𭟋(Q(a, b)) − 𭟋(Q(T (a),T (b)))

for all a, b ∈ H , then there is a fixed point of T .

Proof. Let {an} ∈ H such that an+1 = T (an) for all n ≥ 0. Observe that

0 < Q(an, an+1)
≤ 𭟋(Q(an−1, an)) − 𭟋(Q(T (an−1),T (an)))
≤ 𭟋(Q(an−1, an)) − 𭟋(Q(an, an+1)),

𭟋(Q(an, an+1)) ≤ 𭟋(Q(an−1, an)).

Hence, the sequence {𭟋(Q(an, an+1))} is bounded below and non-increasing. So, there is r ∈ R+ so that

lim 𭟋(Q(an, an+1)) = r.

Now, for all n,m ∈ N with n < m, we have
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Q(an, am) ≤
m−1∑
i=n

Q(ai, ai+1)

≤

m−1∑
i=n

(𭟋(Q(ai−1, ai)) − 𭟋(Q(ai, ai+1)))

= 𭟋(Q(an−1, an)) − r,

Q(an, am) ≤ 𭟋(Q(an−1, an)) − r.

Applying the limit superior in the above inequality, we find that

lim sup
n→+∞

{Q(an, am) : m > n} = 0.

Thus, {an} is p-Cauchy, so {an} is a Cauchy sequence. As H is complete, there is a0 ∈ H such that
lim

n→+∞
an = a0 .

Now, we show that T (a0) = a0 . In fact, from (Q3),

lim sup
n→+∞

(Q(an,T (an)) + Q(an, a0)) ≤ lim sup
n→+∞

Q(an, an+1) + lim inf
n→+∞

Q(an, am)

≤ 2 lim sup
n→+∞

(Q(an, am) = 0.

Hence, T (a0) = a0 . This completes the proof. □

Taking 𭟋(x) = x2 in Theorem 2.5, we get the following corollary.

Corollary 2.6. Let (H , d) be a complete metric space and Q be a τ-distance. Let T : H → H be a
continuous self-mapping. Suppose if

lim sup
n→+∞

{Q(an, am) : m > n} = 0, lim
n→+∞

Q(an,T (an)) = 0, lim
n→+∞

Q(an, b) = 0,

then T (b) = b, and

Q(T (u),T (v)) ≤ [Q(u, v)]2 − [Q(T (u),T (v))]2,

for all u, v ∈ H . Then there is a fixed point of T .

Put 𭟋(x) = xex in Theorem 2.5, we get the following corollary.

Corollary 2.7. Let (H , d) be a complete metric space and Q be a τ-distance. Let T : H → H be a
continuous self-mapping. Suppose if

lim sup
n→+∞

{Q(an), am : m > n} = 0, lim
n→+∞

Q(an,T (an)) = 0, lim
n→+∞

Q(an, b) = 0,

then T (b) = b, and

Q(T (u),T (v))(1 + eQ(T (u),T (v))

Q(u, v)eQ(u,v)) ≤ 1 f or allu, v ∈ H ∧ u , v.

Then there is a fixed point of T .
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Remark 2.8. (1) If we put Ψ(x) = ex in Theorem 2.1 and Theorem 2.4, we get the result of Gupta
et al. [26] and Suzuki [7].

(2) If we replace the τ-distance Q in Theorem 2.4 by the usual distance d, we get the result of 1.10
of Isik et al. [24].

Remark 2.9. The above result (Theorem 2.5) generalizes the Banach Contraction Principle with
respect to the τ-distance. By putting Ψ(y) = α

1−αy, where α ∈ [0, 1), we have

Q(T (a),T (b)) ≤
α

1 − α
Q(a, b) −

α

1 − α
Q(T (a),T (b)),

(1 − α)Q(T (a),T (b)) + (α)Q(T (a),T (b)) ≤ αQ(a, b),

(1 − α + α)Q(T (a),T (b)) ≤ αQ(a, b).

Hence,

Q(T (a),T (b)) ≤ αQ(a, b).

Example 2.10. LetH = {0, 1} and d : H ×H → [0,∞) be defined by

d(x, y) =

x + y, if x , y

0, if x = y.

then clearly (H , d) is a complete metric space. Let the partial ordered ⪯ be defined by: x ⪯ y iff x ≤ y.
Now, define the self-mapping T : H → H as

T (x) =

x − 1
2 , if x , 0

0, if x = 0.

Let us define φ, α, β : [0 ∞) → [0 ∞) ∀ u ≥ 0 as φ(u) = u, α(u) = 4u, β(u) = 2u and taking Ψ(u) = 1
eu ,

clearly the following conditions are satisfied.

(i) Ψ(α(u))
Ψ(β(u)) =

1
e2u ≤

1
eu = Ψ(φ(u)); for all u ≥ 0;

(ii) Ψ(φ(u)) − Ψ(α(u))
Ψ(β(u)) = 0 i f u = 0;

(iii) Also α(u) ≥ (β(u)).

Now, without use of generality, assume that x > y, then clearly the self-mapping satisfies all conditions
of Theorem 2.1. Also, 0 ⪯ 0 and T = 0, therefore 0 is the unique fixed point of T .

Remark 2.11. As α(u) − β(u) = 2u > u = φ(u), therefore Theorem 1.12 of Gupta et al. [26] failed to
satisfy the condition φ(u) < α(u)− β(u). Therefore, Theorem 1.12 of Gupta et al. [26] is not applicable
to this example. Hance our result is the generalization of Gupta et al. [26].

AIMS Mathematics Volume 7, Issue 1, 1346–1365.



1361

3. An application

Alqahtani et al. [27] proposed a solution for Volterra type fractional integral equations by using a
hybrid type contraction that unifies both nonlinear and linear type inequalities in the context of metric
spaces. Rezan et al. [28] focused on developing alternative existence and uniqueness criteria for
higher-order nonlinear fractional differential equations with integral and multi-point boundary
conditions.

Here, we give an existence and uniqueness result of integral equations.
Let L : (0,∞)→ (0,∞) be Lebesgue and local summable. Consider S : [0,∞)→ [0,∞) defined by

S(u) =
∫ u

0
L(u)du,

where u > 0. S is well-defined, non-decreasing and continuous. Also, S(ε) > 0 for each ε > 0 and
S(u) = 0 if and only if u = 0.

Theorem 3.1. Let (H, d,⪯) be a complete partially ordered metric space equipped with a metric d.
Suppose that T : H → H is a non-decreasing self-mapping such that for all x, y ∈ H with x ≥ y and
x , y, we have

Ψ(φ(
∫ d(T (x),T (y))

0
L(u)du)) ≤

Ψ(α(
∫ λ(x,y)

0
L(u)du))

Ψ(β(
∫ λ(x,y)

0
L(u)du))

where λ(x, y) is defined in Eq (1.1), φ is an altering function, L(u) is a Lebesgue integrable function
and α, β : [0,∞) → [0,∞) are continuous functions verifying the conditions φ(v) > α(v) − β(v) for all
v > 0 and α ≥ β. Also, assume that:

(i) Either T is continuous, or ({xn} is a non-decreasing sequence in H such that xn → x, then
x = sup{xn});

(ii) There exists x∗ ∈ H such that x∗ ⪯ H(x∗).

Then T has a fixed point. If for all x, y ∈ H , there exists z ∈ H which is comparable to x and y, then
H has a unique fixed point.

Proof. Taking L(u) = 1 for all u ∈ R, then the proof can be easily obtained from Theorem 2.1. □

Next, we give the existence result for the following Volterra type integral equation:

a(u) = r(u) +
∫ Λ

0
G(u, s)F(s, a(s))ds, (3.1)

where u ∈ I = [0,Λ].

Let I = [0,Λ],H = C(I,R) and Q(a, b) = sup
u∈I

[a(u) − b(u)] = ∥a − b∥.

Assume that the following conditions are satisfied:
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(c1) F : I × R→ R is continuous;

(c2) r : I → R is continuous;

(c3) G : I × I → R is a measurable and continuous function at s ∈ I (second variable) and for all u ∈ I;

(c4) sup
∫ Λ

0
G(u, s)ds ≤ 1 and G(u, s) > 0 for all u, s ∈ I;

(c5) For every u ∈ I and a, b ∈ H , with a , b, |F(u, a(u)) − F(u, b(u))| ≤ |a(u) − b(u)| − 1.

Theorem 3.2. If properties (c1) − (c5) hold, then the integral equation (3.1) has a solution inH .

Proof. Let us define T : H → H as follows:

T (u) = r(u) +
∫ τ

0
G(u, s)F(s, a(s))ds.

Now, we have ∣∣∣T (a(u)) − T (b(u))
∣∣∣ = ∣∣∣∣ ∫ τ

0
G(u, s)(F(s, a(s)) − F(s, b(s)))

∣∣∣∣ds

≤

∫ τ

0
G(u, s)

∣∣∣F(s, a(s)) − F(s, b(s))
∣∣∣ds

≤

∫ τ

0
G(u, s)

(∣∣∣a(u) − b(u)
∣∣∣ − 1
)
ds,

sup
∣∣∣T (a(u)) − T (b(u))

∣∣∣ ≤ sup
∫ τ

0
G(u, s)

(∣∣∣a(u) − b(u)
∣∣∣ − 1
)
ds (3.2)

≤ sup
∫ τ

0
G(u, s)

(∥∥∥a(u) − b(u)
∥∥∥ − 1

)
ds

≤
(∥∥∥a(u) − b(u)

∥∥∥ − 1
)

sup
∫ τ

0
G(u, s)ds,∥∥∥T (a(u)) − T (b(u))

∥∥∥ ≤ ∥∥∥a(u) − b(u)
∥∥∥ − 1,

1 + Q(T (a(u)),T (b(u))) ≤ Q(a(u), b(u)).

This implies that

e1+Q(T (a(u)),T (b(u))) ≤ eQ(a(u),b(u)),

and so

1 + eQ(T (a(u)),T (b(u))) ≤ e1+Q(T (a(u)),T (b(u))) ≤ eQ(a(u),b(u)).

Therefore, we have
1 + eQ(T (a(u)),T (b(u))) ≤ eQ(a(u),b(u)). (3.3)

Thus, from (3.2) and (3.3),

Q(T (a(u)),T (b(u))(1 + eQ(T (a(u)),T (b(u)))) ≤ Q(a(u), b(u))eQ(a(u),b(u)),

Q(T (a(u)),T (b(u))(1 + eQ(T (a(u)),T (b(u))))
Q(a(u), b(u))eQ(a(u),b(u)) ≤ 1.

So, by Corollary 2.7, T has a fixed point, and hence the integral equation (3.1) has a solution. □
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4. Conclusions

In this work, we presented a novel extension of the Banach contraction and Suzuki fixed point
theorem by applying some new control functions. The new contraction will be a useful tool for solving
integral equations, differential equations, and fractional integro-differential equations that exist. We
believe that the multi-valued version is the best option. Researchers can think about the implications of
this new contraction. There will be a new multi-valued contraction a useful technique for determining
the existence of Volterra-integral inclusions.
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